Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 563
Filtrar
1.
Nutrients ; 16(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38732519

RESUMO

Metabolic syndrome (MetS) is a cluster of risk factors for cardiovascular diseases (CVDs) that has become a global public health problem. Puerarin (PUE), the principal active compound of Pueraria lobata, has the effects of regulating glucose and lipid metabolism and protecting against cardiovascular damage. This study aimed to investigate whether dietary supplementation with PUE could ameliorate MetS and its associated cardiovascular damage. Rats were randomly divided into three groups: the normal diet group (NC), the high-fat/high-sucrose diet group (HFHS), and the HFHS plus PUE diet group (HFHS-PUE). The results showed that PUE-supplemented rats exhibited enhanced glucose tolerance, improved lipid parameters, and reduced blood pressure compared to those on the HFHS diet alone. Additionally, PUE reversed the HFHS-induced elevations in the atherogenic index (AI) and the activities of serum lactate dehydrogenase (LDH) and creatine kinase (CK). Ultrasonic evaluations indicated that PUE significantly ameliorated cardiac dysfunction and arterial stiffness. Histopathological assessments further confirmed that PUE significantly mitigated cardiac remodeling, arterial remodeling, and neuronal damage in the brain. Moreover, PUE lowered systemic inflammatory indices including C-reactive protein (CRP), neutrophil-to-lymphocyte ratio (NLR), monocyte-to-lymphocyte ratio (MLR), and systemic immune-inflammation index (SII). In conclusion, dietary supplementation with PUE effectively moderated metabolic disorders, attenuated systemic inflammation, and minimized cardiovascular damage in rats with MetS induced by an HFHS diet. These results provide novel insights into the potential benefits of dietary PUE supplementation for the prevention and management of MetS and its related CVDs.


Assuntos
Doenças Cardiovasculares , Dieta Hiperlipídica , Isoflavonas , Síndrome Metabólica , Animais , Síndrome Metabólica/etiologia , Síndrome Metabólica/tratamento farmacológico , Isoflavonas/farmacologia , Dieta Hiperlipídica/efeitos adversos , Masculino , Doenças Cardiovasculares/prevenção & controle , Doenças Cardiovasculares/etiologia , Ratos , Suplementos Nutricionais , Ratos Sprague-Dawley , Pressão Sanguínea/efeitos dos fármacos , Glicemia/metabolismo , Sacarose Alimentar/efeitos adversos , Rigidez Vascular/efeitos dos fármacos , Modelos Animais de Doenças , Lipídeos/sangue , Pueraria/química
2.
J Agric Food Chem ; 72(19): 10879-10896, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38686994

RESUMO

Mammary gland aging is one of the most important problems faced by humans and animals. How to delay mammary gland aging is particularly important. Puerarin is a kind of isoflavone substance extracted from Pueraria lobata, which has anti-inflammatory, antioxidant, and other pharmacological effects. However, the role of puerarin in delaying lipopolysaccharide (LPS)-induced mammary gland aging and its underlying mechanism remains unclear. On the one hand, we found that puerarin could significantly downregulate the expression of senescence-associated secretory phenotype (SASP) and age-related indicators (SA-ß-gal, p53, p21, p16) in mammary glands of mice. In addition, puerarin mainly inhibited the p38MAPK signaling pathway to repair mitochondrial damage and delay mammary gland aging. On the other hand, puerarin could also delay the cellular senescence of mice mammary epithelial cells (mMECs) by targeting gut microbiota and promoting the secretion of gut microbiota metabolites. In conclusion, puerarin could not only directly act on the mMECs but also regulate the gut microbiota, thus, playing a role in delaying the aging of the mammary gland. Based on the above findings, we have discovered a new pathway for puerarin to delay mammary gland aging.


Assuntos
Envelhecimento , Microbioma Gastrointestinal , Isoflavonas , Glândulas Mamárias Animais , Proteínas Quinases p38 Ativadas por Mitógeno , Isoflavonas/farmacologia , Animais , Camundongos , Microbioma Gastrointestinal/efeitos dos fármacos , Feminino , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Envelhecimento/efeitos dos fármacos , Humanos , Pueraria/química , Bactérias/classificação , Bactérias/genética , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Bactérias/isolamento & purificação , Transdução de Sinais/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Senescência Celular/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos Endogâmicos C57BL
3.
Chem Biodivers ; 21(5): e202400005, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38504590

RESUMO

OBJECTIVE: To delve into the primary active ingredients and mechanism of Pueraria lobata for alleviating iron overload in alcoholic liver disease. METHODS: Pueraria lobata's potential targets and signaling pathways in treating alcohol-induced iron overloads were predicted using network pharmacology analysis. Then, animal experiments were used to validate the predictions of network pharmacology. The impact of puerarin or genistein on alcohol-induced iron accumulation, liver injury, oxidative stress, and apoptosis was assessed using morphological examination, biochemical index test, and immunofluorescence. Key proteins implicated in linked pathways were identified using RT-qPCR, western blot analysis, and immunohistochemistry. RESULTS: Network pharmacological predictions combined with animal experiments suggest that the model group compared to the control group, exhibited activation of the MAPK/ERK signaling pathway, suppression of hepcidin expression, and aggravated iron overload, liver damage, oxidative stress, and hepatocyte death. Puerarin and genistein, the active compounds in Pueraria lobata, effectively mitigated the aforementioned alcohol-induced effects. No statistically significant disparities were seen in the effects above between the two groups receiving drug therapy. CONCLUSION: This study preliminarily demonstrated that puerarin and genistein in Pueraria lobata may increase hepcidin production to alleviate alcohol-induced iron overload by inhibiting the MAPK/ERK signaling pathway.


Assuntos
Sobrecarga de Ferro , Isoflavonas , Hepatopatias Alcoólicas , Sistema de Sinalização das MAP Quinases , Pueraria , Pueraria/química , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/patologia , Animais , Sobrecarga de Ferro/tratamento farmacológico , Sobrecarga de Ferro/metabolismo , Isoflavonas/farmacologia , Isoflavonas/química , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Estresse Oxidativo/efeitos dos fármacos , Genisteína/farmacologia , Genisteína/química , Camundongos , Apoptose/efeitos dos fármacos
4.
Int J Biol Macromol ; 264(Pt 1): 130522, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428777

RESUMO

Kudzu, a plant known for its medicinal value and health benefits, is typically consumed in the form of starch. However, the use of native kudzu starch is limited by its high pasting temperature and low solubility, leading to a poor consumer experience. In this study, kudzu starch was treated using six modification techniques: ball milling, extrusion puffing, alcoholic-alkaline, urea-alkaline, pullulanase, and extrusion puffing-pullulanase. The results of the Fourier transform infrared spectrum showed that the intensity ratio of 1047/1022 cm-1 for the modified starches (1.02-1.21) was lower than that of the native kudzu starch (1.22). The relative crystallinity of modified kudzu starch significantly decreased, especially after ball milling, extrusion puffing, and alcoholic-alkaline treatment. Furthermore, scanning electron microscopy and confocal laser scanning microscopy revealed significant changes in the granular structures of the modified starches. After modification, the pasting temperature of kudzu starch decreased (except for the urea-alkaline treatment), and the apparent viscosity of kudzu starch decreased from 517.95 Pa·s to 0.47 Pa·s. The cold-water solubility of extrusion-puffing and extrusion puffing-pullulanase modified kudzu starch was >70 %, which was significantly higher than that of the native starch (0.11 %). These findings establish a theoretical basis for the potential development of instant kudzu powder.


Assuntos
Pueraria , Amido , Amido/química , Solubilidade , Pueraria/química , Viscosidade , Água/química , Ureia
5.
Int J Biol Macromol ; 261(Pt 2): 129709, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286380

RESUMO

The dried root of Pueraria mirifica (P. mirifica) is an edible foodstuff widely used in Asian countries. P. mirifica is known for its high starch content. The isolation of polysaccharides from high-starch plant parts is challenging due to the interference of starch. Therefore, this study aimed to develop a technique for isolating and investigating the structure and activity of non-glucan polysaccharides from P. mirifica (PMP). An effective starch removal process was developed using α-amylase hydrolysis and thorough membrane dialysis. Four non-glucan polysaccharides were isolated, and PMP-2 was subjected to structural elucidation. The results indicated that PMP-2 has a molecular weight of 124.4 kDa and that arabinose and galactose are the main components, accounting for 27.8 % and 58.5 %, respectively. Methylation and NMR analysis suggested that PMP-2 is an Arabinogalactan composed of 1,6-linked Galp and 1,4-linked Galp as the main chain, with arabinan and rhamnose as side chains. Furthermore, PMP-C and PMP-2 exhibited concentration-dependent antioxidant activities against DPPH, ABTS, and hydroxyl radicals and certain immunomodulatory activities related to the release of NO, TNF-α and IL-6. These findings suggest that PMP-2 has potential therapeutically active ingredient in functional foods. The developed method successfully removed starch and isolated non-glucan polysaccharides from the high-starch content plant P. mirifica and can be applied to other high-starch plants.


Assuntos
Pueraria , Pueraria/química , Amido , Diálise Renal , Extratos Vegetais , Antioxidantes , Polissacarídeos/farmacologia
6.
J Sep Sci ; 47(1): e2300672, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38135874

RESUMO

In this study, a deep eutectic solvent (DES) extraction combined with a magnetic bead ligand affinity analytical method was developed and used for α-glucosidase inhibitor identification from Pueraria lobata. Several critical parameters affecting the analysis performance, including the type of DES, molar ratio, water amount, pH, salt concentration, and volume of DES, were investigated. The selected analytical sample preparation conditions were as follows. The composition of DES is choline chloride-1,4-butanediol (1:3), the water content is 40%, pH is 7.0 and the volume of extraction solution is 2 mL. The obtained sample extraction solution was analyzed directly using α-glucosidase immobilized magnetic beads (GMBs). Three α-glucosidase inhibitors in Pueraria lobata, including puerarin, daidzin, and daidzein, were identified. Luteolin was used as a positive control to evaluate the method's selectivity. Results showed it could selectively bond to the GMBs in the DES. As the affinity analysis was performed directly in a DES, the solution-removing process could be avoided. The intra-day and inter-day precisions of the method are 5.21% and 6.38%, respectively. The solvent amount was 1/50-1/2000 of that used in traditional methods.


Assuntos
Inibidores de Glicosídeo Hidrolases , Pueraria , Succinimidas , Inibidores de Glicosídeo Hidrolases/farmacologia , Pueraria/química , Solventes Eutéticos Profundos , Ligantes , Água , Fenômenos Magnéticos , Solventes/química
7.
Viruses ; 15(11)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-38005823

RESUMO

Kudzu (Pueraria montana var. lobata), a plant native to Southeastern Asia, has become a major noxious weed covering millions of hectares in the Southern United States. A kudzu patch displaying virus-like symptoms located in Ackerman, northeastern Mississippi (MS), was used as a source for virus isolation and characterization involving mechanical and vector transmission, ultrastructural observation, surveys, Sanger and high-throughput genome sequencing, and sequence analyses. The results revealed the presence of a new potyvirus in infected kudzu, closely related to wisteria vein mosaic virus (WVMV) and provisionally named kudzu chlorotic ring blotch virus (KudCRBV). Genome features and pairwise comparison with six WVMV genomes currently available in GenBank and three additional isolates from MS sequenced in this work suggest that KudCRBV is likely a member of a new species in the genus Potyvirus. Furthermore, under experimental conditions, KudCRBV was successfully transmitted by cotton and potato aphids and mechanically to soybean and beans. A state-wide survey revealed several kudzu patches infected by the virus in northern MS.


Assuntos
Potyvirus , Pueraria , Estados Unidos , Pueraria/química , Pueraria/genética , Mississippi , Potyvirus/genética , Sequenciamento de Nucleotídeos em Larga Escala , Sequência de Bases
8.
Zhongguo Zhong Yao Za Zhi ; 48(17): 4693-4701, 2023 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-37802808

RESUMO

This study aimed to examine the effect and underlying mechanism of Puerariae Lobatae Radix on insulin resistance in db/db mice with type 2 diabetes mellitus(T2DM) based on the analysis of intestinal flora. Fifty db/db mice were randomly divided into a model group(M group), a metformin group(YX group), a high-dose Puerariae Lobatae Radix group(YGG group), a medium-dose Puerariae Lobatae Radix group(YGZ group), and a low-dose Puerariae Lobatae Radix group(YGD group). Another 10 db/m mice were assigned to the normal group(K group). After continuous administration for eight weeks, body weight and blood sugar of mice were measured. Enzyme linked immunosorbent assay(ELISA) was used to detect glycosylated serum protein(GSP) and fasting serum insulin(FINS), and insulin resistance index(HOMA-IR) was calculated. The histopathological changes in the pancreas were observed by HE staining. Tumor necrosis factor(TNF)-α expression in the pancreas was detected using immunohistochemistry. The structural changes in fecal intestinal flora in the K, M, and YGZ groups were detected by 16S rRNA. Western blot was used to detect the expression of farnesoid X receptor(FXR) and takeda G protein-coupled receptor 5(TGR5) in the ileum, cholesterol 7α-hydroxylase(CYP7A1) and sterol 27α-hydroxylase(CYP27A1) in the liver, and G protein-coupled receptors 41(GPR41) and 43(GPR43) in the colon. Compared with the K group, the M group showed increased body weight, blood sugar, serum GSP, fasting blood glucose(FBG), and FINS, increased HOMA-IR, inflammatory infiltration of islet cells, necrosis and degeneration of massive acinar cells, unclear boundary between islet cells and acinar cells, disturbed intestinal flora, and down-regulated FXR, TGR5, CYP7A1, CYP27A1, GPR41, and GPR43. Compared with the M group, the YX, YGG, YGZ, and YGD groups showed decreased body weight, blood sugar, serum GSP, FBG, and FINS, islet cells with intact and clumpy morphology and clear boundary, necrosis of a few acinar cells, and more visible islet cells. The intestinal flora in the YGZ group changed from phylum to genus levels, and the relative abundance of intestinal flora affecting the metabolites of intestinal flora increased. The protein expression of FXR, TGR5, CYP7A1, CYP27A1, GPR41, and GPR43 increased. The results show that Puerariae Lobatae Radix can improve the inflammatory damage of pancreatic islet cells and reduce insulin resistance in db/db mice with T2DM. The mechanism of action may be related to the increase in the abundance of Actinobacteria, Bifidobacterium, and Bacteroides in the intestinal tract and the protein expression related to metabolites of intestinal flora.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Resistência à Insulina , Pueraria , Camundongos , Animais , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Pueraria/química , RNA Ribossômico 16S , Peso Corporal , Necrose
9.
Ultrason Sonochem ; 101: 106652, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37865008

RESUMO

In this study, a high-molecular-weight Pueraria lobata polysaccharide (PLP) with a molecular weight of 273.54 kDa was degraded by ultrasound, and the ultrasonic degradation kinetics, structural characteristics and hepatoprotective activity of ultrasonic degraded PLP fractions (PLPs) were evaluated. The results showed that the ultrasonic treatment significantly reduced the Mw and particle size of PLP, and the kinetic equation of ultrasonic degradation of PLP followed to the midpoint fracture model (the fist-order model). The monosaccharide composition analysis, FT-IR, triple helix structure and XRD analysis all indicated that the ultrasound degradation did not destroy the primary structure of PLP, but the thermal stability of degraded fractions improved. Additionally, the scanning electron microscopy analysis demonstrated that the surface morphology of PLP was altered from smooth, flat, compact large flaky structure to a sparse rod-like structure with sparse crosslinking (PLP-7). The degraded PLP fractions (0.5 mg/mL) with lower Mw exhibited better antioxidant activities and protective effects against palmitic acid-induced hepatic lipotoxicity, which may be due to the increased exposure of active groups such as hydroxyl groups of PLP after ultrasound. Further investigation showed that PLPs not only increased Nrf2 phosphorylation and its nuclear translocation, thereby activating Nrf2/Keap1 signaling pathway, but also enhanced HO-1, NQO-1, γ-GCL gene expressions and promoted superoxide dismutase and catalase activities, which protected hepatocytes against PA-induced oxidative stress and lipotoxicity. Overall, our research might provide an in-depth insight into P. Lobata polysaccharide in ameliorating lipid metabolic disorders, and the results revealed that ultrasonic irradiation could be a promising degradation method to produce value-added polysaccharide for use in functional food.


Assuntos
Ácido Palmítico , Pueraria , Ácido Palmítico/metabolismo , Ácido Palmítico/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Pueraria/química , Ultrassom , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Polissacarídeos/química , Hepatócitos/metabolismo , Antioxidantes/química
10.
Int J Biol Macromol ; 243: 125210, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37271269

RESUMO

Pueraria lobata (Willd.) Ohwi is an important resource with dual functions in medicine and food since ancient times. Polysaccharides are the main bioactive component of P. lobata and have various bioactivities, such as antidiabetic, antioxidant, immunological activities, etc. Due to the distinctive bioactivity of P. lobata polysaccharides (PLPs), the research on PLPs is booming. Although a series of PLPs have been isolated and characterized, the chemical structure and mechanism are unclear and need further study. Here, we reviewed recent progress in isolation, identification, pharmacological properties, and possible therapeutic mechanisms of PLPs to update awareness of these value-added natural polysaccharides. Besides, the structure-activity relationships, application status, and toxic effects of PLPs are highlighted and discussed to afford a deeper understanding of PLPs. This article may provide theoretical insights and technical guidance for developing PLPs as novel functional foods.


Assuntos
Pueraria , Pueraria/química , Hipoglicemiantes , Relação Estrutura-Atividade , Polissacarídeos/farmacologia
11.
J Ethnopharmacol ; 314: 116628, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37196817

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Alcoholic liver disease (ALD) is the most serious and irreversible liver damage associated with alcohol consumption. Flos Puerariae and Semen Hoveniae are traditional Chinese medicines (TCM) for dispelling the effects of alcohol. Many studies have shown that the combination of two medicinal materials has the enhanced effect of treating ALD. AIM OF THE STUDY: The aim of this study is to assess the pharmacological effects of Flos Puerariae-Semen Hoveniae medicine pair, to elucidate its action mechanism in the treatment of alcohol-induced BRL-3A cells, and to reveal the active ingredients in the medicine pair that exerted pharmacological effects by spectrum-effect relationship study. MATERIALS AND METHODS: Firstly, MTT assays, ELISA, fluorescence probe analysis, and Western blot were employed to study the underlying mechanisms of the medicine pair in alcohol-induced BRL-3A cells by examining pharmacodynamic indexes and related protein expression. Secondly, HPLC method was established for chemical chromatograms of the medicine pair with different ratios and the sample extracted by different solvents. Then, principal component analysis, pearson bivariate correlation analysis and grey relational analysis were applied for development of the spectrum-effect correlation between pharmacodynamic indexes and HPLC chromatograms. Moreover, prototype components and their metabolites in vivo were identified by the HPLC-MS method. RESULTS: Flos Puerariae-Semen Hoveniae medicine pair remarkably increased cell viability, decreased the activity of ALT, AST, TC and TG, reduced the generation of TNF-α, IL-1ß, IL-6, MDA and ROS, increased the activity of SOD and GSH-Px, reduced protein expression of CYP2E1, compared with alcohol-induced BRL-3A cells. The medicine pair modulated the PI3K/AKT/mTOR signaling pathways by up-regulating the levels of phospho-PI3K, phospho-AKT and phospho-mTOR. Also, the results of the spectrum-effect relationship study showed that P1 (chlorogenic acid), P3 (daidzin), P4 (6″-O-xylosyl-glycitin), P5 (glycitin), P6 (unknown), P7 (unknown), P9 (unknown), P10 (6″-O-xylosyl-tectoridin), P12 (tectoridin) and P23 (unknown) can be considered as the main components of the medicine pair in the treatment of ALD. Furthermore, 6″-O-xylosyl-tectoridin, tectoridin, daidzin, 6″-O-xylosyl-glycitin and glycitin can be absorbed into the blood and showed clear metabolic and excretion behaviors in rats. CONCLUSION: In this study, the hepatoprotective effects and the pharmacology mechanism of Flos Puerariae-Semen Hoveniae medicine pair in alcohol-induced BRL-3A cells were initially investigated and revealed. Through the spectrum-effect relationship study, the potential pharmacodynamic constituents such as daidzin, 6″-O-xylosyl-glycitin, 6″-O-xylosyl-tectoridin, glycitin, and tectoridin exert pharmacological effects on alcohol-induced oxidative stress and inflammation by modulating the PI3K/AKT/mTOR signaling pathways. This study provided experimental basis and data support for revealing the pharmacodynamic substance basis and pharmacology mechanism in the treatment of ALD. Moreover, it provides a robust mean of exploring the primary effective components responsible for the bioactivity of complicated TCM.


Assuntos
Medicamentos de Ervas Chinesas , Hepatopatias Alcoólicas , Pueraria , Ratos , Animais , Pueraria/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Sementes , Hepatopatias Alcoólicas/tratamento farmacológico , Etanol/uso terapêutico , Serina-Treonina Quinases TOR
12.
Phytochem Anal ; 34(6): 632-640, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37254639

RESUMO

INTRODUCTION: Miroestrol and deoxymiroestrol are potent phytoestrogens and are oestrogen markers of Pueraria candollei var. mirifica. However, purifying these compounds is difficult because they only exist in trace amounts. OBJECTIVES: Active fragment antigen-binding (Fab) antibodies were produced via Escherichia coli SHuffle® T7 and used to selectively separate these compounds. MATERIALS AND METHODS: Two immunoaffinity separation approaches were developed, namely the immunoaffinity column (IAC) and a cell-based method. Group-specific Fab antibodies against miroestrol and deoxymiroestrol (anti-MD Fab) were used as biological binding reagents for selective separation. RESULTS: The Fab-based IAC effectively separated miroestrol and deoxymiroestrol (0.65 and 2.24 µg per 2 mL of resin, respectively) from P. mirifica root extract. When P. mirifica extract was added to E. coli cultures during Fab expression via a cell-based method, the target compound accumulated in intracellular compartments and, thus, were separated from E. coli cells after the removal of other compounds. A yield of 1.07 µg of miroestrol per gram of cell pellet weight was obtained. Miroestrol and deoxymiroestrol were successfully purified from P. mirifica extract using anti-MD Fab via the IAC and an intracellular cell-based method. CONCLUSION: The proposed methods can simplify the miroestrol and deoxymiroestrol extraction process and provide a basis for applications utilising recombinant antibodies to separate target compounds.


Assuntos
Pueraria , Pueraria/química , Escherichia coli/genética , Extratos Vegetais
13.
Food Chem ; 422: 136198, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37121210

RESUMO

Isoflavones are important chemical components in Pueraria species with various biological activities. This study proposed an integrated strategy combining feature-based molecular networking (FBMN), chemometrics and activity evaluation for isoflavone analysis in the roots of P. lobate (PLR) and P. thomsonii (PTR). Based on the strategy, a total of 68 isoflavones were annotated in the two Pueraria species, and 11 significant difference isoflavones between PLR and PTR were identified by chemometric methods. Additionally, the correlation coefficient between the characteristic isoflavones and hypoglycemic activity were calculated, and 7 isoflavones were further confirmed as bioactive marker compounds. This approach provided guidance for the discovery of active markers among different products.


Assuntos
Isoflavonas , Pueraria , Isoflavonas/análise , Pueraria/química , Hipoglicemiantes/análise , Raízes de Plantas/química
14.
J Ethnopharmacol ; 313: 116546, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37121451

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: P. lobata and P. thomsonii are medicinal plants with similar pharmacological functions but different therapeutic effects. A novel method is presented herein to investigate metabolites in terms of their distribution and qualification, quantification is necessary to elucidate the different therapeutic effects of the two Puerariae species. AIM OF THE STUDY: The aim of the present study was to perform spatially resolved metabolomics combined with bioactivity analyses to systematically compare the metabolite differences in P. lobata and P. thomsonii by distribution, qualification, quantification, and biological activity to evaluate their pharmacological properties. MATERIALS AND METHODS: Air flow-assisted desorption electrospray ionization-mass spectrometry imaging (AFADESI-MSI) was performed to characterize the differences in the metabolite distributions of P. lobata and P. thomsonii. Further qualitative and quantitative analyses of the differential metabolites were performed using liquid chromatography-mass spectrometry (LC-MS). Biological activities correlated with the differences in the metabolites were validated by MTT assays. RESULTS: Some metabolites showed complementary distributions of the phloem and xylem in the two species, saccharide, vitamin, and inosine levels were higher in the phloem of P. thomsonii but higher in the xylem of P. lobata. The 3'-hydroxyl puerarin level was higher in the xylem of P. thomsonii but higher in the phloem of P. lobata. Qualitative and quantitative analyses of the metabolites revealed a total of 52 key differential metabolites. MTT assays showed that daidzein, daidzin, puerarin, ononin, genistin, formononetin, 3'-hydroxy puerarin, 3'-methoxy puerarin, mirificin, and 3'-methoxy daidzin exerted protective effects on H9c2 cells against hypoxia/reoxygenation injury. P. lobata extracts exhibited a significantly better protective efficacy than P. thomsonii extracts. CONCLUSIONS: In this study, AFADESI-MSI combined with LC-MS and biological activities comprehensively elucidated metabolite differences in the distribution, qualification, quantification, and pharmacological properties of P. lobata and P. thomsonii. The results of this study could provide a novel strategy for species identification and quality assessment of similar Chinese herbal medicines.


Assuntos
Medicamentos de Ervas Chinesas , Isoflavonas , Pueraria , Pueraria/química , Isoflavonas/química , Medicamentos de Ervas Chinesas/química , Cromatografia Líquida , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos
15.
Chem Biodivers ; 20(4): e202201253, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36896632

RESUMO

Pueraria lobata polysaccharides (PLPs) were obtained by hot water extraction using Pueraria lobata as raw material. Structural analysis revealed that PLPs may have a repetitive backbone units of →4) -α-D-Glcp (1→4-α-D-Glcp (1→. Phosphorylated Pueraria lobata polysaccharides (P-PLPs), carboxymethylated Pueraria lobata polysaccharides (CM-PLPs) and acetylated Pueraria lobata polysaccharides (Ac-PLPs) were obtained by chemical modifications of PLPs, respectively. The physicochemical properties and antioxidant activities of these four Pueraria lobata polysaccharides were studied in comparison. In particular, the clearance rate of P-PLPs exceeded 80 %, and was expected to achieve the same effect as Vc . The results showed that the effects of different chemical modifications on the antioxidant activity of PLPs varied greatly.


Assuntos
Extratos Vegetais , Pueraria , Antioxidantes/química , Antioxidantes/farmacologia , Extratos Vegetais/química , Raízes de Plantas/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Pueraria/química
16.
Appl Microbiol Biotechnol ; 107(9): 2887-2896, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36995382

RESUMO

Immunoassays are efficient for the phytochemical analysis of various matrices. However, producing an appropriate recombinant antibody for small molecules is challenging, resulting in costly analyses. In this study, we aimed to develop recombinant fragment antigen-binding (Fab) antibodies against miroestrol, a potent phytoestrogen marker of Pueraria candollei. Two expression cassettes of Fab were established for the production of active Fab antibodies using SHuffle® T7 Escherichia coli cells. The orientation of variable fragment heavy chain (VH) and variable fragment light chain (VL) in the expression vector constructs influences the reactivity, stability, and binding specificity of the resultant Fab. Stability testing of antibodies demonstrated that Fab is a more stable form of recombinant antibody than a single-chain variable fragment (ScFv) antibody in all conditions. Based on the obtained Fab, the ELISA specifically detected miroestrol in the range of 39.06-625.00 ng/mL. The intra- and inter-assay precisions were 0.74-2.98% and 6.57-9.76%, respectively. The recovery of authentic miroestrol spiked into samples was 106.70-110.14%, and the limit of detection was 11.07 ng/mL. The results for P. candollei roots and products determined using our developed ELISA with Fab antibody and an ELISA with anti-miroestrol monoclonal antibody (mAb) were consistent (R2 = 0.9758). The developed ELISA can be applied for the quality control of miroestrol derived from P. candollei. Therefore, the appropriate expression platform of Fab resulted in the stable binding specificity of the recombinant antibody and was applicable for immunoassays.Key points• ELISAs with Fab has higher sensitivity than that with ScFv.• Fab is more stable than ScFv.• Fab-based ELISA can be used for miroestrol determination of Pueraria candollei.


Assuntos
Pueraria , Anticorpos de Cadeia Única , Ensaio de Imunoadsorção Enzimática/métodos , Fitoestrógenos/análise , Imunoensaio/métodos , Anticorpos de Cadeia Única/genética , Pueraria/química , Escherichia coli/genética
17.
Eur J Pharmacol ; 953: 175695, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36977450

RESUMO

The incidence of cerebral diseases is rapidly increasing worldwide, and they have become an important challenge for modern medicine. Most of the available chemical drugs used in the treatment of cerebral diseases are highly toxic and single-targeted. Therefore, novel drugs from natural resources have attracted much attention for their potential to manage cerebral diseases. Puerarin is a natural isoflavone isolated from the roots of Pueraria species such as P. lobata (Willd.) Ohwi, P. thomsonii, and P. mirifica. Several authors have reported the beneficial effects of puerarin in cerebral ischemic disease, intracerebral hemorrhage, vascular dementia, Alzheimer's disease, Parkinson's disease, depression, anxiety, and traumatic brain injury. This review summarizes the brain pharmacokinetics, brain drug delivery system, clinical use (in cerebral diseases), toxicity, and the adverse clinical reactions of puerarin. We have systematically presented the pharmacological actions and the molecular mechanisms of puerarin in various cerebral diseases to provide a direction for future researches on the therapeutic use of puerarin in cerebral diseases.


Assuntos
Encefalopatias , Isoflavonas , Pueraria , Humanos , Isoflavonas/efeitos adversos , Pueraria/química
18.
Phytochem Anal ; 34(4): 421-430, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36950953

RESUMO

INTRODUCTION: Miroestrol (Mi) and deoxymiroestrol (Dmi) are trace, yet potent, phytooestrogens found in white Kwao Krua [Pueraria candollei var. mirifica (Airy Shaw & Suvat.) Niyomdham, PM]. However, the analysis of these substances is difficult because of complex matrix effects and their various analogues. In addition, alteration in the cross-reactivity of a gold nanoparticle (AuNP)-based immunochromatographic assay (ICA) resulting from the electrostatic adsorption between antibodies and AuNPs has not yet been evaluated. OBJECTIVES: This study aims to develop, characterise, and validate ICA with a monoclonal antibody exhibiting similar reactivity against Mi and Dmi (MD-mAb). MATERIALS AND METHODS: The ICA performance was validated for cross-reactivity and performance in comparison with those of indirect competitive enzyme-linked immunosorbent assays (icELISAs) with MD-mAb and mAb exhibiting specificity against Mi (Mi-mAb). RESULTS: The ICA showed a limit of detection (LOD) at 1 and 16 µg/mL for Mi and Dmi, respectively. The cross-reactivity of the ICA with Dmi was lower (6.25%) than that observed with the icELISA (120%). Cross-reactivity of ICA against other compounds of the PM was also correlated with those of icELISA; no false-positive/negative results were observed. The repeatability and reproducibility of the ICA were confirmed. The results obtained using ICA in samples of PM are correlated with the concentrations determined through icELISAs. CONCLUSION: An ICA with MD-mAb was constructed and validated. However, direct conjugation via the electrostatic adsorption of mAb-AuNPs was expected to alter the cross-reactivity of ICA, especially that of the analyte analogue Dmi.


Assuntos
Nanopartículas Metálicas , Pueraria , Pueraria/química , Ouro , Reprodutibilidade dos Testes , Anticorpos Monoclonais , Imunoensaio , Ensaio de Imunoadsorção Enzimática/métodos
19.
Artigo em Inglês | MEDLINE | ID: mdl-36796216

RESUMO

BACKGROUND: The herbal pair of Salvia miltiorrhiza Bunge and Pueraria montana var. lobata (Willd.) Sanjappa & Pradeep (DG) is commonly used in the treatment of type 2 diabetes (T2DM) in traditional Chinese medicine (TCM). The drug pair DG was designed by Dr. Zhu chenyu to improve the treatment of T2DM. AIM: This study combined with systematic pharmacology and urine metabonomics to explore the mechanism of DG in the treatment of T2DM. METHODS: The therapeutic effect of DG on T2DM was evaluated by fasting blood glucose (FBG) and biochemical indexes. Systematic pharmacology was used to screen the active components and targets that may be related to DG. Metabonomics was established to find urinary metabolites and pathways that may be induced by DG. Finally, integrate the results of these two parts for mutual verification. RESULTS: FBG and biochemical indexes showed that DG could reduce FBG and adjust the related biochemical indexes. Metabolomics analysis indicated that 39 metabolites were related to DG for T2DM treatment. In addition, systematic pharmacology showed compounds and potential targets which were associated with DG. Finally, 12 promising targets were selected as targets for T2DM therapy by integrating the results. CONCLUSION: The combination of metabonomics and systematic pharmacology based on LC-MS is feasible and effective, which provides strong support for exploring the effective components and pharmacological mechanism of TCM.


Assuntos
Diabetes Mellitus Tipo 2 , Medicamentos de Ervas Chinesas , Pueraria , Salvia miltiorrhiza , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Salvia miltiorrhiza/química , Pueraria/química , Farmacologia em Rede , Metabolômica/métodos , Medicamentos de Ervas Chinesas/farmacologia
20.
Food Funct ; 14(4): 1952-1961, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36723126

RESUMO

In this study, a ligand fishing technique based on magnetic mesoporous silicon was established and used to screen α-glucosidase inhibitors from Pueraria lobata. To clarify quantity-activity relationships in a holistic view, the knock-out/knock-in technology was used to analyse the interactions of several active constituents in P. lobata. Magnetic mesoporous silicon with a large specific surface area and better biocompatibility was synthesised. Subsequently, α-glucosidase was immobilised on -NH2-modified magnetic mesoporous silicon, and the compounds in the crude extract of P. lobata were screened across enzyme binding. The structures of the ligands were elucidated using UPLC-Q-TOF-MS/MS, and their activities were verified by knock-out/knock-in experiments and molecular docking. Daidzein and puerarin showed α-glucosidase inhibitory activities with an IC50 of 0.088 ± 0.003 mg mL-1 and 0.414 ± 0.005 mg mL-1, respectively. Among them, puerarin, which accounted for more than 40% of the total content, showed synergistic effects with other components and was the main contributor to the α-glucosidase inhibitory activity of P. lobata.


Assuntos
Isoflavonas , Pueraria , alfa-Glucosidases/metabolismo , Inibidores de Glicosídeo Hidrolases/química , Isoflavonas/farmacologia , Ligantes , Fenômenos Magnéticos , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Pueraria/química , Saccharomyces cerevisiae/metabolismo , Silício , Espectrometria de Massas em Tandem , Tecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA