Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Nat Med ; 27(12): 2224-2233, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34887572

RESUMO

Chikungunya virus (CHIKV) infection causes acute disease characterized by fever, rash and arthralgia, which progresses to severe and chronic arthritis in up to 50% of patients. Moreover, CHIKV infection can be fatal in infants or immunocompromised individuals and has no approved therapy or prevention. This phase 1, first-in-human, randomized, placebo-controlled, proof-of-concept trial conducted from January 2019 to June 2020 evaluated the safety and pharmacology of mRNA-1944, a lipid nanoparticle-encapsulated messenger RNA encoding the heavy and light chains of a CHIKV-specific monoclonal neutralizing antibody, CHKV-24 ( NCT03829384 ). The primary outcome was to evaluate the safety and tolerability of escalating doses of mRNA-1944 administered via intravenous infusion in healthy participants aged 18-50 years. The secondary objectives included determination of the pharmacokinetics of mRNA encoding for CHKV-24 immunoglobulin heavy and light chains and ionizable amino lipid component and the pharmacodynamics of mRNA-1944 as assessed by serum concentrations of mRNA encoding for CHKV-24 immunoglobulin G (IgG), plasma concentrations of ionizable amino lipid and serum concentrations of CHKV-24 IgG. Here we report the results of a prespecified interim analysis of 38 healthy participants who received intravenous single doses of mRNA-1944 or placebo at 0.1, 0.3 and 0.6 mg kg-1, or two weekly doses at 0.3 mg kg-1. At 12, 24 and 48 h after single infusions, dose-dependent levels of CHKV-24 IgG with neutralizing activity were observed at titers predicted to be therapeutically relevant concentrations (≥1 µg ml-1) across doses that persisted for ≥16 weeks at 0.3 and 0.6 mg kg-1 (mean t1/2 approximately 69 d). A second 0.3 mg kg-1 dose 1 week after the first increased CHKV-24 IgG levels 1.8-fold. Adverse effects were mild to moderate in severity, did not worsen with a second mRNA-1944 dose and none were serious. To our knowledge, mRNA-1944 is the first mRNA-encoded monoclonal antibody showing in vivo expression and detectable ex vivo neutralizing activity in a clinical trial and may offer a treatment option for CHIKV infection. Further evaluation of the potential therapeutic use of mRNA-1944 in clinical trials for the treatment of CHIKV infection is warranted.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Vírus Chikungunya/imunologia , Lipídeos/química , RNA Mensageiro/uso terapêutico , Adulto , Anticorpos Monoclonais/genética , Anticorpos Neutralizantes/genética , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Nanopartículas/química , Placebos , Estudo de Prova de Conceito , RNA Mensageiro/efeitos adversos , RNA Mensageiro/genética , RNA Mensageiro/farmacocinética , Adulto Jovem
2.
J Nanobiotechnology ; 19(1): 402, 2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34863187

RESUMO

BACKGROUND: Efficient and topical delivery of drugs is essential for maximized efficacy and minimized toxicity. In this study, we aimed to design an exosome-based drug delivery platform endowed with the ability of escaping from phagocytosis at non-target organs and controllably releasing drugs at targeted location. RESULTS: The swtichable stealth coat CP05-TK-mPEG was synthesized and anchored onto exosomes through the interaction between peptide CP05 and exosomal surface marker CD63. Chlorin e6 (Ce6) was loaded into exosomes by direct incubation. Controllable removal of PEG could be achieved by breaking thioketal (TK) through reactive oxygen species (ROS), which was produced by Ce6 under ultrasound irradiation. The whole platform was called SmartExo. The stealth effects were analyzed in RAW264.7 cells and C57BL/6 mice via tracing the exosomes. To confirm the efficacy of the engineered smart exosomes, Bone morphogenetic protein 7 (Bmp7) mRNA was encapsulated into exosomes by transfection of overexpressing plasmid, followed by stealth coating, with the exosomes designated as SmartExo@Bmp7. Therapeutic advantages of SmartExo@Bmp7 were proved by targeted delivering Bmp7 mRNA to omental adipose tissue (OAT) of obese C57BL/6 mice for browning induction. SmartExo platform was successfully constructed without changing the basic characteristics of exosomes. The engineered exosomes effectively escaped from the phagocytosis by RAW264.7 and non-target organs. In addition, the SmartExo could be uptaken locally on-demand by ultrasound mediated removal of the stealth coat. Compared with control exosomes, SmartExo@Bmp7 effectively delivered Bmp7 mRNA into OAT upon ultrasound irradiation, and induced OAT browning, as evidenced by the histology of OAT and increased expression of uncoupling protein 1 (Ucp1). CONCLUSIONS: The proposed SmartExo-based delivery platform, which minimizes side effects and maximizing drug efficacy, offers a novel safe and efficient approach for targeted drug delivery. As a proof, the SmartExo@Bmp7 induced local white adipose tissue browning, and it would be a promising strategy for anti-obesity therapy.


Assuntos
Tecido Adiposo Branco , Proteína Morfogenética Óssea 7 , Sistemas de Liberação de Medicamentos/métodos , RNA Mensageiro , Terapia por Ultrassom , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Administração Tópica , Animais , Bioengenharia , Proteína Morfogenética Óssea 7/genética , Proteína Morfogenética Óssea 7/farmacocinética , Proteína Morfogenética Óssea 7/farmacologia , Exossomos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , RNA Mensageiro/genética , RNA Mensageiro/farmacocinética , RNA Mensageiro/farmacologia
3.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34933999

RESUMO

Lipid nanoparticles (LNPs) are a clinically mature technology for the delivery of genetic medicines but have limited therapeutic applications due to liver accumulation. Recently, our laboratory developed selective organ targeting (SORT) nanoparticles that expand the therapeutic applications of genetic medicines by enabling delivery of messenger RNA (mRNA) and gene editing systems to non-liver tissues. SORT nanoparticles include a supplemental SORT molecule whose chemical structure determines the LNP's tissue-specific activity. To understand how SORT nanoparticles surpass the delivery barrier of liver hepatocyte accumulation, we studied the mechanistic factors which define their organ-targeting properties. We discovered that the chemical nature of the added SORT molecule controlled biodistribution, global/apparent pKa, and serum protein interactions of SORT nanoparticles. Additionally, we provide evidence for an endogenous targeting mechanism whereby organ targeting occurs via 1) desorption of poly(ethylene glycol) lipids from the LNP surface, 2) binding of distinct proteins to the nanoparticle surface because of recognition of exposed SORT molecules, and 3) subsequent interactions between surface-bound proteins and cognate receptors highly expressed in specific tissues. These findings establish a crucial link between the molecular composition of SORT nanoparticles and their unique and precise organ-targeting properties and suggest that the recruitment of specific proteins to a nanoparticle's surface can enable drug delivery beyond the liver.


Assuntos
Edição de Genes/métodos , Lipossomos , Sistemas de Liberação de Fármacos por Nanopartículas , Nanopartículas , RNA Mensageiro , Animais , Humanos , Lipossomos/metabolismo , Lipossomos/farmacocinética , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/farmacocinética , Distribuição Tecidual
4.
Commun Biol ; 4(1): 956, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34381159

RESUMO

Lipid Nanoparticles (LNPs) are used to deliver siRNA and COVID-19 mRNA vaccines. The main factor known to determine their delivery efficiency is the pKa of the LNP containing an ionizable lipid. Herein, we report a method that can predict the LNP pKa from the structure of the ionizable lipid. We used theoretical, NMR, fluorescent-dye binding, and electrophoretic mobility methods to comprehensively measure protonation of both the ionizable lipid and the formulated LNP. The pKa of the ionizable lipid was 2-3 units higher than the pKa of the LNP primarily due to proton solvation energy differences between the LNP and aqueous medium. We exploited these results to explain a wide range of delivery efficiencies in vitro and in vivo for intramuscular (IM) and intravascular (IV) administration of different ionizable lipids at escalating ionizable lipid-to-mRNA ratios in the LNP. In addition, we determined that more negatively charged LNPs exhibit higher off-target systemic expression of mRNA in the liver following IM administration. This undesirable systemic off-target expression of mRNA-LNP vaccines could be minimized through appropriate design of the ionizable lipid and LNP.


Assuntos
Expressão Gênica , Íons/química , Lipídeos/química , Nanopartículas/química , RNA Mensageiro/química , RNA Mensageiro/genética , Administração Intravenosa , Animais , Composição de Medicamentos , Humanos , Concentração de Íons de Hidrogênio , Injeções Intramusculares , Camundongos , Estrutura Molecular , Nanopartículas/ultraestrutura , RNA Mensageiro/administração & dosagem , RNA Mensageiro/farmacocinética , Análise Espectral , Distribuição Tecidual , Transfecção
5.
Nucleic Acid Ther ; 31(5): 321-323, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33960839

RESUMO

The utilization of the mRNA-based Pfizer-BioNTech and Moderna coronavirus disease 2019 (COVID-19) vaccines represents the culmination of many years of nonviral nucleic acid delivery, but more importantly, they signify a massive clinical scientific success. Scientists working in the area of nucleic acid delivery using lipid nanoparticles will undoubtedly be energized by the success of these vaccines and begin to collect much needed data in the realm of nonviral-based RNA and DNA delivery, specifically, the use of lipid nanoparticles, the immune response, safety, and efficacy. It is easily conceivable that in the future we can utilize these data to help streamline our approach for the delivery of DNA for gene therapy and regulatory RNAs for therapeutic and regenerative medicine (ie, wound repair) applications.


Assuntos
Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , DNA/farmacocinética , Técnicas de Transferência de Genes , RNA Mensageiro/farmacocinética , Vacina de mRNA-1273 contra 2019-nCoV , Vacina BNT162 , Biotecnologia/tendências , COVID-19/imunologia , COVID-19/virologia , Vacinas contra COVID-19/biossíntese , Vacinas contra COVID-19/química , Vacinas contra COVID-19/genética , DNA/química , Mineração de Dados , Dependovirus/genética , Dependovirus/imunologia , Humanos , Lipossomos/química , Lipossomos/farmacocinética , Nanopartículas/administração & dosagem , Nanopartículas/química , RNA Mensageiro/química , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade
6.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33649229

RESUMO

Loss-of-function mutations in Angiopoietin-like 3 (Angptl3) are associated with lowered blood lipid levels, making Angptl3 an attractive therapeutic target for the treatment of human lipoprotein metabolism disorders. In this study, we developed a lipid nanoparticle delivery platform carrying Cas9 messenger RNA (mRNA) and guide RNA for CRISPR-Cas9-based genome editing of Angptl3 in vivo. This system mediated specific and efficient Angptl3 gene knockdown in the liver of wild-type C57BL/6 mice, resulting in profound reductions in serum ANGPTL3 protein, low density lipoprotein cholesterol, and triglyceride levels. Our delivery platform is significantly more efficient than the FDA-approved MC-3 LNP, the current gold standard. No evidence of off-target mutagenesis was detected at any of the nine top-predicted sites, and no evidence of toxicity was detected in the liver. Importantly, the therapeutic effect of genome editing was stable for at least 100 d after a single dose administration. This study highlights the potential of LNP-mediated delivery as a specific, effective, and safe platform for Cas9-based therapeutics.


Assuntos
Proteínas Semelhantes a Angiopoietina , Proteína 9 Associada à CRISPR/genética , Portadores de Fármacos , Edição de Genes , Lipídeos , Fígado/metabolismo , Nanopartículas/química , RNA Guia de Cinetoplastídeos , RNA Mensageiro , Proteína 3 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina/genética , Proteínas Semelhantes a Angiopoietina/metabolismo , Animais , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Feminino , Lipídeos/química , Lipídeos/farmacocinética , Lipídeos/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Especificidade de Órgãos , RNA Guia de Cinetoplastídeos/química , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/farmacocinética , RNA Guia de Cinetoplastídeos/farmacologia , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/farmacocinética , RNA Mensageiro/farmacologia
7.
Sci Rep ; 11(1): 371, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33432084

RESUMO

Vaccines and therapeutics using in vitro transcribed mRNA hold enormous potential for human and veterinary medicine. Transfection agents are widely considered to be necessary to protect mRNA and enhance transfection, but they add expense and raise concerns regarding quality control and safety. We found that such complex mRNA delivery systems can be avoided when transfecting epithelial cells by aerosolizing the mRNA into micron-sized droplets. In an equine in vivo model, we demonstrated that the translation of mRNA into a functional protein did not depend on the addition of a polyethylenimine (PEI)-derived transfection agent. We were able to safely and effectively transfect the bronchial epithelium of foals using naked mRNA (i.e., mRNA formulated in a sodium citrate buffer without a delivery vehicle). Endoscopic examination of the bronchial tree and histology of mucosal biopsies indicated no gross or microscopic adverse effects of the transfection. Our data suggest that mRNA administered by an atomization device eliminates the need for chemical transfection agents, which can reduce the cost and the safety risks of delivering mRNA to the respiratory tract of animals and humans.


Assuntos
Cavalos , Sprays Nasais , RNA Mensageiro/administração & dosagem , Mucosa Respiratória , Animais , Animais Recém-Nascidos , Células Cultivadas , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/efeitos adversos , Portadores de Fármacos/farmacocinética , Sistemas de Liberação de Medicamentos/efeitos adversos , Sistemas de Liberação de Medicamentos/métodos , Sistemas de Liberação de Medicamentos/veterinária , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Nebulizadores e Vaporizadores/veterinária , Polietilenoimina/administração & dosagem , Polietilenoimina/química , RNA Mensageiro/efeitos adversos , RNA Mensageiro/farmacocinética , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Transcrição Gênica , Transfecção/métodos , Transfecção/veterinária , Vacinas de DNA/administração & dosagem , Vacinas de DNA/efeitos adversos , Vacinas de DNA/farmacocinética
8.
Mol Pharm ; 17(10): 3654-3684, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32845639

RESUMO

Messenger RNA (mRNA) has immense potential for developing a wide range of therapies, including immunotherapy and protein replacement. As mRNA presents no risk of integration into the host genome and does not require nuclear entry for transfection, which allows protein production even in nondividing cells, mRNA-based approaches can be envisioned as safe and practical therapeutic strategies. Nevertheless, mRNA presents unfavorable characteristics, such as large size, immunogenicity, limited cellular uptake, and sensitivity to enzymatic degradation, which hinder its use as a therapeutic agent. While mRNA stability and immunogenicity have been ameliorated by direct modifications on the mRNA structure, further improvements in mRNA delivery are still needed for promoting its activity in biological settings. In this regard, nanomedicine has shown the ability for spatiotemporally controlling the function of a myriad of bioactive agents in vivo. Direct engineering of nanomedicine structures for loading, protecting, and releasing mRNA and navigating in biological environments can then be applied for promoting mRNA translation toward the development of effective treatments. Here, we review recent approaches aimed at enhancing mRNA function and its delivery through nanomedicines, with particular emphasis on their applications and eventual clinical translation.


Assuntos
Portadores de Fármacos/química , Nanopartículas/química , RNA Mensageiro/administração & dosagem , Animais , Engenharia Química/métodos , Química Farmacêutica/métodos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Humanos , Imunoterapia/métodos , Nanomedicina/métodos , RNA Mensageiro/química , RNA Mensageiro/farmacocinética
9.
Adv Drug Deliv Rev ; 158: 91-115, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32598970

RESUMO

Vaccines are one of the most powerful technologies supporting public health. The adaptive immune response induced by immunization arises following appropriate activation and differentiation of T and B cells in lymph nodes. Among many parameters impacting the resulting immune response, the presence of antigen and inflammatory cues for an appropriate temporal duration within the lymph nodes, and further within appropriate subcompartments of the lymph nodes- the right timing and location- play a critical role in shaping cellular and humoral immunity. Here we review recent advances in our understanding of how vaccine kinetics and biodistribution impact adaptive immunity, and the underlying immunological mechanisms that govern these responses. We discuss emerging approaches to engineer these properties for future vaccines, with a focus on subunit vaccines.


Assuntos
Vacinas/imunologia , Vacinas/farmacocinética , Adjuvantes Imunológicos/farmacologia , Linfócitos B/imunologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Humanos , Imunidade Humoral/imunologia , Mediadores da Inflamação/metabolismo , Lipossomos/metabolismo , Linfonodos/imunologia , Nanopartículas/metabolismo , Plasmídeos/farmacocinética , RNA Mensageiro/farmacocinética , Linfócitos T/imunologia , Distribuição Tecidual
10.
Regul Toxicol Pharmacol ; 113: 104648, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32240713

RESUMO

The novel self-amplifying mRNA (SAM) technology for vaccines consists of an engineered replication-deficient alphavirus genome encoding an RNA-dependent RNA polymerase and the gene of the target antigen. To validate the concept, the rabies glycoprotein G was chosen as antigen. The delivery system for this vaccine was a cationic nanoemulsion. To characterize the local tolerance, potential systemic toxicity and biodistribution of this vaccine, two nonclinical studies were performed. In the repeated dose toxicity study, the SAM vaccine was administered intramuscularly to rats on four occasions at two-week intervals followed by a four-week recovery period. SAM-related changes consisted of a transient increase in neutrophil count, alpha-2-macroglobulin and fibrinogen levels. Transient aspartate aminotransferase and alanine aminotransferase increases were also noted in females only. At necropsy, observations related to the elicited inflammatory reaction, such as enlargement of the draining lymph nodes were observed that were almost fully reversible by the end of the recovery period. In the biodistribution study, rats received a single intramuscular injection of SAM vaccine and then were followed until Day 60. Rabies RNA was found at the injection sites and in the draining lymph nodes one day after administration, then generally decreased in these tissues but remained detectable up to Day 60. Rabies RNA was also transiently found in blood, lungs, spleen and liver. No microscopic changes in the brain and spinal cord were recorded. In conclusion, these results showed that the rabies SAM vaccine was well-tolerated by the animals and supported the clinical development program.


Assuntos
RNA Mensageiro/farmacocinética , Vacina Antirrábica/farmacocinética , Animais , Feminino , Injeções Intramusculares , Masculino , RNA Mensageiro/administração & dosagem , Vacina Antirrábica/administração & dosagem , Ratos , Ratos Sprague-Dawley , Medição de Risco , Distribuição Tecidual
11.
Bioanalysis ; 11(21): 1993-2001, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31617402

RESUMO

Aim: Chemically modified mRNA offers a novel approach to treat disease. Due to susceptibility to extracellular nucleases in vivo, dosed modified mRNA therapeutics can benefit from encapsulation within novel delivery systems, such as lipid nanoparticles (LNPs). To understand the holistic effect of dosing LNP-encapsulated modified mRNA therapeutics can require bioanalysis of several components including the mRNA, protein and LNP. Methodology: These components can require bespoke preanalytical strategies to preserve analyte integrity to achieve successful analysis. Here we describe the sample collection, processing steps and bioanalytical technologies that can be used to overcome these challenges. Discussion: Understanding the biodistribution and holistic effects of the different components allow the pharmaceutical industry to evaluate safety and efficacy of modified mRNA therapeutics.


Assuntos
Portadores de Fármacos/química , Lipídeos/química , Nanopartículas/química , RNA Mensageiro/química , RNA Mensageiro/farmacocinética , Animais , Camundongos , RNA Mensageiro/genética , Distribuição Tecidual
12.
Nat Biotechnol ; 37(10): 1174-1185, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31570898

RESUMO

Therapeutic messenger RNA vaccines enable delivery of whole antigens, which can be advantageous over peptide vaccines. However, optimal efficacy requires both intracellular delivery, to allow antigen translation, and appropriate immune activation. Here, we developed a combinatorial library of ionizable lipid-like materials to identify mRNA delivery vehicles that facilitate mRNA delivery in vivo and provide potent and specific immune activation. Using a three-dimensional multi-component reaction system, we synthesized and evaluated the vaccine potential of over 1,000 lipid formulations. The top candidate formulations induced a robust immune response, and were able to inhibit tumor growth and prolong survival in melanoma and human papillomavirus E7 in vivo tumor models. The top-performing lipids share a common structure: an unsaturated lipid tail, a dihydroimidazole linker and cyclic amine head groups. These formulations induce antigen-presenting cell maturation via the intracellular stimulator of interferon genes (STING) pathway, rather than through Toll-like receptors, and result in limited systemic cytokine expression and enhanced anti-tumor efficacy.


Assuntos
Antineoplásicos , Vacinas Anticâncer , Lipídeos/farmacocinética , Veículos Farmacêuticos , RNA Mensageiro , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Vacinas Anticâncer/química , Vacinas Anticâncer/genética , Vacinas Anticâncer/farmacocinética , Vacinas Anticâncer/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Células HeLa , Humanos , Interferons/genética , Interferons/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Veículos Farmacêuticos/química , Veículos Farmacêuticos/farmacocinética , RNA Mensageiro/genética , RNA Mensageiro/farmacocinética , RNA Mensageiro/farmacologia , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas
13.
Biosystems ; 185: 104032, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31563119

RESUMO

Various RNAs (siRNAs, miRNAs, or mRNAs) can be delivered into cells by lipid nanoparticles (LNPs) of 50-150 nm in diameter. The subsequent RNA release from LNPs may occur via various scenarios. Herein, two related kinetic models are proposed. The first model takes into account that LNPs are often porous so that RNA molecules diffuse in and detach from nanopores. The analysis is focused on RNA diffusion from a pore. The analytical expression obtained for the RNA escape rate constant is used to identify the difference in the release of siRNAs, miRNAs, and mRNAs. The key message here is that the mRNA diffusion from pores appears to be too slow, and accordingly the mRNA release seems to occur primarily via degradation of LNPs. The second coarse-grained model describes the diffusion-mediated release of RNA from a LNP in the situation when this process is accompanied by the LNP degradation at the lipid-solution interface. The corresponding kinetics are shown in detail at different relative rates of the RNA diffusion and LNP degradation. Potentially, this can help to interpret drug plasma levels after various dosing regimens.


Assuntos
Lipídeos/química , MicroRNAs/química , Nanopartículas/química , RNA Mensageiro/química , RNA Interferente Pequeno/química , Difusão , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Expressão Gênica , Cinética , MicroRNAs/administração & dosagem , MicroRNAs/farmacocinética , Nanopartículas/administração & dosagem , Veículos Farmacêuticos/administração & dosagem , Veículos Farmacêuticos/química , Veículos Farmacêuticos/farmacocinética , RNA Mensageiro/administração & dosagem , RNA Mensageiro/farmacocinética , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/farmacocinética
14.
Am J Hum Genet ; 104(4): 625-637, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30879639

RESUMO

Fabry disease is an X-linked lysosomal storage disease caused by loss of alpha galactosidase A (α-Gal A) activity and is characterized by progressive accumulation of globotriaosylceramide and its analogs in all cells and tissues. Although enzyme replacement therapy (ERT) is considered standard of care, the long-term effects of ERT on renal and cardiac manifestations remain uncertain and thus novel therapies are desirable. We herein report preclinical studies evaluating systemic messenger RNA (mRNA) encoding human α-Gal A in wild-type (WT) mice, α-Gal A-deficient mice, and WT non-human primates (NHPs). The pharmacokinetics and distribution of h-α-Gal A mRNA encoded protein in WT mice demonstrated prolonged half-lives of α-Gal A in tissues and plasma. Single intravenous administration of h-α-Gal A mRNA to Gla-deficient mice showed dose-dependent protein activity and substrate reduction. Moreover, long duration (up to 6 weeks) of substrate reductions in tissues and plasma were observed after a single injection. Furthermore, repeat i.v. administration of h-α-Gal A mRNA showed a sustained pharmacodynamic response and efficacy in Fabry mice model. Lastly, multiple administrations to non-human primates confirmed safety and translatability. Taken together, these studies across species demonstrate preclinical proof-of-concept of systemic mRNA therapy for the treatment of Fabry disease and this approach may be useful for other lysosomal storage disorders.


Assuntos
Doença de Fabry/genética , Doença de Fabry/terapia , RNA Mensageiro/uso terapêutico , alfa-Galactosidase/genética , Animais , Modelos Animais de Doenças , Endocitose , Terapia de Reposição de Enzimas , Terapia Genética , Humanos , Lipídeos/química , Lisossomos/metabolismo , Macaca fascicularis , Masculino , Camundongos , Camundongos Knockout , RNA Mensageiro/farmacocinética , Distribuição Tecidual , Triexosilceramidas/metabolismo
15.
J Control Release ; 291: 106-115, 2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30336167

RESUMO

Systemic administration of lipid nanoparticle (LNP)-encapsulated messenger RNA (mRNA) leads predominantly to hepatic uptake and expression. Here, we conjugated nucleoside-modified mRNA-LNPs with antibodies (Abs) specific to vascular cell adhesion molecule, PECAM-1. Systemic (intravenous) administration of Ab/LNP-mRNAs resulted in profound inhibition of hepatic uptake concomitantly with ~200-fold and 25-fold elevation of mRNA delivery and protein expression in the lungs compared to non-targeted counterparts. Unlike hepatic delivery of LNP-mRNA, Ab/LNP-mRNA is independent of apolipoprotein E. Vascular re-targeting of mRNA represents a promising, powerful, and unique approach for novel experimental and clinical interventions in organs of interest other than liver.


Assuntos
Apolipoproteínas E/metabolismo , Sistemas de Liberação de Medicamentos , Endotélio Vascular/metabolismo , Nanopartículas/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , RNA Mensageiro/administração & dosagem , Administração Intravenosa , Animais , Linhagem Celular , Portadores de Fármacos/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Células Endoteliais da Veia Umbilical Humana , Humanos , Imunoconjugados/metabolismo , Camundongos Endogâmicos C57BL , RNA Mensageiro/farmacocinética , Distribuição Tecidual
16.
Nucleic Acid Ther ; 28(3): 158-165, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29688817

RESUMO

Messenger RNA is emerging as a highly versatile biological construct for creation of impactful medicines. mRNA vaccines directed toward infectious disease and cancer are in clinical development with encouraging early reads on tolerability and efficacy. The use of mRNA to direct intense but transient expression of paracrine factors is finding utility in reprogramming progenitor cells for wound healing and cardiac regeneration and for stimulation of antitumor immune responses, at least preclinically as we await clinical results. The use of mRNA for prolonged and repeated expression of proteins and enzymes to treat rare, typically monogenic disease is nearing clinical entry. These uses of mRNA require delivery solutions, and the application of and improvement to existing nanoparticle nucleic acid delivery systems have jump started the pace of development and reenergized the field of particle based nucleic acid delivery. The current status of mRNA delivery is reviewed in this article with an eye toward clinical tractability.


Assuntos
Técnicas de Transferência de Genes , Lipídeos/química , Nanopartículas/administração & dosagem , Neoplasias/terapia , RNA Mensageiro/genética , Animais , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Doenças Cardiovasculares/terapia , Reprogramação Celular/genética , Ensaios Clínicos como Assunto , Endossomos/metabolismo , Terapia Genética/métodos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Nanopartículas/química , Nanopartículas/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , RNA Mensageiro/metabolismo , RNA Mensageiro/farmacocinética , Células-Tronco/metabolismo , Células-Tronco/patologia , Cicatrização/genética
17.
Expert Rev Vaccines ; 16(9): 871-881, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28701102

RESUMO

INTRODUCTION: The present review summarizes the growing body of work defining the mechanisms of action of this exciting new vaccine technology that should allow rational approaches in the design of next generation mRNA vaccines. Areas covered: Bio-distribution of mRNA, localization of antigen production, role of the innate immunity, priming of the adaptive immune response, route of administration and effects of mRNA delivery systems. Expert commentary: In the last few years, the development of RNA vaccines had a fast growth, the rising number of proof will enable rational approaches to improving the effectiveness and safety of this modern class of medicine.


Assuntos
Imunidade Adaptativa , Imunidade Inata , RNA Mensageiro/farmacocinética , Vacinas/imunologia , Vacinas/farmacocinética , Sistemas de Liberação de Medicamentos , Humanos , RNA Mensageiro/administração & dosagem , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Vacinas/administração & dosagem , Vacinas/genética
18.
Mol Ther ; 25(6): 1316-1327, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28457665

RESUMO

Recently, the World Health Organization confirmed 120 new human cases of avian H7N9 influenza in China resulting in 37 deaths, highlighting the concern for a potential pandemic and the need for an effective, safe, and high-speed vaccine production platform. Production speed and scale of mRNA-based vaccines make them ideally suited to impede potential pandemic threats. Here we show that lipid nanoparticle (LNP)-formulated, modified mRNA vaccines, encoding hemagglutinin (HA) proteins of H10N8 (A/Jiangxi-Donghu/346/2013) or H7N9 (A/Anhui/1/2013), generated rapid and robust immune responses in mice, ferrets, and nonhuman primates, as measured by hemagglutination inhibition (HAI) and microneutralization (MN) assays. A single dose of H7N9 mRNA protected mice from a lethal challenge and reduced lung viral titers in ferrets. Interim results from a first-in-human, escalating-dose, phase 1 H10N8 study show very high seroconversion rates, demonstrating robust prophylactic immunity in humans. Adverse events (AEs) were mild or moderate with only a few severe and no serious events. These data show that LNP-formulated, modified mRNA vaccines can induce protective immunogenicity with acceptable tolerability profiles.


Assuntos
Vírus da Influenza A Subtipo H10N8/genética , Vírus da Influenza A Subtipo H10N8/imunologia , Subtipo H7N9 do Vírus da Influenza A/genética , Subtipo H7N9 do Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , RNA Mensageiro/genética , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Linhagem Celular , Modelos Animais de Doenças , Feminino , Furões , Expressão Gênica , Humanos , Imunização , Esquemas de Imunização , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/efeitos adversos , Macaca fascicularis , Masculino , Camundongos , Protaminas , RNA Mensageiro/administração & dosagem , RNA Mensageiro/farmacocinética , RNA Viral , Distribuição Tecidual
19.
Nucleic Acids Res ; 45(12): e113, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28449134

RESUMO

The use of synthetic messenger ribonucleic acid (mRNA) to express specific proteins is a highly promising therapeutic and vaccine approach that avoids many safety issues associated with viral or DNA-based systems. However, in order to optimize mRNA designs and delivery, technology advancements are required to study fundamental mechanisms of mRNA uptake and localization at the single-cell and tissue level. Here, we present a single RNA sensitive fluorescent labeling method which allows us to label and visualize synthetic mRNA without significantly affecting function. This approach enabled single cell characterization of mRNA uptake and release kinetics from endocytic compartments, the measurement of mRNA/protein correlations, and motivated the investigation of mRNA induced cellular stress, all important mechanisms influencing protein production. In addition, we demonstrated this approach can facilitate near-infrared imaging of mRNA localization in vivo and in ex-vivo tissue sections, which will facilitate mRNA trafficking studies in pre-clinical models. Overall, we demonstrate the ability to study fundamental mechanisms necessary to optimize delivery and therapeutic strategies, in order to design the next generation of novel mRNA therapeutics and vaccines.


Assuntos
Endossomos/metabolismo , Imagem Óptica/métodos , RNA Mensageiro/farmacocinética , Análise de Célula Única/métodos , Coloração e Rotulagem/métodos , Animais , Transporte Biológico , Carbocianinas/química , Linhagem Celular , Grânulos Citoplasmáticos/metabolismo , Grânulos Citoplasmáticos/ultraestrutura , Fibroblastos/citologia , Fibroblastos/metabolismo , Corantes Fluorescentes/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Raios Infravermelhos , Injeções Intramusculares , Camundongos , Sondas Moleculares/química , Hibridização de Ácido Nucleico , RNA Mensageiro/química , RNA Mensageiro/genética
20.
Curr Top Microbiol Immunol ; 405: 145-164, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28401358

RESUMO

During the last decade, mRNA became increasingly recognized as a versatile tool for the development of new innovative therapeutics. Especially for vaccine development, mRNA is of outstanding interest and numerous clinical trials have been initiated. Strikingly, all of these studies have proven that large-scale GMP production of mRNA is feasible and concordantly report a favorable safety profile of mRNA vaccines. Induction of T-cell immunity is a multi-faceted process comprising antigen acquisition, antigen processing and presentation, as well as immune stimulation. The effectiveness of mRNA vaccines is critically dependent on making the antigen(s) of interest available to professional antigen-presenting cells, especially DCs. Efficient delivery of mRNA into DCs in vivo remains a major challenge in the mRNA vaccine field. This review summarizes the principles of mRNA vaccines and highlights the importance of in vivo mRNA delivery and recent advances in harnessing their therapeutic potential.


Assuntos
Vacinas Anticâncer/genética , Vacinas Anticâncer/imunologia , Neoplasias/terapia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Humanos , Neoplasias/genética , Neoplasias/imunologia , RNA Mensageiro/administração & dosagem , RNA Mensageiro/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA