Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.689
Filtrar
1.
Bull Exp Biol Med ; 177(1): 47-50, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38955852

RESUMO

Ectonucleotidases play an important role in regulating the level of extracellular nucleotides and nucleosides and are an important part of the regulation of the effects of adenosine and ATP on adenosine and P2 receptors, respectively. We have previously established the ambiguous effect of P2 receptor agonists on the contractile activity of smooth muscle tissue in rats with the valproate model of autism. In this work, HPLC was used to evaluate the activity of ectonucleotidases in the smooth muscle tissues of the internal organs of rats with a valproate model of autism. The activity of ectonucleotidases was significantly higher in the smooth muscle tissues of the duodenum, vas deferens, and bladder, but lower in the ileum and uterus. The results obtained make it possible to compare the activity of ectonucleotidases identified here with changes in P2 receptor-mediated contractility of smooth muscle tissues revealed in our previous experiments.


Assuntos
Transtorno Autístico , Contração Muscular , Músculo Liso , Bexiga Urinária , Ácido Valproico , Ducto Deferente , Animais , Ratos , Músculo Liso/efeitos dos fármacos , Músculo Liso/metabolismo , Ácido Valproico/farmacologia , Transtorno Autístico/metabolismo , Transtorno Autístico/induzido quimicamente , Transtorno Autístico/tratamento farmacológico , Masculino , Feminino , Ducto Deferente/efeitos dos fármacos , Ducto Deferente/metabolismo , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/metabolismo , Bexiga Urinária/enzimologia , Contração Muscular/efeitos dos fármacos , Útero/efeitos dos fármacos , Útero/metabolismo , Íleo/efeitos dos fármacos , Íleo/metabolismo , Íleo/enzimologia , Modelos Animais de Doenças , Ratos Wistar , Receptores Purinérgicos P2/metabolismo , Adenosina Trifosfatases/metabolismo
2.
J Med Chem ; 67(12): 10233-10247, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38874515

RESUMO

P2Y14 receptor (P2Y14R) is activated by uridine 5'-diphosphate-glucose, which is involved in many human inflammatory diseases. Based on the molecular docking analysis of currently reported P2Y14R antagonists and the crystallographic overlap study between the reported P2Y14R antagonist compounds 6 and 9, a series of N-substituted-acetamide derivatives were designed, synthesized, and identified as novel and potent P2Y14R antagonists. The most potent antagonist, compound I-17 (N-(1H-benzo[d]imidazol-6-yl)-2-(4-bromophenoxy)acetamide, IC50 = 0.6 nM) without zwitterionic character, showed strong binding ability to P2Y14R, high selectivity, moderate oral bioactivity, and improved pharmacokinetic profiles. In vitro and in vivo evaluation demonstrated that compound I-17 had satisfactory inhibitory activity on the inflammatory response of monosodium urate (MSU)-induced acute gouty arthritis. I-17 decreased inflammatory factor release and cell pyroptosis through the NOD-like receptor family pyrin domain-containing 3 (NLRP3)/gasdermin D (GSDMD) signaling pathway. Thus, compound I-17, with potent P2Y14R antagonistic activity, in vitro and in vivo efficacy, and favorable bioavailability (F = 75%), could be a promising lead compound for acute gouty arthritis.


Assuntos
Acetamidas , Simulação de Acoplamento Molecular , Receptores Purinérgicos P2 , Acetamidas/farmacologia , Acetamidas/química , Acetamidas/síntese química , Acetamidas/farmacocinética , Humanos , Animais , Receptores Purinérgicos P2/metabolismo , Camundongos , Masculino , Artrite Gotosa/tratamento farmacológico , Artrite Gotosa/metabolismo , Relação Estrutura-Atividade , Antagonistas do Receptor Purinérgico P2/farmacologia , Antagonistas do Receptor Purinérgico P2/química , Antagonistas do Receptor Purinérgico P2/síntese química , Descoberta de Drogas , Ratos , Cristalografia por Raios X , Ratos Sprague-Dawley , Estrutura Molecular
3.
Expert Opin Ther Pat ; 34(8): 611-625, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38889204

RESUMO

INTRODUCTION: The P2Y14 receptor (P2Y14R), a member of the G protein-coupled receptor family, is activated by extracellular nucleotides. Due to its involvement in inflammatory, immunological and other associated processes, P2Y14R has emerged as a promising therapeutic target. Despite lacking a determined three-dimensional crystal structure, the homology modeling technique based on closely related P2Y receptors' crystallography has been extensively utilized for developing active compounds targeting P2Y14R. Recent discoveries have unveiled numerous highly effective and subtype-specific P2Y14R inhibitors. This study presents an overview of the latest advancements in P2Y14R inhibitors. AREAS COVERED: This review presents an overview of the advancements in P2Y14R inhibitor research over the past five years, encompassing new patents, journal articles, and highlighting the therapeutic prospects inherent in these compounds. EXPERT OPINION: The recent revelation of the vast potential of P2Y14R inhibitors has led to the development of novel compounds that exhibit promising capabilities for the treatment of sterile inflammation of the kidney, potentially diabetes, and asthma. Despite being a relatively nascent class of compounds, certain members have already exhibited their capacity to surmount specific challenges posed by conventional P2Y14R inhibitors. Targeting P2Y14R through small molecules may present a promising therapeutic strategy for effectively managing diverse inflammatory diseases.


Assuntos
Desenvolvimento de Medicamentos , Inflamação , Patentes como Assunto , Humanos , Animais , Inflamação/tratamento farmacológico , Inflamação/fisiopatologia , Desenho de Fármacos , Asma/tratamento farmacológico , Asma/fisiopatologia , Diabetes Mellitus/tratamento farmacológico , Receptores Purinérgicos P2
4.
Cell Biol Toxicol ; 40(1): 36, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771396

RESUMO

Purinergic receptor P2Y11, a G protein-coupled receptor that is stimulated by extracellular ATP, has been demonstrated to be related to the chemotaxis of granulocytes, apoptosis of neutrophils, and secretion of cytokines in vitro. P2Y11 mutations were associated with narcolepsy. However, little is known about the roles of P2RY11 in the occurrence of narcolepsy and inflammatory response in vivo. In this study, we generated a zebrafish P2Y11 mutant using CRISPR/Cas9 genome editing and demonstrated that the P2Y11 mutant replicated the narcolepsy-like features including reduced HCRT expression and excessive daytime sleepiness, suggesting that P2Y11 is essential for HCRT expression. Furthermore, we accessed the cytokine expression in the mutant and revealed that the P2RY11 mutation disrupted the systemic inflammatory balance by reducing il4, il10 and tgfb, and increasing il6, tnfa, and il1b. In addition, the P2RY11-deficient larvae with caudal fin injuries exhibited significantly slower migration and less recruitment of neutrophils and macrophages at damaged site, and lower expression of anti-inflammatory cytokines during tissue damage. All these findings highlight the vital roles of P2RY11 in maintaining HCRT production and secreting anti-inflammatory cytokines in the native environment, and suggested that P2RY11-deficient zebrafish can serve as a reliable and unique model to further explore narcolepsy and inflammatory-related diseases with impaired neutrophil and macrophage responses.


Assuntos
Citocinas , Inflamação , Macrófagos , Neutrófilos , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Neutrófilos/metabolismo , Neutrófilos/imunologia , Macrófagos/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Inflamação/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Citocinas/metabolismo , Mutação/genética , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2/deficiência
5.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731872

RESUMO

Numerous studies suggest the involvement of adenosine-5'-triphosphate (ATP) and similar nucleotides in the pathophysiology of asthma. Androgens, such as testosterone (TES), are proposed to alleviate asthma symptoms in young men. ATP and uridine-5'-triphosphate (UTP) relax the airway smooth muscle (ASM) via purinergic P2Y2 and P2Y4 receptors and K+ channel opening. We previously demonstrated that TES increased the expression of voltage-dependent K+ (KV) channels in ASM. This study investigates how TES may potentiate ASM relaxation induced by ATP and UTP. Tracheal tissues treated with or without TES (control group) from young male guinea pigs were used. In organ baths, tracheas exposed to TES (40 nM for 48 h) showed enhanced ATP- and UTP-evoked relaxation. Tetraethylammonium, a K+ channel blocker, annulled this effect. Patch-clamp experiments in tracheal myocytes showed that TES also increased ATP- and UTP-induced K+ currents, and this effect was abolished with flutamide (an androgen receptor antagonist). KV channels were involved in this phenomenon, which was demonstrated by inhibition with 4-aminopyridine. RB2 (an antagonist of almost all P2Y receptors except for P2Y2), as well as N-ethylmaleimide and SQ 22,536 (inhibitors of G proteins and adenylyl cyclase, respectively), attenuated the enhancement of the K+ currents induced by TES. Immunofluorescence and immunohistochemistry studies revealed that TES did not modify the expression of P2Y4 receptors or COX-1 and COX-2, while we have demonstrated that this androgen augmented the expression of KV1.2 and KV1.5 channels in ASM. Thus, TES leads to the upregulation of P2Y4 signaling and KV channels in guinea pig ASM, enhancing ATP and UTP relaxation responses, which likely limits the severity of bronchospasm in young males.


Assuntos
Trifosfato de Adenosina , Adenilil Ciclases , Relaxamento Muscular , Músculo Liso , Testosterona , Traqueia , Uridina Trifosfato , Animais , Uridina Trifosfato/farmacologia , Uridina Trifosfato/metabolismo , Cobaias , Relaxamento Muscular/efeitos dos fármacos , Masculino , Trifosfato de Adenosina/metabolismo , Traqueia/metabolismo , Traqueia/efeitos dos fármacos , Testosterona/farmacologia , Testosterona/metabolismo , Adenilil Ciclases/metabolismo , Músculo Liso/metabolismo , Músculo Liso/efeitos dos fármacos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptores Purinérgicos P2/metabolismo
6.
Phytomedicine ; 130: 155754, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38820662

RESUMO

BACKGROUND: Gouty arthritis (GA), a common inflammatory condition triggered by monosodium urate crystal accumulation, often necessitates safer treatment alternatives due to the limitations of current therapies. Astilbin, a flavonoid from Smilax glabra Roxb, has demonstrated potential in traditional Chinese medicine for its anti-inflammatory properties. However, the anti-GA effect and its underlying mechanism have not been fully elucidated. PURPOSE: This study aimed to investigate the therapeutic potential of astilbin in GA, focusing on its effects on neutrophil extracellular traps (NETs), as well as the potential molecular target of GA both in vitro and in vivo. STUDY DESIGN: Firstly, astilbin inhibited the citrullinated histone H3 (Cit h3) protein levels and reduced the NETs formation in neutrophils stimulated by monosodium urate (MSU). Secondly, we wondered the effect of astilbin on migration of neutrophils and dimethyl-sulfoxide (DMSO)-differentiated HL-60 (dHL-60) cells under the stimulation of MSU. Then, the effect of astilbin on suppressing NETs through purinergic P2Y6 receptor (P2Y6R) and Interlukin-8 (IL-8)/ CXC chemokine receptor 2 (CXCR2) pathway was investigated. Also, the relationship between P2Y6R and IL-8/CXCR2 was explored in dHL-60 cells under stimulation of MSU. Finally, we testified the effect of astilbin on reducing NETs in GA through suppressing P2Y6R and then down-regulating IL-8/CXCR2 pathway. METHODS: MSU was used to induce NETs in neutrophils and dHL-60 cells. Real-time formation of NETs and migration of neutrophils were monitored by cell living imaging with or without MSU. Then, the effect of astilbin on NETs formation, P2Y6R and IL-8/CXCR2 pathway were detected by immunofluorescence (IF) and western blotting. P2Y6R knockdown dHL-60 cells were established by small interfering RNA to investigate the association between P2Y6R and IL-8/CXCR2 pathway. Also, plasmid of P2Y6R was used to overexpress P2Y6R in dHL-60 cells, which was employed to explore the role of P2Y6R in astilbin inhibiting NETs. Within the conditions of knockdown and overexpression of P2Y6R, migration and NETs formation were assessed by transmigration assay and IF staining, respectively. In vivo, MSU-induced GA mice model was established to assess the effect of astilbin on inflammation by haematoxylin-eosin and ELISA. Additionally, the effects of astilbin on neutrophils infiltration, NETs, P2Y6R and IL-8/CXCR2 pathway were analyzed by IF, ELISA, immunohistochemistry (IHC) and western blotting. RESULTS: Under MSU stimulation, astilbin significantly suppressed the level of Cit h3 and NETs formation including the fluorescent expressions of Cit h3, neutrophils elastase, myeloperoxidase, and intra/extracellular DNA. Also, results showed that MSU caused NETs release in neutrophils as well as a trend towards recruitment of dHL-60 cells to MSU. Astilbin could markedly decrease expressions of P2Y6R and IL-8/CXCR2 pathway which were upregulated by MSU. By silencing P2Y6R, the expression of IL-8/CXCR2 pathway and migration of dHL-60 cells were inhibited, leading to the suppression of NETs. These findings indicated the upstream role of P2Y6R in the IL-8/CXCR2 pathway. Moreover, overexpression of P2Y6R was evidently inhibited by astilbin, causing a downregulation in IL-8/CXCR2 pathway, migration of dHL-60 cells and NETs formation. These results emphasized that astilbin inhibited the IL-8/CXCR2 pathway primarily through P2Y6R. In vivo, astilbin administration led to marked reductions in ankle swelling, inflammatory infiltration as well as neutrophils infiltration. Expressions of P2Y6R and IL-8/CXCR2 pathway were evidently decreased by astilbin and P2Y6R inhibitor MRS2578 either alone or in combination. Also, astilbin and MRS2578 showed notable effect on reducing MSU-induced NETs formation and IL-8/CXCR2 pathway whether used alone or in combination, parallelly demonstrating that astilbin decreased NETs formation mainly through P2Y6R. CONCLUSION: This study revealed that astilbin suppressed NETs formation via downregulating P2Y6R and subsequently the IL-8/CXCR2 pathway, which evidently mitigated GA induced by MSU. It also highlighted the potential of astilbin as a promising natural therapeutic for GA.


Assuntos
Artrite Gotosa , Armadilhas Extracelulares , Flavonóis , Interleucina-8 , Neutrófilos , Receptores Purinérgicos P2 , Armadilhas Extracelulares/efeitos dos fármacos , Humanos , Interleucina-8/metabolismo , Receptores Purinérgicos P2/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Artrite Gotosa/tratamento farmacológico , Células HL-60 , Flavonóis/farmacologia , Animais , Ácido Úrico/farmacologia , Receptores de Interleucina-8B/metabolismo , Masculino , Histonas/metabolismo , Anti-Inflamatórios/farmacologia , Camundongos
7.
Sleep Med ; 119: 147-154, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38678758

RESUMO

ATP plays a crucial role as an energy currency in the body's various physiological functions, including the regulation of the sleep-wake cycle. Evidence from genetics and pharmacology demonstrates a strong association between ATP metabolism and sleep. With the advent of new technologies such as optogenetics, genetically encoded biosensors, and novel ATP detection methods, the dynamic changes in ATP levels between different sleep states have been further uncovered. The classic mechanism for regulating sleep by ATP involves its conversion to adenosine, which increases sleep pressure when accumulated extracellularly. However, emerging evidence suggests that ATP can directly bind to P2 receptors and influence sleep-wake regulation through both adenosine-dependent and independent pathways. The outcome depends on the brain region where ATP acts and the expression type of P2 receptors. This review summarizes the experimental evidence on the relationship between ATP levels and changes in sleep states and outlines the mechanisms by which ATP is involved in regulating the sleep-wake cycle through both adenosine-dependent and independent pathways. Hopefully, this review will provide a comprehensive understanding of the current research basis and progress in this field and promote further investigations into the specific mechanisms of ATP in regulating sleep.


Assuntos
Trifosfato de Adenosina , Adenosina , Sono , Vigília , Humanos , Adenosina/metabolismo , Adenosina/fisiologia , Sono/fisiologia , Trifosfato de Adenosina/metabolismo , Vigília/fisiologia , Animais , Encéfalo/metabolismo , Encéfalo/fisiologia , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2/fisiologia
8.
Neuron ; 112(12): 1959-1977.e10, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38614103

RESUMO

Microglial calcium signaling is rare in a baseline state but strongly engaged during early epilepsy development. The mechanism(s) governing microglial calcium signaling are not known. By developing an in vivo uridine diphosphate (UDP) fluorescent sensor, GRABUDP1.0, we discovered that UDP release is a conserved response to seizures and excitotoxicity across brain regions. UDP can signal through the microglial-enriched P2Y6 receptor to increase calcium activity during epileptogenesis. P2Y6 calcium activity is associated with lysosome biogenesis and enhanced production of NF-κB-related cytokines. In the hippocampus, knockout of the P2Y6 receptor prevents microglia from fully engulfing neurons. Attenuating microglial calcium signaling through calcium extruder ("CalEx") expression recapitulates multiple features of P2Y6 knockout, including reduced lysosome biogenesis and phagocytic interactions. Ultimately, P2Y6 knockout mice retain more CA3 neurons and better cognitive task performance during epileptogenesis. Our results demonstrate that P2Y6 signaling impacts multiple aspects of myeloid cell immune function during epileptogenesis.


Assuntos
Sinalização do Cálcio , Epilepsia , Camundongos Knockout , Microglia , Fagocitose , Receptores Purinérgicos P2 , Animais , Microglia/metabolismo , Microglia/imunologia , Camundongos , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2/genética , Sinalização do Cálcio/fisiologia , Epilepsia/metabolismo , Epilepsia/imunologia , Epilepsia/genética , Difosfato de Uridina/metabolismo , Lisossomos/metabolismo , Neurônios/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Hipocampo/metabolismo , Neuroimunomodulação/fisiologia
9.
J Biol Chem ; 300(4): 107145, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460941

RESUMO

Extracellular ATP activates P2 purinergic receptors. Whether purinergic signaling is functionally coupled to cellular senescence is largely unknown. We find that oxidative stress induced release of ATP and caused senescence in human lung fibroblasts. Inhibition of P2 receptors limited oxidative stress-induced senescence, while stimulation with exogenous ATP promoted premature senescence. Pharmacological inhibition of P2Y11 receptor (P2Y11R) inhibited premature senescence induced by either oxidative stress or ATP, while stimulation with a P2Y11R agonist was sufficient to induce cellular senescence. Our data show that both extracellular ATP and a P2Y11R agonist induced calcium (Ca++) release from the endoplasmic reticulum (ER) and that either inhibition of phospholipase C or intracellular Ca++ chelation impaired ATP-induced senescence. We also find that Ca++ that was released from the ER, following ATP-mediated activation of phospholipase C, entered mitochondria in a manner dependent on P2Y11R activation. Once in mitochondria, excessive Ca++ promoted the production of reactive oxygen species in a P2Y11R-dependent fashion, which drove development of premature senescence of lung fibroblasts. Finally, we show that conditioned medium derived from senescent lung fibroblasts, which were induced to senesce through the activation of ATP/P2Y11R-mediated signaling, promoted the proliferation of triple-negative breast cancer cells and their tumorigenic potential by secreting amphiregulin. Our study identifies the existence of a novel purinergic signaling pathway that links extracellular ATP to the development of a protumorigenic premature senescent phenotype in lung fibroblasts that is dependent on P2Y11R activation and ER-to-mitochondria calcium signaling.


Assuntos
Trifosfato de Adenosina , Cálcio , Senescência Celular , Fibroblastos , Receptores Purinérgicos P2 , Humanos , Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Retículo Endoplasmático/metabolismo , Fibroblastos/metabolismo , Pulmão/metabolismo , Pulmão/citologia , Mitocôndrias/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Receptores Purinérgicos P2/metabolismo , Transdução de Sinais , Fosfolipases Tipo C/metabolismo , Linhagem Celular , Proliferação de Células
10.
JCI Insight ; 9(8)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470490

RESUMO

Excessive lipolysis in white adipose tissue (WAT) leads to insulin resistance (IR) and ectopic fat accumulation in insulin-sensitive tissues. However, the impact of Gi-coupled receptors in restraining adipocyte lipolysis through inhibition of cAMP production remained poorly elucidated. Given that the Gi-coupled P2Y13 receptor (P2Y13-R) is a purinergic receptor expressed in WAT, we investigated its role in adipocyte lipolysis and its effect on IR and metabolic dysfunction-associated steatotic liver disease (MASLD). In humans, mRNA expression of P2Y13-R in WAT was negatively correlated to adipocyte lipolysis. In mice, adipocytes lacking P2Y13-R displayed higher intracellular cAMP levels, indicating impaired Gi signaling. Consistently, the absence of P2Y13-R was linked to increased lipolysis in adipocytes and WAT explants via hormone-sensitive lipase activation. Metabolic studies indicated that mice lacking P2Y13-R showed a greater susceptibility to diet-induced IR, systemic inflammation, and MASLD compared with their wild-type counterparts. Assays conducted on precision-cut liver slices exposed to WAT conditioned medium and on liver-specific P2Y13-R-knockdown mice suggested that P2Y13-R activity in WAT protects from hepatic steatosis, independently of liver P2Y13-R expression. In conclusion, our findings support the idea that targeting adipose P2Y13-R activity may represent a pharmacological strategy to prevent obesity-associated disorders, including type 2 diabetes and MASLD.


Assuntos
Adipócitos , Tecido Adiposo Branco , Fígado Gorduroso , Resistência à Insulina , Lipólise , Receptores Purinérgicos P2 , Animais , Feminino , Humanos , Masculino , Camundongos , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Tecido Adiposo Branco/metabolismo , Fígado Gorduroso/metabolismo , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Fígado/metabolismo , Fígado/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2/deficiência
12.
J Pharmacol Sci ; 154(2): 108-112, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38246724

RESUMO

The purinergic receptor P2Y6 receptor (P2Y6R) is a member of the G protein-coupled receptors (GPCR) family. P2Y6R is widely expressed in various cell types and plays a critical role in physiological processes, where it is activated by extracellular uridine diphosphate (UDP) and mobilizes Ca2+ via the Gαq/11 protein pathway. We have recently discovered the pathophysiological role of P2Y6R in cardiovascular and inflammatory diseases, including inflammatory bowel disease and non-alcoholic fatty liver disease. Furthermore, we uncovered the redox-dependent internalization of P2Y6R. In this review, we provide a comprehensive overview of the pathophysiological activity of P2Y6R in cardiovascular and inflammatory diseases. Additionally, we discuss the concept of atypical internalization control of GPCRs, which may be applied in the prevention and treatment of intestinal inflammation and cardiovascular remodeling.


Assuntos
Sistema Cardiovascular , Doenças Inflamatórias Intestinais , Hepatopatia Gordurosa não Alcoólica , Receptores Purinérgicos P2 , Humanos
14.
Purinergic Signal ; 20(2): 115-125, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37246192

RESUMO

During the establishment of neuronal circuits, axons and dendrites grow and branch to establish specific synaptic connections. This complex process is highly regulated by positive and negative extracellular cues guiding the axons and dendrites. Our group was pioneer in describing that one of these signals are the extracellular purines. We found that extracellular ATP, through its selective ionotropic P2X7 receptor (P2X7R), negatively regulates axonal growth and branching. Here, we evaluate if other purinergic compounds, such as the diadenosine pentaphosphate (Ap5A), may module the dynamics of dendritic or axonal growth and branching in cultured hippocampal neurons. Our results show that Ap5A negatively modulates the dendrite's growth and number by inducing transient intracellular calcium increases in the dendrites' growth cone. Interestingly, phenol red, commonly used as a pH indicator in culture media, also blocks the P2X1 receptors, avoided the negative modulation of Ap5A on dendrites. Subsequent pharmacological studies using a battery of selective P2X1R antagonists confirmed the involvement of this subunit. In agreement with pharmacological studies, P2X1R overexpression caused a similar reduction in dendritic length and number as that induced by Ap5A. This effect was reverted when neurons were co-transfected with the vector expressing the interference RNA for P2X1R. Despite small hairpin RNAs reverting the reduction in the number of dendrites caused by Ap5A, it did not avoid the dendritic length decrease induced by the polyphosphate, suggesting, therefore, the involvement of a heteromeric P2X receptor. Our results are indicating that Ap5A exerts a negative influence on dendritic growth.


Assuntos
Trifosfato de Adenosina , Fosfatos de Dinucleosídeos , Receptores Purinérgicos P2 , Trifosfato de Adenosina/farmacologia , Receptores Purinérgicos P2/metabolismo , Neurônios/metabolismo , Dendritos/metabolismo , Hipocampo/metabolismo
15.
Eur Heart J ; 45(4): 268-283, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38036416

RESUMO

BACKGROUND AND AIMS: Macrophage-derived foam cells play a causal role during the pathogenesis of atherosclerosis. P2Y6 receptor (P2Y6R) highly expressed has been considered as a disease-causing factor in atherogenesis, but the detailed mechanism remains unknown. This study aims to explore P2Y6R in regulation of macrophage foaming, atherogenesis, and its downstream pathways. Furthermore, the present study sought to find a potent P2Y6R antagonist and investigate the feasibility of P2Y6R-targeting therapy for atherosclerosis. METHODS: The P2Y6R expression was examined in human atherosclerotic plaques and mouse artery. Atherosclerosis animal models were established in whole-body P2Y6R or macrophage-specific P2Y6R knockout mice to evaluate the role of P2Y6R. RNA sequencing, DNA pull-down experiments, and proteomic approaches were performed to investigate the downstream mechanisms. High-throughput Glide docking pipeline from repurposing drug library was performed to find potent P2Y6R antagonists. RESULTS: The P2Y6R deficiency alleviated atherogenesis characterized by decreasing plaque formation and lipid deposition of the aorta. Mechanically, deletion of macrophage P2Y6R significantly inhibited uptake of oxidized low-density lipoprotein through decreasing scavenger receptor A expression mediated by phospholipase Cß/store-operated calcium entry pathways. More importantly, P2Y6R deficiency reduced the binding of scavenger receptor A to CALR, accompanied by dissociation of calreticulin and STIM1. Interestingly, thiamine pyrophosphate was found as a potent P2Y6R antagonist with excellent P2Y6R antagonistic activity and binding affinity, of which the pharmacodynamic effect and mechanism on atherosclerosis were verified. CONCLUSIONS: Macrophage P2Y6R regulates phospholipase Cß/store-operated calcium entry/calreticulin signalling pathway to increase scavenger receptor A protein level, thereby improving foam cell formation and atherosclerosis, indicating that the P2Y6R may be a potential therapeutic target for intervention of atherosclerotic diseases using P2Y6R antagonists including thiamine pyrophosphate.


Assuntos
Aterosclerose , Células Espumosas , Receptores Purinérgicos P2 , Humanos , Camundongos , Animais , Células Espumosas/metabolismo , Células Espumosas/patologia , Cálcio/metabolismo , Calreticulina/metabolismo , Calreticulina/farmacologia , Proteômica , Tiamina Pirofosfato/metabolismo , Tiamina Pirofosfato/farmacologia , Aterosclerose/genética , Macrófagos/metabolismo , Lipoproteínas LDL/metabolismo , Receptores Depuradores/metabolismo , Camundongos Knockout , Fosfolipases/metabolismo , Fosfolipases/farmacologia
16.
Neuropharmacology ; 245: 109818, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38142931

RESUMO

Cardiac autonomic neuropathy resulting from human immunodeficiency virus (HIV) infection is common; however, its mechanism remains unknown. The current work attempted to explore the function and mechanism of the P2Y13 receptor in HIV-glycoprotein 120 (gp120)-induced neuropathy in cervical sympathetic ganglion. The superior cervical ganglion (SCG) of the male SD rat was coated with HIV-gp120 to establish a model of autonomic neuropathy. In each group, we measured heart rate, blood pressure, heart rate variability, sympathetic nerve discharge and cardiac function. The expression of P2Y13 mRNA and protein in the SCG was tested by real-time polymerase chain reaction and western blotting. Additionally, this study focused on identifying the protein levels of NOD-like receptor family pyrin domain-containing 3 (NLRP3), Caspase-1, Gasdermin D (GSDMD), interleukin (IL)-1ß and IL-18 in the SCG using western blotting and immunofluorescence. In gp120 rats, increased blood pressure, heart rate, cardiac sympathetic nerve activity, P2Y13 receptor levels and decreased cardiac function could be found. P2Y13 shRNA or MRS2211 inhibited the above mentioned changes induced by gp120, suggesting that the P2Y13 receptor may be engaged in gp120-induced sympathetic nerve injury. Moreover, the levels of NLRP3, Caspase-1, GSDMD, IL-1ß and IL-18 in the gp120 group were increased, while significantly decreased by P2Y13 shRNA or MRS2211. Therefore, the P2Y13 receptor is involved in gp120-induced sympathetic neuropathy, and its molecular mechanism shows an association with the activation of the NLRP3 inflammasome, followed by GSDMD formation along with the release of inflammatory factors including IL-1ß and IL-18. This article is part of the Special Issue on "Purinergic Signaling: 50 years".


Assuntos
Infecções por HIV , HIV-1 , Doenças do Sistema Nervoso Periférico , Receptores Purinérgicos P2 , Animais , Masculino , Ratos , Proteínas de Transporte , Caspases , Glicoproteínas/metabolismo , Infecções por HIV/complicações , Infecções por HIV/metabolismo , Inflamassomos/metabolismo , Interleucina-18/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Doenças do Sistema Nervoso Periférico/virologia , Ratos Sprague-Dawley , RNA Interferente Pequeno , Gânglio Cervical Superior/metabolismo , Proteína gp120 do Envelope de HIV/metabolismo , Receptores Purinérgicos P2/metabolismo
17.
Front Immunol ; 14: 1304758, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38124753

RESUMO

Toll-interacting protein (Tollip) is a negative regulator of the pro-inflammatory response to viruses, including influenza A virus (IAV). Genetic variation of Tollip has been associated with reduced airway epithelial Tollip expression and poor lung function in patients with asthma. Whether Tollip deficiency exaggerates type 2 inflammation (e.g., eosinophils) and viral infection in asthma remains unclear. We sought to address this critical, but unanswered question by using a Tollip deficient mouse asthma model with IAV infection. Further, we determined the underlying mechanisms by focusing on the role of the ATP/IL-33 signaling axis. Wild-type and Tollip KO mice were intranasally exposed to house dust mite (HDM) and IAV with or without inhibitors for IL-33 (i.e., soluble ST2, an IL-33 decoy receptor) and ATP signaling (i.e., an antagonist of the ATP receptor P2Y13). Tollip deficiency amplified airway type 2 inflammation (eosinophils, IL-5, IL-13 and mucins), and the release of ATP and IL-33. Blocking ATP receptor P2Y13 decreased IL-33 release during IAV infection in HDM-challenged Tollip KO mice. Furthermore, soluble ST2 attenuated airway eosinophilic inflammation in Tollip KO mice treated with HDM and IAV. HDM challenges decreased lung viral load in wild-type mice, but Tollip deficiency reduced the protective effects of HDM challenges on viral load. Our data suggests that during IAV infection, Tollip deficiency amplified type 2 inflammation and delayed viral clearance, in part by promoting ATP signaling and subsequent IL-33 release. Our findings may provide several therapeutic targets, including ATP and IL-33 signaling inhibition for attenuating excessive airway type 2 inflammation in human subjects with Tollip deficiency and IAV infection.


Assuntos
Asma , Receptores Purinérgicos P2 , Humanos , Camundongos , Animais , Proteína 1 Semelhante a Receptor de Interleucina-1 , Alérgenos , Interleucina-33 , Asma/metabolismo , Inflamação/metabolismo , Pyroglyphidae , Dermatophagoides pteronyssinus , Trifosfato de Adenosina , Peptídeos e Proteínas de Sinalização Intracelular
18.
Brain Res Bull ; 204: 110800, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37913850

RESUMO

Past studies have suggested that Chinese herbal may alleviate neuropathic pain, and the mechanism might target the inhibition of purinergic receptor P2. This review discusses whether traditional Chinese medicine target P2 receptors in neuropathic pain and its mechanism in order to provide references for future clinical drug development. The related literatures were searched from Pubmed, Embase, Sinomed, and CNKI databases before June 2023. The search terms included"neuropathic pain", "purinergic receptor P2", "P2", "traditional Chinese medicine", "Chinese herbal medicine", and "herb". We described the traditional Chinese medicine alleviating neuropathic pain via purinergic receptor P2 signaling pathway including P2X2/3 R, P2X3R, P2X4R, P2X7R, P2Y1R. Inhibition of activating glial cells, changing synaptic transmission, increasing painful postsynaptic potential, and activating inflammatory signaling pathways maybe the mechanism. Purine receptor P2 can mediate the occurrence of neuropathic pain. And many of traditional Chinese medicines can target P2 receptors to relieve neuropathic pain, which provides reasonable evidences for the future development of drugs. Also, the safety and efficacy and mechanism need more in-depth experimental research.


Assuntos
Neuralgia , Receptores Purinérgicos P2 , Humanos , Medicina Tradicional Chinesa , Receptores Purinérgicos P2/metabolismo , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Receptores Purinérgicos , Transdução de Sinais
19.
Front Immunol ; 14: 1216580, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37868982

RESUMO

Since the late 1970s, there has been an alarming increase in the incidence of asthma and its morbidity and mortality. Acute obstruction and inflammation of allergic asthmatic airways are frequently caused by inhalation of exogenous substances such as allergens cross-linking IgE receptors expressed on the surface of the human lung mast cells (HLMC). The degree of constriction of human airways produced by identical amounts of inhaled allergens may vary from day to day and even hour to hour. Endogenous factors in the human mast cell (HMC)'s microenvironment during allergen exposure may markedly modulate the degranulation response. An increase in allergic responsiveness may significantly enhance bronchoconstriction and breathlessness. This review focuses on the role that the ubiquitous endogenous purine nucleotide, extracellular adenosine 5'-triphosphate (ATP), which is a component of the damage-associated molecular patterns, plays in mast cells' physiology. ATP activates P2 purinergic cell-surface receptors (P2R) to trigger signaling cascades resulting in heightened inflammatory responses. ATP is the most potent enhancer of IgE-mediated HLMC degranulation described to date. Current knowledge of ATP as it relates to targeted receptor(s) on HMC along with most recent studies exploring HMC post-receptor activation pathways are discussed. In addition, the reviewed studies may explain why brief, minimal exposures to allergens (e.g., dust, cat, mouse, and grass) can unpredictably lead to intense clinical reactions. Furthermore, potential therapeutic approaches targeting ATP-related enhancement of allergic reactions are presented.


Assuntos
Asma , Hipersensibilidade , Receptores Purinérgicos P2 , Humanos , Animais , Camundongos , Mastócitos , Transdução de Sinais , Trifosfato de Adenosina/metabolismo , Asma/metabolismo , Pulmão , Hipersensibilidade/metabolismo , Alérgenos/metabolismo , Receptores Purinérgicos P2/metabolismo
20.
World J Surg Oncol ; 21(1): 341, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37880703

RESUMO

BACKGROUND: There is increasing evidence that recombinant human P2Y purinoceptor 6 (P2RY6) may be involved in inflammatory responses. However, the role of P2RY6 in lung adenocarcinoma (LUAD) remains unknown. METHODS: We used transcriptomic, genomic, single-cell transcriptomic, and methylation sequencing data from The Cancer Genome Atlas database to analyze the aberrant status and prognostic value of P2RY6 in a variety of tumors. The LUAD single-cell sequencing dataset was used to explore the effect of P2RY6 on the tumor microenvironment. Cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) was used to quantify immune cells in the tumor microenvironment. We also analyzed the correlation of P2RY6 with immune checkpoints and immune regulation-related genes. The correlation of between tumor mutation burden (TMB), microsatellite instability (MSI), and P2RY6 expression was also analyzed simultaneously. Tissue microarray and immunohistochemistry were employed to assess the expression of P2RY6 in internal tumor samples. RESULTS: Our findings indicate that P2RY6 exhibits significantly higher expression levels in various cancer tissues, particularly in LUAD. High expression of P2RY6 was closely associated with a poor prognosis for patients, and it plays a role in regulating immune-related pathways, such as cytokine-cytokine receptor interaction. Notably, P2RY6 expression is closely linked to the abundance of CD8 + T cells. Furthermore, we have developed a P2RY6-related inflammation prediction model that demonstrates promising results in predicting the prognosis of LUAD patients, with an AUC (area under the curve) value of 0.83. This performance is significantly better than the traditional TNM staging system. Through single-cell transcriptome sequencing analysis, we observed that high P2RY6 expression is associated with increased intercellular communication. Additionally, pathway enrichment analysis revealed that P2RY6 influences antigen presentation and processing pathways within the LUAD microenvironment. CONCLUSIONS: This study suggests that P2RY6 would be a new target for immunotherapy in LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Receptores Purinérgicos P2 , Humanos , Adenocarcinoma de Pulmão/genética , Linfócitos T CD8-Positivos , Neoplasias Pulmonares/genética , Multiômica , Prognóstico , Microambiente Tumoral , Receptores Purinérgicos P2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA