Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
BMC Genomics ; 25(1): 851, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261781

RESUMO

BACKGROUND: The WD40 domain, one of the most abundant in eukaryotic genomes, is widely involved in plant growth and development, secondary metabolic biosynthesis, and mediating responses to biotic and abiotic stresses. WD40 repeat (WD40) protein has been systematically studied in several model plants but has not been reported in the Capsicum annuum (pepper) genome. RESULTS: Herein, 269, 237, and 257 CaWD40 genes were identified in the Zunla, CM334, and Zhangshugang genomes, respectively. CaWD40 sequences from the Zunla genome were selected for subsequent analysis, including chromosomal localization, phylogenetic relationships, sequence characteristics, motif compositions, and expression profiling. CaWD40 proteins were unevenly distributed on 12 chromosomes, encompassing 19 tandem duplicate gene pairs. The 269 CaWD40s were divided into six main branches (A to F) with 17 different types of domain distribution. The CaWD40 gene family exhibited diverse expression patterns, and several genes were specifically expressed in flowers and seeds. Yeast two-hybrid (Y2H) and dual-luciferase assay indicated that CaWD40-91 could interact with CaAN1 and CaDYT1, suggesting its involvement in anthocyanin biosynthesis and male sterility in pepper. CONCLUSIONS: In summary, we systematically characterized the phylogeny, classification, structure, and expression of the CaWD40 gene family in pepper. Our findings provide a valuable foundation for further functional investigations on WD40 genes in pepper.


Assuntos
Antocianinas , Capsicum , Filogenia , Proteínas de Plantas , Capsicum/genética , Capsicum/metabolismo , Antocianinas/biossíntese , Antocianinas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Regulação da Expressão Gênica de Plantas , Infertilidade das Plantas/genética , Repetições WD40/genética , Família Multigênica , Perfilação da Expressão Gênica , Cromossomos de Plantas/genética
2.
BMC Genomics ; 25(1): 796, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39179961

RESUMO

The WD40 domain is one of the most abundant domains and is among the top interacting domains in eukaryotic genomes. The WD40 domain of ATG16L1 is essential for LC3 recruitment to endolysosomal membranes during non-canonical autophagy, but dispensable for canonical autophagy. Canonical autophagy was utilized by FMDV, while the relationship between FMDV and non-canonical autophagy is still elusive. In the present study, WD40 knockout (KO) PK15 cells were successfully generated via CRISPR/cas9 technology as a tool for studying the effect of non-canonical autophagy on FMDV replication. The results of growth curve analysis, morphological observation and karyotype analysis showed that the WD40 knockout cell line was stable in terms of growth and morphological characteristics. After infection with FMDV, the expression of viral protein, viral titers, and the number of copies of viral RNA in the WD40-KO cells were significantly greater than those in the wild-type PK15 cells. Moreover, RNA‒seq technology was used to sequence WD40-KO cells and wild-type cells infected or uninfected with FMDV. Differentially expressed factors such as Mx1, RSAD2, IFIT1, IRF9, IFITM3, GBP1, CXCL8, CCL5, TNFRSF17 were significantly enriched in the autophagy, NOD-like receptor signaling pathway, RIG-I-like receptor signaling pathway, Toll-like receptor signaling pathway, cytokine-cytokine receptor interaction and TNF signaling pathway, etc. The expression levels of differentially expressed genes were detected via qRT‒PCR, which was consistent with the RNA‒seq data. Here, we experimentally demonstrate for the first time that knockout of the WD40 domain of ATG16L1 enhances FMDV replication by downregulation innate immune factors. In addition, this result also indicates non-canonical autophagy inhibits FMDV replication. In total, our results play an essential role in regulating the replication level of FMDV and providing new insights into virus-host interactions and potential antiviral strategies.


Assuntos
Proteínas Relacionadas à Autofagia , Autofagia , Vírus da Febre Aftosa , Técnicas de Inativação de Genes , Replicação Viral , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/fisiologia , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Animais , Autofagia/genética , Linhagem Celular , Repetições WD40/genética , Sistemas CRISPR-Cas , Febre Aftosa/virologia
3.
Int J Mol Sci ; 25(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38674078

RESUMO

Canonical autophagy is an evolutionarily conserved process that forms double-membrane structures and mediates the degradation of long-lived proteins (LLPs). Noncanonical autophagy (NCA) is an important alternative pathway involving the formation of microtubule-associated protein 1 light chain 3 (LC3)-positive structures that are independent of partial core autophagy proteins. NCA has been defined by the conjugation of ATG8s to single membranes (CASM). During canonical autophagy and NCA/CASM, LC3 undergoes a lipidation modification, and ATG16L1 is a crucial protein in this process. Previous studies have reported that the WDR domain of ATG16L1 is not necessary for canonical autophagy. However, our study found that WDR domain deficiency significantly impaired LLP degradation in basal conditions and slowed down LC3-II accumulation in canonical autophagy. We further demonstrated that the observed effect was due to a reduced interaction between ATG16L1 and FIP200/WIPI2, without affecting lysosome function or fusion. Furthermore, we also found that the WDR domain of ATG16L1 is crucial for chemical-induced NCA/CASM. The results showed that removing the WDR domain or introducing the K490A mutation in ATG16L1 significantly inhibited the NCA/CASM, which interrupted the V-ATPase-ATG16L1 axis. In conclusion, this study highlights the significance of the WDR domain of ATG16L1 for both canonical autophagy and NCA functions, improving our understanding of its role in autophagy.


Assuntos
Proteínas Relacionadas à Autofagia , Autofagia , Proteínas de Membrana , Proteínas Associadas aos Microtúbulos , Proteínas de Ligação a Fosfato , Repetições WD40 , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/genética , Autofagia/genética , Humanos , Repetições WD40/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Lisossomos/metabolismo , Células HEK293 , Células HeLa
4.
Plant Cell ; 35(11): 4002-4019, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37648256

RESUMO

Heading date (flowering time), which greatly influences regional and seasonal adaptability in rice (Oryza sativa), is regulated by many genes in different photoperiod pathways. Here, we characterized a heading date gene, Early heading date 5 (Ehd5), using a modified bulked segregant analysis method. The ehd5 mutant showed late flowering under both short-day and long-day conditions, as well as reduced yield, compared to the wild type. Ehd5, which encodes a WD40 domain-containing protein, is induced by light and follows a circadian rhythm expression pattern. Transcriptome analysis revealed that Ehd5 acts upstream of the flowering genes Early heading date 1 (Ehd1), RICE FLOWERING LOCUS T 1 (RFT1), and Heading date 3a (Hd3a). Functional analysis showed that Ehd5 directly interacts with Rice outermost cell-specific gene 4 (Roc4) and Grain number, plant height, and heading date 8 (Ghd8), which might affect the formation of Ghd7-Ghd8 complexes, resulting in increased expression of Ehd1, Hd3a, and RFT1. In a nutshell, these results demonstrate that Ehd5 functions as a positive regulator of rice flowering and provide insight into the molecular mechanisms underlying heading date.


Assuntos
Flores , Oryza , Ritmo Circadiano , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Oryza/genética , Oryza/metabolismo , Fotoperíodo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Repetições WD40/genética
5.
Autophagy ; 18(12): 3023-3030, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35311452

RESUMO

A coding allele of ATG16L1 that increases the risk of Crohn disease (T300A; rs2241880) impairs the interaction between the C-terminal WD40 domain (WDD) and proteins containing a WDD-binding motif, thus specifically inhibiting the unconventional autophagic activities of ATG16L1. In a recent publication we described a novel atypical role of ATG16L1 in the regulation of IL10R (interleukin 10 receptor) trafficking and signaling, an activity that involves direct interaction between the WDD and a target motif present in IL10RB (interleukin 10 receptor subunit beta). Here we show that, unexpectedly, neither the ability of ATG16L1 to interact with IL10RB nor its role in supporting IL10 signaling are altered by the T300A mutation. These results indicate that the ATG16L1T300A allele selectively impairs the interaction between the WDD and a subset of WDD-binding motif versions, suggesting that only a fraction of the unconventional activities mediated by ATG16L1 are required to prevent Crohn disease.Abbreviations: ATG, autophagy related; ATG16L1, autophagy related 16 like 1; BMDMs, bone marrow-derived macrophages; CRISPR, clustered regularly interspaced short palindromic repeats; CSF1/M-CSF, colony stimulating factor 1; FBS, fetal bovine serum; GSH, glutathione; IL10, interleukin 10; IL10R, interleukin 10 receptor; LPS, lipopolysaccharide; MAP1LC3/LC3, microtubule associated protein 1 light chain 3; MEFs, mouse embryonic fibroblasts; PMA, phorbol myristate acetate; p-STAT3: phosphorylated STAT3; qPCR, quantitative polymerase chain reaction; SDS, sodium dodecyl sulfate; sgRNA, single guide RNA; TMEM59, transmembrane protein 59; TNF, tumor necrosis factor; TNFAIP3/A20, TNF alpha induced protein 3; WDD, WD40 domain; WIPI2, WD repeat domain, phosphoinositide interacting 2.


Assuntos
Proteínas Relacionadas à Autofagia , Doença de Crohn , Receptores de Interleucina-10 , Repetições WD40 , Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Doença de Crohn/genética , Doença de Crohn/metabolismo , Interleucina-10/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores de Interleucina-10/metabolismo , Repetições WD40/genética , Humanos
6.
Science ; 375(6587): eabg7985, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35324310

RESUMO

A better understanding of the extent of convergent selection among crops could greatly improve breeding programs. We found that the quantitative trait locus KRN2 in maize and its rice ortholog, OsKRN2, experienced convergent selection. These orthologs encode WD40 proteins and interact with a gene of unknown function, DUF1644, to negatively regulate grain number in both crops. Knockout of KRN2 in maize or OsKRN2 in rice increased grain yield by ~10% and ~8%, respectively, with no apparent trade-offs in other agronomic traits. Furthermore, genome-wide scans identified 490 pairs of orthologous genes that underwent convergent selection during maize and rice evolution, and these were enriched for two shared molecular pathways. KRN2, together with other convergently selected genes, provides an excellent target for future crop improvement.


Assuntos
Grão Comestível , Oryza , Proteínas de Plantas/genética , Seleção Genética , Repetições WD40 , Zea mays , Grão Comestível/genética , Genes de Plantas , Oryza/genética , Filogenia , Melhoramento Vegetal , Proteínas de Plantas/classificação , Repetições WD40/genética , Zea mays/genética
7.
Biochem Biophys Res Commun ; 596: 71-75, 2022 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-35121371

RESUMO

The mouse WD repeat and FYVE domain containing 1 (Wdfy1) gene is located in chromosome 1qC4 and spans over 73.7 kilobases. It encodes a protein of 410-amino acid protein that shares 97.8% amino acid sequence identity with the human WDFY1 protein. However, the expression pattern of WDFY1 in reproductive organs and its function in male fertility remain unknown. In this study, we generated transgenic mice expressing FLAG-Wdfy1-mCherry cDNA driven by the Wdfy1 promoter to clarify the expression of WDFY1. The results showed that WDFY1 is highly expressed in mouse testes and located in the cytoplasm of late pachytene spermatocytes to elongated spermatids. Interestingly, the global Wdfy1 knockout (KO) male mice displayed normal growth, development, and fertility. Further histological analysis of Wdfy1 knockout mouse testes revealed that all spermatogenic cells are present in Wdfy1 KO seminiferous tubules. Together, our data demonstrate that WDFY1 is dispensable for mouse spermatogenesis and male fertility.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Fertilidade/genética , Regulação da Expressão Gênica , Espermatogênese/genética , Testículo/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Western Blotting , Feminino , Perfilação da Expressão Gênica/métodos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espermátides/citologia , Espermátides/metabolismo , Testículo/citologia , Repetições WD40/genética
8.
Commun Biol ; 5(1): 115, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35136165

RESUMO

ß-Coronaviruses such as SARS-CoV-2 hijack coatomer protein-I (COPI) for spike protein retrograde trafficking to the progeny assembly site in endoplasmic reticulum-Golgi intermediate compartment (ERGIC). However, limited residue-level details are available into how the spike interacts with COPI. Here we identify an extended COPI binding motif in the spike that encompasses the canonical K-x-H dibasic sequence. This motif demonstrates selectivity for αCOPI subunit. Guided by an in silico analysis of dibasic motifs in the human proteome, we employ mutagenesis and binding assays to show that the spike motif terminal residues are critical modulators of complex dissociation, which is essential for spike release in ERGIC. αCOPI residues critical for spike motif binding are elucidated by mutagenesis and crystallography and found to be conserved in the zoonotic reservoirs, bats, pangolins, camels, and in humans. Collectively, our investigation on the spike motif identifies key COPI binding determinants with implications for retrograde trafficking.


Assuntos
COVID-19/metabolismo , Complexo I de Proteína do Envoltório/metabolismo , Proteína Coatomer/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Motivos de Aminoácidos/genética , Sequência de Aminoácidos , Sítios de Ligação/genética , COVID-19/genética , COVID-19/virologia , Complexo I de Proteína do Envoltório/química , Complexo I de Proteína do Envoltório/genética , Proteína Coatomer/química , Proteína Coatomer/genética , Simulação por Computador , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Mutação , Filogenia , Ligação Proteica , Domínios Proteicos , Transporte Proteico , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/classificação , Glicoproteína da Espícula de Coronavírus/genética , Repetições WD40/genética
9.
J Virol ; 96(5): e0182721, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35020472

RESUMO

Human cytomegalovirus (HCMV) has a large (∼235 kb) genome with more than 200 predicted open reading frames that exploits numerous cellular factors to facilitate its replication. A key feature of HCMV-infected cells is the emergence of a distinctive membranous cytoplasmic compartment termed the virion assembly compartment (vAC). Here, we report that host protein WD repeat domain 11 (WDR11) plays a key role in vAC formation and virion morphogenesis. We found that WDR11 was upregulated at both mRNA and protein levels during HCMV infection. At the late stage of HCMV replication, WDR11 relocated to the vAC and colocalized with markers of the trans-Golgi network (TGN) and vAC. Depletion of WDR11 hindered HCMV-induced membrane reorganization of the Golgi and TGN, altered vAC formation, and impaired HCMV secondary envelopment and virion morphogenesis. Further, motifs critical for the localization of WDR11 in TGN were identified by alanine-scanning mutagenesis. Mutation of these motifs led to WDR11 mislocation outside the TGN and loss of vAC formation. Taken together, these data indicate that host protein WDR11 is required for efficient viral replication at the stage of virion assembly, possibly by facilitating the remodeling of the endomembrane system for vAC formation and virion morphogenesis. IMPORTANCE During the late phase of human cytomegalovirus (HCMV) infection, the endomembrane system is dramatically reorganized, resulting in the formation of a unique structure termed the virion assembly compartment (vAC), which is critical for the assembly of infectious virions. The mechanism of HCMV-induced vAC formation is still not fully understood. In this report, we identified a host factor, WDR11, that plays an important role in vAC formation. Our findings argue that WDR11 contributes to the relocation of the Golgi and trans-Golgi network to the vAC, a membrane reorganization process that appears to be required for efficient virion maturation. The present work provides new insights into the vAC formation and HCMV virion morphogenesis and a potential novel target for antiviral treatment.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Interações entre Hospedeiro e Microrganismos , Repetições WD40 , Citomegalovirus/genética , Citomegalovirus/metabolismo , Infecções por Citomegalovirus/fisiopatologia , Infecções por Citomegalovirus/virologia , Humanos , Morfogênese , Vírion/metabolismo , Montagem de Vírus/genética , Replicação Viral/genética , Repetições WD40/genética , Rede trans-Golgi/metabolismo
10.
Biomed Res Int ; 2021: 8201377, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34616846

RESUMO

METHODS: The expression level of GRWD1 in human cancer tissues was analyzed using the Tumor Immune Evaluation Resource (ver. 2.0, TIMER2), Gene Expression Profiling Interactive Analysis (ver. 2, GEPIA2), and UALCAN databases. The Kaplan-Meier plotter was utilized to analyze the survival data. Spearman's correlation analysis was used to find out the correlation between the expression level of GRWD1 and predictive biomarkers, such as tumor mutation burden (TMB) and microsatellite instability (MSI). Furthermore, the MEXPRESS website was used to study the potential relationship between DNA methylation level of GRWD1 and pathological staging. We utilized the "immune" module provided on the TIMER2 website to explore the relationship between the expression level of GRWD1 and immune infiltration in all types of cancer in TCGA. Pearson's correlation analysis was used to investigate the correlation between the expression level of GRWD1 and the expression levels of immune checkpoint-related genes. For protein expression analysis, we used the CPTAC module provided by the UALCAN portal to compare the total protein and phosphorylated protein level of GRWD1 in adjacent normal and tumor tissues. RESULTS: GRWD1 was overexpressed in tissues of most types of cancer, in which the expression levels of GRWD1 in the kidney chromophobe (KICH), kidney renal papillary cell carcinoma (KIRP), and kidney renal clear cell carcinoma (KIRC) tissues showed an opposite trend, and the expression level of GRWD1 was correlated to only the KIRC tumor stage. The results of survival analysis showed that the expression level of GRWD1 was significantly associated with overall survival in six types of cancer and disease-free survival (DFS) in three types of cancer. Importantly, the increased expression level of GRWD1 was strongly correlated with prognosis of KIRC patients. There was a positive relationship between the expression level of GRWD1 and immune cell infiltration in several types of cancer, and the expression level of GRWD1 was also positively correlated with TMB, MSI, and DNA methylation in some types of cancer. The results of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed that "ubiquitin mediated proteolysis," "spliceosome," and "nucleotide excision repair" were involved in the effect of GRWD1 expression on tumor pathogenesis. CONCLUSION: This pancancer analysis provided a comprehensive overview of the carcinogenic effects of GRWD1 on a variety of human cancers. The results of bioinformatics analysis indicated GRWD1 as a promising biomarker for detection, prognosis, and therapeutic assessment of diverse types of cancer, and GRWD1 could act as a tumor suppressor in KIRC.


Assuntos
Proteínas de Transporte/genética , Ácido Glutâmico/metabolismo , Neoplasias/genética , Repetições WD40/genética , Proteínas de Transporte/metabolismo , Metilação de DNA/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/imunologia , Neoplasias/patologia , Fosforilação , Mapas de Interação de Proteínas/genética , Análise de Sobrevida
11.
Plant Cell Environ ; 44(10): 3273-3282, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34251043

RESUMO

The Arabidopsis COP1/SPA complex acts as a cullin4-based E3 ubiquitin ligase to suppress photomorphogenesis in darkness. It is a tetrameric complex of two COP1 and two SPA proteins. Both COP1 and SPA are essential for the activity of this complex, and they both contain a C-terminal WD-repeat domain responsible for substrate recruitment and binding of DDB1. Here, we used a WD domain swap-approach to address the cooperativity of COP1 and SPA proteins. We found that expression of a chimeric COP1 carrying the WD-repeat domain of SPA1 mostly complemented the cop1-4-mutant phenotype in darkness, indicating that the WD repeat of SPA1 can replace the WD repeat of COP1. In the light, SPA1-WD partially substituted for COP1-WD. In contrast, expression of a chimeric SPA1 protein carrying the WD repeat of COP1 did not rescue the spa-mutant phenotype. Together, our findings demonstrate that a SPA1-type WD repeat is essential for COP1/SPA activity, while a COP1-type WD is in part dispensible. Moreover, a complex with four SPA1-WDs is more active than a complex with only two SPA1-WDs. A homology model of SPA1-WD based on the crystal structure of COP1-WD uncovered two insertions and several amino acid substitutions at the predicted substrate-binding pocket of SPA1-WD.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Complexo I de Proteína do Envoltório/genética , Repetições WD40/genética , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Complexo I de Proteína do Envoltório/metabolismo , Desenvolvimento Vegetal/efeitos da radiação
12.
J Cell Mol Med ; 25(14): 6573-6583, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34050597

RESUMO

Asthma is a serious public health problem worldwide, without effective therapeutic methods. Our previous study indicated that glucocorticoid-induced transcript 1 gene (GLCCI1) knockout reduces the sensitivity to glucocorticoid in asthmatic mouse. Here, we explored the role and action mechanism of GLCCI1 in asthma development. In ovalbumin-sensitized mice, airway resistance and tissue damage increased, the production of inflammatory cytokines were up-regulated, GLCCI1 expression was reduced and autophagy was activated. Increasing of GLCCI1 inhibited human and mouse airway epithelial cell (AEC) autophagy, while decreasing of GLCCI1 promoted autophagy. Furthermore, we found that GLCCI1 bound with WD repeat domain 45B (WDR45B) and inhibited its expression. Increasing of WDR45B partly reversed the inhibition of GLCCI1 to autophagy-related proteins expression and autophagosome formation in vitro. Increasing of WDR45B in vivo reversed the improvement of GLCCI1 on airway remodelling in asthma and the inhibition to autophagy level in lung tissues. Overall, our data showed that GLCCI1 improved airway remodelling in ovalbumin-sensitized mice through inhibiting autophagy via combination with WDR45B and inhibiting its expression. Our results proved a new idea for asthma treatment.


Assuntos
Asma/genética , Colágeno/metabolismo , Receptores de Glucocorticoides/genética , Hipersensibilidade Respiratória/genética , Administração por Inalação , Remodelação das Vias Aéreas/genética , Animais , Asma/patologia , Asma/terapia , Autofagia/genética , Proteínas Relacionadas à Autofagia/genética , Modelos Animais de Doenças , Humanos , Pulmão/metabolismo , Camundongos , Ligação Proteica/genética , Hipersensibilidade Respiratória/patologia , Repetições WD40/genética
13.
Bosn J Basic Med Sci ; 21(5): 528-534, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33714259

RESUMO

The WD40 repeat (WDR) domain is one of the most abundant protein interaction domains in the human proteome. More than 360 protein interaction domains have been annotated thus far. The WDR domains mediate interactions with peptide regions of important interaction partners in a variety of biological processes. Proteins with the WDR domain which typically contains a seven-bladed ß propeller, are continuously being discovered. They represent a large class of proteins that are likely to play important roles. WD40 repeat domain-containing protein 76 (WDR76) is a member of WDR domain-containing proteins. Although it remains poorly understood, it is potentially involved in DNA damage repair, apoptosis, cell cycle progression, and gene expression regulation. Ongoing research on WDR76 is increasing the knowledge regarding its basic functions and role in different pathophysiological. The study of WDR76 is challenging due to the complexity of its interactions with its partners. In the present review, we summarized the current knowledge regarding WDR76, its physiological functions, the close relationship with human diseases, and potential opportunities for target therapy.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ligação a DNA/química , Ubiquitina/química , Repetições WD40/genética , Animais , Carcinogênese , Biologia Computacional/métodos , Humanos , Camundongos , Conformação Molecular , Metástase Neoplásica , Peptídeos/química , Domínios Proteicos , Proteômica/métodos , Ubiquitinação
14.
Sci Rep ; 11(1): 2266, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33500544

RESUMO

WD40 domain-containing proteins constitute one of the most abundant protein families in all higher plants and play vital roles in the regulation of plant growth and developmental processes. To date, WD40 protein members have been identified in several plant species, but no report is available on the WD40 protein family in mango (Mangifera indica L.). In this study, a total of 315 WD40 protein members were identified in mango and further divided into 11 subgroups according to the phylogenetic tree. Here, we reported mango TRANSPARENT TESTA GLABRA 1 (MiTTG1) protein as a novel factor that functions in the regulation of Arabidopsis root growth and development. Bimolecular fluorescence complementation (BiFC) assay in tobacco leaves revealed that MiTTG1 protein physically interacts with MiMYB0, MiTT8 and MibHLH1, implying the formation of a new ternary regulatory complex (MYB-bHLH-WD40) in mango. Furthermore, the MiTTG1 transgenic lines were more adapted to abiotic stresses (mannitol, salt and drought stress) in terms of promoted root hairs and root lengths. Together, our findings indicated that MiTTG1 functions as a novel factor to modulate protein-protein interactions and enhance the plants abilities to adjust different abiotic stress responses.


Assuntos
Adaptação Fisiológica , Arabidopsis/fisiologia , Genômica , Mangifera/genética , Proteínas de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Estresse Fisiológico , Repetições WD40/genética , Motivos de Aminoácidos , Arabidopsis/genética , Sequência Conservada , Secas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Marcadores Genéticos , Mangifera/crescimento & desenvolvimento , Manitol/farmacologia , Anotação de Sequência Molecular , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Mapas de Interação de Proteínas , Estresse Salino/efeitos dos fármacos , Estresse Fisiológico/genética , Frações Subcelulares/metabolismo
15.
Biochim Biophys Acta Gene Regul Mech ; 1864(2): 194604, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32673655

RESUMO

Transcription initiation constitutes a major checkpoint in gene regulation across all living organisms. Control of chromatin function is tightly linked to this checkpoint, which is best illustrated by the SAGA coactivator. This evolutionary conserved complex of 18-20 subunits was first discovered as a Gcn5p-containing histone acetyltransferase, but it also integrates a histone H2B deubiquitinase. The SAGA subunits are organized in a modular fashion around its central core. Strikingly, this central module of SAGA shares a number of proteins with the central core of the basal transcription factor TFIID. In this review I will compare the SAGA and TFIID complexes with respect to their shared subunits, structural organization, enzymatic activities and chromatin binding. I will place a special emphasis on the ancestry of SAGA and TFIID subunits, which suggests that these complexes evolved to control the activity of TBP (TATA-binding protein) in directing the assembly of transcription initiation complexes.


Assuntos
Cromatina/metabolismo , Proteína de Ligação a TATA-Box/metabolismo , Transativadores/metabolismo , Fator de Transcrição TFIID/metabolismo , Iniciação da Transcrição Genética , Animais , Sequência de Bases/genética , Sequência Conservada/genética , Microscopia Crioeletrônica , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/ultraestrutura , Evolução Molecular , Modelos Animais , Regiões Promotoras Genéticas/genética , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Transativadores/genética , Transativadores/ultraestrutura , Fator de Transcrição TFIID/genética , Fator de Transcrição TFIID/ultraestrutura , Repetições WD40/genética
16.
Cancer Lett ; 500: 11-20, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33301799

RESUMO

eIF3i, a 36-kDa protein, is a putative subunit of the eIF3 complex important for translation initiation of mRNAs. It is a WD40 domain-containing protein with seven WD40 repeats that forms a ß-propeller structure with an important function in pre-initiation complex formation and mRNA translation initiation. In addition to participating in the eIF3 complex formation for global translational control, eIF3i may bind to specific mRNAs and regulate their translation individually. Furthermore, eIF3i has been shown to bind to TGF-ß type II receptor and participate in TGF-ß signaling. It may also participate in and regulate other signaling pathways including Wnt/ß-catenin pathway via translational regulation of COX-2 synthesis. These multiple canonical and noncanonical functions of eIF3i in translational control and in regulating signal transduction pathways may be responsible for its role in cell differentiation, cell cycle regulation, proliferation, and tumorigenesis. In this review, we will critically evaluate recent progresses and assess future prospects in studying eIF3i.


Assuntos
Carcinogênese/genética , Fator de Iniciação 3 em Eucariotos/genética , Neoplasias/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Fator de Crescimento Transformador beta/genética , Ciclo Celular/genética , Proliferação de Células/genética , Humanos , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Neoplasias/patologia , Repetições WD40/genética , Via de Sinalização Wnt/genética
17.
Endocrinol Metab (Seoul) ; 35(3): 494-506, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32894826

RESUMO

WD40-repeat (WDR)-containing proteins constitute an evolutionarily conserved large protein family with a broad range of biological functions. In human proteome, WDR makes up one of the most abundant protein-protein interaction domains. Members of the WDR protein family play important roles in nearly all major cellular signalling pathways. Mutations of WDR proteins have been associated with various human pathologies including neurological disorders, cancer, obesity, ciliopathies and endocrine disorders. This review provides an updated overview of the biological functions of WDR proteins and their mutations found in congenital disorders. We also highlight the significant role of WDR proteins in ciliopathies and endocrine disorders. The new insights may help develop therapeutic approaches targeting WDR motifs.


Assuntos
Ciliopatias/genética , Doenças do Sistema Endócrino/genética , Repetições WD40/genética , Animais , Doenças do Sistema Endócrino/congênito , Humanos , Mutação , Neoplasias/genética , Doenças do Sistema Nervoso/genética
18.
Commun Biol ; 3(1): 513, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32943738

RESUMO

Halophytes are plants that grow in high-salt environments and form characteristic epidermal bladder cells (EBCs) that are important for saline tolerance. To date, however, little has been revealed about the formation of these structures. To determine the genetic basis for their formation, we applied ethylmethanesulfonate mutagenesis and obtained two mutants with reduced levels of EBCs (rebc) and abnormal chloroplasts. In silico subtraction experiments revealed that the rebc phenotype was caused by mutation of REBC, which encodes a WD40 protein that localizes to the nucleus and chloroplasts. Phylogenetic and transformant analyses revealed that the REBC protein differs from TTG1, a WD40 protein involved in trichome formation. Furthermore, rebc mutants displayed damage to their shoot apices under abiotic stress, suggesting that EBCs may protect the shoot apex from such stress. These findings will help clarify the mechanisms underlying EBC formation and function.


Assuntos
Chenopodium quinoa/genética , Tolerância ao Sal/genética , Plantas Tolerantes a Sal/genética , Repetições WD40/genética , Chenopodium quinoa/crescimento & desenvolvimento , Chenopodium quinoa/metabolismo , Cloroplastos/genética , Células Epidérmicas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Filogenia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Salinidade , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Plantas Tolerantes a Sal/metabolismo , Estresse Fisiológico/genética
19.
Commun Biol ; 3(1): 396, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32719499

RESUMO

Floral anthocyanin has multiple ecological and economic values, its biosynthesis largely depends on the conserved MYB-bHLH-WD40 (MBW) activation complex and MYB repressors hierarchically with the MBW complex. In contrast to eudicots, the MBW regulatory network model has not been addressed in monocots because of the lack of a suitable system, as grass plants exhibit monotonous floral pigmentation patterns. Presently, the MBW regulatory network was investigated in a non-grass monocot plant, Freesia hybrida. FhMYB27 and FhMYBx with different functional manners were confirmed to be anthocyanin related R2R3 and R3 MYB repressors, respectively. Particularly, FhMYBx could obstruct the formation of positive MBW complex by titrating bHLH proteins, whereas FhMYB27 mainly defected the activator complex into suppressor via its repression domains in C-terminus. Furthermore, the hierarchical and feedback regulatory loop was verified, indicating the synergistic and sophisticated regulatory network underlying Freesia anthocyanin biosynthesis was quite similar to that reported in eudicot plants.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Iridaceae/genética , Pigmentação/genética , Fatores Genéricos de Transcrição/genética , Repetições WD40/genética , Antocianinas/biossíntese , Antocianinas/genética , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Iridaceae/crescimento & desenvolvimento , Substâncias Macromoleculares/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento
20.
Dev Growth Differ ; 62(6): 423-437, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32359074

RESUMO

Motile cilia propel directed cell movements and sweep fluids across the surface of tissues. Orthologs of Dynein Assembly Factor with WD Repeat Domains 1 (DAW1) support normal ciliary beating by enhancing delivery of dynein complexes to axonemal microtubules. DAW1 mutations in vertebrates result in multiple developmental abnormalities and early or prenatal lethality, complicating functional assessment of DAW1 in adult structures. Planarian flatworms maintain cellular homeostasis and regenerate through differentiation of adult pluripotent stem cells, and systemic RNA-interference (RNAi) can be induced to analyze gene function at any point after birth. A single ortholog of DAW1 was identified in the genome of the planarian Schmidtea mediterranea (Smed-daw1). Smed-DAW1 is composed of eight WD repeats, which are 55% identical to the founding member of this protein family (Chlamydomonas reinhardtii ODA16) and 58% identical to human DAW1. Smed-daw1 is expressed in the planarian epidermis, protonephridial excretory system, and testes, all of which contain cells functionally dependent on motile cilia. Smed-daw1 RNAi resulted in locomotion defects and edema, which are phenotypes characteristic of multiciliated epidermis and protonephridial dysfunction, respectively. Changes in abundance or length of motile cilia were not observed at the onset of phenotypic manifestations upon Smed-daw1 RNAi, corroborating with studies showing that DAW-1 loss of function leads to aberrant movement of motile cilia in other organisms, rather than loss of cilia per se. However, extended RNAi treatments did result in shorter epidermal cilia and decreased abundance of ciliated protonephridia, suggesting that Smed-daw1 is required for homeostatic maintenance of these structures in flatworms.


Assuntos
Cílios/metabolismo , Dineínas/metabolismo , Planárias/citologia , Planárias/metabolismo , Repetições WD40 , Animais , Cílios/genética , Dineínas/genética , Planárias/genética , Repetições WD40/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA