Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 555
Filtrar
1.
Theranostics ; 14(7): 2856-2880, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38773968

RESUMO

Cell metabolism reprogramming to sustain energy production, while reducing oxygen and energy consuming processes is crucially important for the adaptation to hypoxia/ischemia. Adaptive metabolic rewiring is controlled by hypoxia-inducible factors (HIFs). Accumulating experimental evidence indicates that timely activation of HIF in brain-resident cells improves the outcome from acute ischemic stroke. However, the underlying molecular mechanisms are still incompletely understood. Thus, we investigated whether HIF-dependent metabolic reprogramming affects the vulnerability of brain-resident cells towards ischemic stress. Methods: We used genetic and pharmacological approaches to activate HIF in the murine brain in vivo and in primary neurons and astrocytes in vitro. Numerous metabolomic approaches and molecular biological techniques were applied to elucidate potential HIF-dependent effects on the central carbon metabolism of brain cells. In animal and cell models of ischemic stroke, we analysed whether HIF-dependent metabolic reprogramming influences the susceptibility to ischemic injury. Results: Neuron-specific gene ablation of prolyl-4-hydroxylase domain 2 (PHD2) protein, negatively regulating the protein stability of HIF-α in an oxygen dependent manner, reduced brain injury and functional impairment of mice after acute stroke in a HIF-dependent manner. Accordingly, PHD2 deficient neurons showed an improved tolerance towards ischemic stress in vitro, which was accompanied by enhanced HIF-1-mediated glycolytic lactate production through pyruvate dehydrogenase kinase-mediated inhibition of the pyruvate dehydrogenase. Systemic treatment of mice with roxadustat, a low-molecular weight pan-PHD inhibitor, not only increased the abundance of numerous metabolites of the central carbon and amino acid metabolism in murine brain, but also ameliorated cerebral tissue damage and sensorimotor dysfunction after acute ischemic stroke. In neurons and astrocytes roxadustat provoked a HIF-1-dependent glucose metabolism reprogramming including elevation of glucose uptake, glycogen synthesis, glycolytic capacity, lactate production and lactate release, which enhanced the ischemic tolerance of astrocytes, but not neurons. We found that strong activation of HIF-1 in neurons by non-selective inhibition of all PHD isoenzymes caused a HIF-1-dependent upregulation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 redirecting glucose-6-phosphate from pentose phosphate pathway (PPP) to the glycolysis pathway. This was accompanied by a reduction of NADPH production in the PPP, which further decreased the low intrinsic antioxidant reserve of neurons, making them more susceptible to ischemic stress. Nonetheless, in organotypic hippocampal cultures with preserved neuronal-glial interactions roxadustat decreased the neuronal susceptibility to ischemic stress, which was largely prevented by restricting glycolytic energy production through lactate transport blockade. Conclusion: Collectively, our results indicate that HIF-1-mediated metabolic reprogramming alleviates the intrinsic vulnerability of brain-resident cells to ischemic stress.


Assuntos
Astrócitos , Carbono , Subunidade alfa do Fator 1 Induzível por Hipóxia , Prolina Dioxigenases do Fator Induzível por Hipóxia , AVC Isquêmico , Neurônios , Animais , Camundongos , AVC Isquêmico/metabolismo , Neurônios/metabolismo , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Carbono/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Pró-Colágeno-Prolina Dioxigenase/genética , Modelos Animais de Doenças , Isquemia Encefálica/metabolismo , Glicólise/efeitos dos fármacos , Encéfalo/metabolismo , Reprogramação Celular/efeitos dos fármacos
2.
Front Immunol ; 15: 1375461, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711514

RESUMO

Excess dietary fructose consumption has been long proposed as a culprit for the world-wide increase of incidence in metabolic disorders and cancer within the past decades. Understanding that cancer cells can gradually accumulate metabolic mutations in the tumor microenvironment, where glucose is often depleted, this raises the possibility that fructose can be utilized by cancer cells as an alternative source of carbon. Indeed, recent research has increasingly identified various mechanisms that show how cancer cells can metabolize fructose to support their proliferating and migrating needs. In light of this growing interest, this review will summarize the recent advances in understanding how fructose can metabolically reprogram different types of cancer cells, as well as how these metabolic adaptations can positively support cancer cells development and malignancy.


Assuntos
Frutose , Neoplasias , Microambiente Tumoral , Humanos , Frutose/metabolismo , Frutose/efeitos adversos , Neoplasias/metabolismo , Neoplasias/etiologia , Animais , Reprogramação Celular/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Reprogramação Metabólica
3.
Cells ; 13(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38727298

RESUMO

The antipsychotic drug clozapine demonstrates superior efficacy in treatment-resistant schizophrenia, but its intracellular mode of action is not completely understood. Here, we analysed the effects of clozapine (2.5-20 µM) on metabolic fluxes, cell respiration, and intracellular ATP in human HL60 cells. Some results were confirmed in leukocytes of clozapine-treated patients. Neuroreceptor inhibition under clozapine reduced Akt activation with decreased glucose uptake, thereby inducing ER stress and the unfolded protein response (UPR). Metabolic profiling by liquid-chromatography/mass-spectrometry revealed downregulation of glycolysis and the pentose phosphate pathway, thereby saving glucose to keep the electron transport chain working. Mitochondrial respiration was dampened by upregulation of the F0F1-ATPase inhibitory factor 1 (IF1) leading to 30-40% lower oxygen consumption in HL60 cells. Blocking IF1 expression by cotreatment with epigallocatechin-3-gallate (EGCG) increased apoptosis of HL60 cells. Upregulation of the mitochondrial citrate carrier shifted excess citrate to the cytosol for use in lipogenesis and for storage as triacylglycerol in lipid droplets (LDs). Accordingly, clozapine-treated HL60 cells and leukocytes from clozapine-treated patients contain more LDs than untreated cells. Since mitochondrial disturbances are described in the pathophysiology of schizophrenia, clozapine-induced mitohormesis is an excellent way to escape energy deficits and improve cell survival.


Assuntos
Clozapina , Mitocôndrias , Humanos , Clozapina/farmacologia , Clozapina/análogos & derivados , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Células HL-60 , Antipsicóticos/farmacologia , Apoptose/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo , Esquizofrenia/patologia , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Reprogramação Celular/efeitos dos fármacos , Reprogramação Metabólica
4.
Cell Rep ; 43(4): 114054, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38578832

RESUMO

Cell fate conversion is associated with extensive post-translational modifications (PTMs) and architectural changes of sub-organelles, yet how these events are interconnected remains unknown. We report here the identification of a phosphorylation code in 14-3-3 binding motifs (PC14-3-3) that greatly stimulates induced cardiomyocyte (iCM) formation from fibroblasts. PC14-3-3 is identified in pivotal functional proteins for iCM reprogramming, including transcription factors and chromatin modifiers. Akt1 kinase and protein phosphatase 2A are the key writer and key eraser of the PC14-3-3 code, respectively. PC14-3-3 activation induces iCM formation with the presence of only Tbx5. In contrast, PC14-3-3 inhibition by mutagenesis or inhibitor-mediated code removal abolishes reprogramming. We discover that key PC14-3-3-embedded factors, such as histone deacetylase 4 (Hdac4), Mef2c, and Foxo1, form Hdac4-organized inhibitory nuclear condensates. PC14-3-3 activation disrupts Hdac4 condensates to promote cardiac gene expression. Our study suggests that sub-organelle dynamics regulated by a PTM code could be a general mechanism for stimulating cell reprogramming.


Assuntos
Proteínas 14-3-3 , Reprogramação Celular , Histona Desacetilases , Miócitos Cardíacos , Proteínas 14-3-3/metabolismo , Histona Desacetilases/metabolismo , Fosforilação , Animais , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Reprogramação Celular/efeitos dos fármacos , Camundongos , Humanos , Fibroblastos/metabolismo , Fatores de Transcrição MEF2/metabolismo , Motivos de Aminoácidos , Ligação Proteica
5.
Adv Sci (Weinh) ; 10(11): e2207490, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36748885

RESUMO

Osteoarthritis (OA) is a progressive joint disease characterized by inflammation and cartilage destruction, and its progression is closely related to imbalances in the M1/M2 synovial macrophages. A two-pronged strategy for the regulation of intracellular/extracellular nitric oxide (NO) and hydrogen protons for reprogramming M1/M2 synovial macrophages is proposed. The combination of carbonic anhydrase IX (CA9) siRNA and NO scavenger in "two-in-one" nanocarriers (NAHA-CaP/siRNA nanoparticles) is developed for progressive OA therapy by scavenging NO and inhibiting CA9 expression in synovial macrophages. In vitro experiments demonstrate that these NPs can significantly scavenge intracellular NO similar to the levels as those in the normal group and downregulate the expression levels of CA9 mRNA (≈90%), thereby repolarizing the M1 macrophages into the M2 phenotype and increasing the expression levels of pro-chondrogenic TGF-ß1 mRNA (≈1.3-fold), and inhibiting chondrocyte apoptosis. Furthermore, in vivo experiments show that the NPs have great anti-inflammation, cartilage protection and repair effects, thereby effectively alleviating OA progression in both monoiodoacetic acid-induced early and late OA mouse models and a surgical destabilization of medial meniscus-induced OA rat model. Therefore, the siCA9 and NO scavenger "two-in-one" delivery system is a potential and efficient strategy for progressive OA treatment.


Assuntos
Anidrase Carbônica IX , Sistemas de Liberação de Fármacos por Nanopartículas , Óxido Nítrico , Osteoartrite , Animais , Camundongos , Ratos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Nanomedicina/métodos , Óxido Nítrico/metabolismo , Osteoartrite/terapia , Osteoartrite/metabolismo , RNA Mensageiro/metabolismo , Membrana Sinovial/metabolismo , Reprogramação Celular/efeitos dos fármacos , Sistemas de Liberação de Fármacos por Nanopartículas/farmacologia , Anidrase Carbônica IX/efeitos dos fármacos , Anidrase Carbônica IX/metabolismo
6.
Circulation ; 146(20): 1518-1536, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36102189

RESUMO

BACKGROUND: Direct cardiac reprogramming of fibroblasts into cardiomyocytes has emerged as a promising strategy to remuscularize injured myocardium. However, it is insufficient to generate functional induced cardiomyocytes from human fibroblasts using conventional reprogramming cocktails, and the underlying molecular mechanisms are not well studied. METHODS: To discover potential missing factors for human direct reprogramming, we performed transcriptomic comparison between human induced cardiomyocytes and functional cardiomyocytes. RESULTS: We identified TBX20 (T-box transcription factor 20) as the top cardiac gene that is unable to be activated by the MGT133 reprogramming cocktail (MEF2C, GATA4, TBX5, and miR-133). TBX20 is required for normal heart development and cardiac function in adult cardiomyocytes, yet its role in cardiac reprogramming remains undefined. We show that the addition of TBX20 to the MGT133 cocktail (MGT+TBX20) promotes cardiac reprogramming and activates genes associated with cardiac contractility, maturation, and ventricular heart. Human induced cardiomyocytes produced with MGT+TBX20 demonstrated more frequent beating, calcium oscillation, and higher energy metabolism as evidenced by increased mitochondria numbers and mitochondrial respiration. Mechanistically, comprehensive transcriptomic, chromatin occupancy, and epigenomic studies revealed that TBX20 colocalizes with MGT reprogramming factors at cardiac gene enhancers associated with heart contraction, promotes chromatin binding and co-occupancy of MGT factors at these loci, and synergizes with MGT for more robust activation of target gene transcription. CONCLUSIONS: TBX20 consolidates MGT cardiac reprogramming factors to activate cardiac enhancers to promote cardiac cell fate conversion. Human induced cardiomyocytes generated with TBX20 showed enhanced cardiac function in contractility and mitochondrial respiration.


Assuntos
Fármacos Cardiovasculares , Reprogramação Celular , Mitocôndrias , Contração Miocárdica , Miócitos Cardíacos , Proteínas com Domínio T , Humanos , Reprogramação Celular/efeitos dos fármacos , Reprogramação Celular/genética , Reprogramação Celular/fisiologia , Cromatina/genética , Cromatina/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/fisiologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Contração Miocárdica/efeitos dos fármacos , Contração Miocárdica/genética , Contração Miocárdica/fisiologia , Fármacos Cardiovasculares/farmacologia , Fármacos Cardiovasculares/uso terapêutico
7.
Cancer Lett ; 539: 215718, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35526650

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is characterized by a highly desmoplastic tumor microenvironment (TME) consisting of abundant activated pancreatic stellate cells (PSCs). PSCs play a key role in the refractory responses of PDAC to immunotherapy and chemotherapy and deactivating PSCs into quiescence through vitamin D receptor (VDR) signaling activation is a promising strategy for PDAC treatment. We observed p62 loss in PSCs hindered the deactivation efficacy of VDR ligands, and hypothesized that reversing p62 levels by inhibiting autophagy processing, which is responsible for p62 loss, could sensitize PSCs toward VDR ligands. Herein, we constructed a PSC deactivator with dual functions of VDR activation and autophagy inhibition, utilizing a pH-buffering micelle (LBM) with an inherent ability to block autophagic flux to encapsulate calcipotriol (Cal), a VDR ligand. This Cal-loaded LBM (C-LBM) could efficiently reprogram PSCs, modulate the fibrotic TME, and alter immunosuppression. In combination with PD-1 antagonists and chemotherapy, C-LBM showed superior antitumor efficacy and significantly prolonged the survival of PDAC mice. These findings suggest that synergistic autophagy blockade and VDR signaling activation are promising therapeutic approaches to reprogram PSCs and improve the PDAC response to immunotherapy.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Células Estreladas do Pâncreas , Receptores de Calcitriol , Animais , Autofagia/efeitos dos fármacos , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Reprogramação Celular/efeitos dos fármacos , Humanos , Ligantes , Lisossomos , Camundongos , Micelas , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Células Estreladas do Pâncreas/efeitos dos fármacos , Células Estreladas do Pâncreas/metabolismo , Células Estreladas do Pâncreas/patologia , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/metabolismo , Receptores de Calcitriol/genética , Microambiente Tumoral
8.
J Clin Invest ; 132(4)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35166240

RESUMO

The chromosomal t(4;14) (p16;q32) translocation drives high expression of histone methyltransferase nuclear SET domain-containing 2 (NSD2) and plays vital roles in multiple myeloma (MM) evolution and progression. However, the mechanisms of NSD2-driven epigenomic alterations in chemoresistance to proteasome inhibitors (PIs) are not fully understood. Using a CRISPR/Cas9 sgRNA library in a bone marrow-bearing MM model, we found that hepatoma-derived growth factor 2 (HRP2) was a suppressor of chemoresistance to PIs and that its downregulation correlated with a poor response and worse outcomes in the clinic. We observed suppression of HRP2 in bortezomib-resistant MM cells, and knockdown of HRP2 induced a marked tolerance to PIs. Moreover, knockdown of HRP2 augmented H3K27me3 levels, consequentially intensifying transcriptome alterations promoting cell survival and restriction of ER stress. Mechanistically, HRP2 recognized H3K36me2 and recruited the histone demethylase MYC-induced nuclear antigen (MINA) to remove H3K27me3. Tazemetostat, a highly selective epigenetic inhibitor that reduces H3K27me3 levels, synergistically sensitized the anti-MM effects of bortezomib both in vitro and in vivo. Collectively, these results provide a better understanding of the origin of chemoresistance in patients with MM with the t(4;14) translocation and a rationale for managing patients with MM who have different genomic backgrounds.


Assuntos
Reprogramação Celular , Cromossomos Humanos Par 14/genética , Cromossomos Humanos Par 4/genética , Dioxigenases , Epigênese Genética/efeitos dos fármacos , Histona Desmetilases , Mieloma Múltiplo , Proteínas de Neoplasias , Proteínas Nucleares , Inibidores de Proteassoma/farmacologia , Translocação Genética , Linhagem Celular Tumoral , Reprogramação Celular/efeitos dos fármacos , Reprogramação Celular/genética , Dioxigenases/genética , Dioxigenases/metabolismo , Epigenômica , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
9.
Int J Mol Sci ; 23(4)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35216086

RESUMO

Melatonin interacts with various types of stem cells, in multiple ways that comprise stimulation of proliferation, maintenance of stemness and self-renewal, protection of survival, and programming toward functionally different cell lineages. These various properties are frequently intertwined but may not be always jointly present. Melatonin typically stimulates proliferation and transition to the mature cell type. For all sufficiently studied stem or progenitor cells, melatonin's signaling pathways leading to expression of respective morphogenetic factors are discussed. The focus of this article will be laid on the aspect of programming, particularly in pluripotent cells. This is especially but not exclusively the case in neural stem cells (NSCs) and mesenchymal stem cells (MSCs). Concerning developmental bifurcations, decisions are not exclusively made by melatonin alone. In MSCs, melatonin promotes adipogenesis in a Wnt (Wingless-Integration-1)-independent mode, but chondrogenesis and osteogenesis Wnt-dependently. Melatonin upregulates Wnt, but not in the adipogenic lineage. This decision seems to depend on microenvironment and epigenetic memory. The decision for chondrogenesis instead of osteogenesis, both being Wnt-dependent, seems to involve fibroblast growth factor receptor 3. Stem cell-specific differences in melatonin and Wnt receptors, and contributions of transcription factors and noncoding RNAs are outlined, as well as possibilities and the medical importance of re-programming for transdifferentiation.


Assuntos
Reprogramação Celular/efeitos dos fármacos , Melatonina/farmacologia , Células-Tronco/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Humanos
10.
Stem Cell Reports ; 17(2): 289-306, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35030321

RESUMO

Regenerative medicine relies on basic research outcomes that are only practical when cost effective. The human eyeball requires the retinal pigment epithelium (RPE) to interface the neural retina and the choroid at large. Millions of people suffer from age-related macular degeneration (AMD), a blinding multifactor genetic disease among RPE degradation pathologies. Recently, autologous pluripotent stem-cell-derived RPE cells were prohibitively expensive due to time; therefore, we developed a faster reprogramming system. We stably induced RPE-like cells (iRPE) from human fibroblasts (Fibs) by conditional overexpression of both broad plasticity and lineage-specific transcription factors (TFs). iRPE cells displayed critical RPE benchmarks and significant in vivo integration in transplanted retinas. Herein, we detail the iRPE system with comprehensive single-cell RNA sequencing (scRNA-seq) profiling to interpret and characterize its best cells. We anticipate that our system may enable robust retinal cell induction for basic research and affordable autologous human RPE tissue for regenerative cell therapy.


Assuntos
Reprogramação Celular , Fibroblastos/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Animais , Reprogramação Celular/efeitos dos fármacos , Dissulfetos/farmacologia , Fibroblastos/citologia , Regulação da Expressão Gênica , Humanos , Alcaloides Indólicos/farmacologia , Aprendizado de Máquina , Niacinamida/farmacologia , Ratos , Retina/citologia , Retina/metabolismo , Retina/patologia , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/transplante , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Nat Commun ; 13(1): 22, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013148

RESUMO

Activation of the sympathetic nervous system causes pronounced metabolic changes that are mediated by multiple adrenergic receptor subtypes. Systemic treatment with ß2-adrenergic receptor agonists results in multiple beneficial metabolic effects, including improved glucose homeostasis. To elucidate the underlying cellular and molecular mechanisms, we chronically treated wild-type mice and several newly developed mutant mouse strains with clenbuterol, a selective ß2-adrenergic receptor agonist. Clenbuterol administration caused pronounced improvements in glucose homeostasis and prevented the metabolic deficits in mouse models of ß-cell dysfunction and insulin resistance. Studies with skeletal muscle-specific mutant mice demonstrated that these metabolic improvements required activation of skeletal muscle ß2-adrenergic receptors and the stimulatory G protein, Gs. Unbiased transcriptomic and metabolomic analyses showed that chronic ß2-adrenergic receptor stimulation caused metabolic reprogramming of skeletal muscle characterized by enhanced glucose utilization. These findings strongly suggest that agents targeting skeletal muscle metabolism by modulating ß2-adrenergic receptor-dependent signaling pathways may prove beneficial as antidiabetic drugs.


Assuntos
Reprogramação Celular/efeitos dos fármacos , Clembuterol/farmacologia , Hipoglicemiantes/farmacologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Animais , Fenômenos Bioquímicos , Clembuterol/metabolismo , Feminino , Glucose/metabolismo , Homeostase , Resistência à Insulina , Masculino , Doenças Metabólicas , Metabolômica , Camundongos , Camundongos Knockout , Receptores Adrenérgicos beta 2/metabolismo , Transdução de Sinais
12.
Respir Res ; 22(1): 323, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34963461

RESUMO

BACKGROUND: Pulmonary fibrosis is thought to be driven by recurrent alveolar epithelial injury which leads to the differentiation of fibroblasts into α-smooth muscle actin (α-SMA)-expressing myofibroblasts and subsequent deposition of extracellular matrix (ECM). Transforming growth factor beta-1 (TGF-ß1) plays a key role in fibroblast differentiation, which we have recently shown involves human antigen R (HuR). HuR is an RNA binding protein that also increases the translation of hypoxia inducible factor (HIF-1α) mRNA, a transcription factor critical for inducing a metabolic shift from oxidative phosphorylation towards glycolysis. This metabolic shift may cause fibroblast differentiation. We hypothesized that under hypoxic conditions, HuR controls myofibroblast differentiation and glycolytic reprogramming in human lung fibroblasts (HLFs). METHODS: Primary HLFs were cultured in the presence (or absence) of TGF-ß1 (5 ng/ml) under hypoxic (1% O2) or normoxic (21% O2) conditions. Evaluation included mRNA and protein expression of glycolytic and myofibroblast/ECM markers by qRT-PCR and western blot. Metabolic profiling was done by proton nuclear magnetic resonance (1H- NMR). Separate experiments were conducted to evaluate the effect of HuR on metabolic reprogramming using siRNA-mediated knock-down. RESULTS: Hypoxia alone had no significant effect on fibroblast differentiation or metabolic reprogramming. While hypoxia- together with TGFß1- increased mRNA levels of differentiation and glycolysis genes, such as ACTA2, LDHA, and HK2, protein levels of α-SMA and collagen 1 were significantly reduced. Hypoxia induced cytoplasmic translocation of HuR. Knockdown of HuR reduced features of fibroblast differentiation in response to TGF-ß1 with and without hypoxia, including α-SMA and the ECM marker collagen I, but had no effect on lactate secretion. CONCLUSIONS: Hypoxia reduced myofibroblasts differentiation and lactate secretion in conjunction with TGF-ß. HuR is an important protein in the regulation of myofibroblast differentiation but does not control glycolysis in HLFs in response to hypoxia. More research is needed to understand the functional implications of HuR in IPF pathogenesis.


Assuntos
Diferenciação Celular/fisiologia , Hipóxia Celular/fisiologia , Reprogramação Celular/fisiologia , Proteína Semelhante a ELAV 1/metabolismo , Pulmão/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Diferenciação Celular/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Células Cultivadas , Reprogramação Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Proteína Semelhante a ELAV 1/genética , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Pulmão/citologia , Pulmão/efeitos dos fármacos
13.
Int J Mol Sci ; 22(21)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34769230

RESUMO

Nandrolone (Ndn) and boldenone (Bdn), the synthetic testosterone analogues with strong anabolic effects, despite being recognized as potentially carcinogenic compounds, are commonly abused by athletes and bodybuilders, which includes women, worldwide. This study tested the hypothesis that different doses of Ndn and Bdn can initiate neoplastic transformation of porcine ovarian putative stem cells (poPSCs). Immunomagnetically isolated poPSCs were expanded ex vivo in the presence of Ndn or Bdn, for 7 and 14 days. Results show that pharmacological doses of both Ndn and Bdn, already after 7 days of poPSCs culture, caused a significant increase of selected, stemness-related markers of cancer cells: CD44 and CD133. Notably, Ndn also negatively affected poPSCs growth not only by suppressing their proliferation and mitochondrial respiration but also by inducing apoptosis. This observation shows, for the first time, that chronic exposure to Ndn or Bdn represents a precondition that might enhance risk of poPSCs neoplastic transformation. These studies carried out to accomplish detailed molecular characterization of the ex vivo expanded poPSCs and their potentially cancerous derivatives (PCDs) might be helpful to determine their suitability as nuclear donor cells (NDCs) for further investigations focused on cloning by somatic cell nuclear transfer (SCNT). Such investigations might also be indispensable to estimate the capabilities of nuclear genomes inherited from poPSCs and their PCDs to be epigenetically reprogrammed (dedifferentiated) in cloned pig embryos generated by SCNT. This might open up new possibilities for biomedical research aimed at more comprehensively recognizing genetic and epigenetic mechanisms underlying not only tumorigenesis but also reversal/retardation of pro-tumorigenic intracellular events.


Assuntos
Transformação Celular Neoplásica , Reprogramação Celular/efeitos dos fármacos , Nandrolona/efeitos adversos , Neoplasias Ovarianas , Ovário , Células-Tronco , Testosterona/análogos & derivados , Animais , Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Feminino , Nandrolona/farmacologia , Neoplasias Ovarianas/induzido quimicamente , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Ovário/metabolismo , Ovário/patologia , Células-Tronco/metabolismo , Células-Tronco/patologia , Suínos , Testosterona/efeitos adversos , Testosterona/farmacologia
14.
J Pharmacol Exp Ther ; 379(3): 290-300, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34593558

RESUMO

Metabolic reprogramming of the myofibroblast plays a fundamental role in the pathogenesis of fibrosing interstitial lung diseases. Here, we characterized the in vitro and in vivo metabolic and antifibrotic effects of IM156, an oxidative phosphorylation (OXPHOS) modulator that acts by inhibiting protein complex 1. In vitro, IM156 inhibited transforming growth factor ß (TGFß)-dependent increases in mitochondrial oxygen consumption rate and expression of myofibroblast markers in human pulmonary fibroblasts without altering cell viability or adding to TGFß-induced increases in the extracellular acidification rate. IM156 significantly increased cellular AMP-activated protein kinase (AMPK) phosphorylation and was 60-fold more potent than metformin. In vivo, chronic oral administration of IM156 was highly distributed to major peripheral organs (i.e., lung, liver, kidney, heart) and had significant dose-related effects on the plasma metabolome consistent with OXPHOS modulation and AMPK activation. IM156 increased glycolysis, lipolysis, ß-oxidation, and amino acids and decreased free fatty acids, tricarboxylic acid cycle activity, and protein synthesis. In the murine bleomycin model of pulmonary fibrosis, daily oral administration of IM156, administered 7 days after lung injury, attenuated body/lung weight changes and reduced lung fibrosis and inflammatory cell infiltration. The plasma exposures of IM156 were comparable to well tolerated doses in human studies. In conclusion, the metabolic and antifibrotic effects of IM156 suggest that OXPHOS modulation can attenuate myofibroblast metabolic reprogramming and support testing IM156 as a therapy for idiopathic pulmonary fibrosis and other fibrotic diseases. SIGNIFICANCE STATEMENT: Fibrosing interstitial lung diseases have a poor prognosis, and current antifibrotic treatments have significant limitations. This study demonstrates that attenuation of fibrogenic metabolic remodeling, by modulation of oxidative phosphorylation with IM156, prevents myofibroblast phenotype/collagen deposition and is a potentially effective and translational antifibrotic strategy.


Assuntos
Antifibróticos/farmacologia , Reprogramação Celular/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Fibrose Pulmonar/metabolismo , Animais , Antifibróticos/química , Antifibróticos/uso terapêutico , Linhagem Celular , Reprogramação Celular/fisiologia , Relação Dose-Resposta a Droga , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Masculino , Metabolômica/métodos , Camundongos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/prevenção & controle
15.
Cells ; 10(7)2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34359884

RESUMO

Hypoxia, low oxygen (O2) level, is a hallmark of solid cancers, especially hepatocellular carcinoma (HCC), one of the most common and fatal cancers worldwide. Hypoxia contributes to drug resistance in cancer through various molecular mechanisms. In this review, we particularly focus on the roles of hypoxia-inducible factor (HIF)-mediated metabolic reprogramming in drug resistance in HCC. Combination therapies targeting hypoxia-induced metabolic enzymes to overcome drug resistance will also be summarized. Acquisition of drug resistance is the major cause of unsatisfactory clinical outcomes of existing HCC treatments. Extra efforts to identify novel mechanisms to combat refractory hypoxic HCC are warranted for the development of more effective treatment regimens for HCC patients.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Reprogramação Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Hipóxia/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Anticorpos Monoclonais Humanizados/uso terapêutico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Reprogramação Celular/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Hipóxia/genética , Hipóxia/metabolismo , Hipóxia/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Nivolumabe/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Sorafenibe/uso terapêutico , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética
16.
Nat Biomed Eng ; 5(8): 880-896, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34426676

RESUMO

Fibroblasts can be directly reprogrammed into cardiomyocytes, endothelial cells or smooth muscle cells. Here we report the reprogramming of mouse tail-tip fibroblasts simultaneously into cells resembling these three cell types using the microRNA mimic miR-208b-3p, ascorbic acid and bone morphogenetic protein 4, as well as the formation of tissue-like structures formed by the directly reprogrammed cells. Implantation of the formed cardiovascular tissue into the infarcted hearts of mice led to the migration of reprogrammed cells to the injured tissue, reducing regional cardiac strain and improving cardiac function. The migrated endothelial cells and smooth muscle cells contributed to vessel formation, and the migrated cardiomyocytes, which initially displayed immature characteristics, became mature over time and formed gap junctions with host cardiomyocytes. Direct reprogramming of somatic cells to make cardiac tissue may aid the development of applications in cell therapy, disease modelling and drug discovery for cardiovascular diseases.


Assuntos
Células Endoteliais/transplante , Coração/fisiologia , Infarto do Miocárdio/terapia , Miócitos de Músculo Liso/transplante , Regeneração , Animais , Ácido Ascórbico/farmacologia , Proteína Morfogenética Óssea 4/farmacologia , Reprogramação Celular/efeitos dos fármacos , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Junções Comunicantes/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Miocárdio/citologia , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Neovascularização Fisiológica , Transcriptoma
17.
Cells ; 10(6)2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204517

RESUMO

The event of cellular reprogramming into pluripotency is influenced by several factors, such as in vitro culture conditions (e.g., culture medium and oxygen concentration). Herein, bovine iPSCs (biPSCs) were generated in different levels of oxygen tension (5% or 20% of oxygen) and supplementation (bFGF or bFGF + LIF + 2i-bFL2i) to evaluate the efficiency of pluripotency induction and maintenance in vitro. Initial reprogramming was observed in all groups and bFL2i supplementation initially resulted in a superior number of colonies. However, bFL2i supplementation in low oxygen led to a loss of self-renewal and pluripotency maintenance. All clonal lines were positive for alkaline phosphatase; they expressed endogenous pluripotency-related genes SOX2, OCT4 and STELLA. However, expression was decreased throughout the passages without the influence of oxygen tension. GLUT1 and GLUT3 were upregulated by low oxygen. The biPSCs were immunofluorescence-positive stained for OCT4 and SOX2 and they formed embryoid bodies which differentiated in ectoderm and mesoderm (all groups), as well as endoderm (one line from bFL2i in high oxygen). Our study is the first to compare high and low oxygen environments during and after induced reprogramming in cattle. In our conditions, a low oxygen environment did not favor the pluripotency maintenance of biPSCs.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Pluripotentes Induzidas , Oxigênio/farmacologia , Animais , Bovinos , Reprogramação Celular/efeitos dos fármacos
18.
Cells ; 10(7)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206684

RESUMO

Direct cardiac reprogramming of fibroblasts into induced cardiomyocytes (iCMs) is a promising approach but remains a challenge in heart regeneration. Efforts have focused on improving the efficiency by understanding fundamental mechanisms. One major challenge is that the plasticity of cultured fibroblast varies batch to batch with unknown mechanisms. Here, we noticed a portion of in vitro cultured fibroblasts have been activated to differentiate into myofibroblasts, marked by the expression of αSMA, even in primary cell cultures. Both forskolin, which increases cAMP levels, and TGFß inhibitor SB431542 can efficiently suppress myofibroblast differentiation of cultured fibroblasts. However, SB431542 improved but forskolin blocked iCM reprogramming of fibroblasts that were infected with retroviruses of Gata4, Mef2c, and Tbx5 (GMT). Moreover, inhibitors of cAMP downstream signaling pathways, PKA or CREB-CBP, significantly improved the efficiency of reprogramming. Consistently, inhibition of p38/MAPK, another upstream regulator of CREB-CBP, also improved reprogramming efficiency. We then investigated if inhibition of these signaling pathways in primary cultured fibroblasts could improve their plasticity for reprogramming and found that preconditioning of cultured fibroblasts with CREB-CBP inhibitor significantly improved the cellular plasticity of fibroblasts to be reprogrammed, yielding ~2-fold more iCMs than untreated control cells. In conclusion, suppression of CREB-CBP signaling improves fibroblast plasticity for direct cardiac reprogramming.


Assuntos
Plasticidade Celular , Reprogramação Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Proteínas de Membrana/metabolismo , Miocárdio/citologia , Fosfoproteínas/metabolismo , Transdução de Sinais , Animais , Benzamidas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Plasticidade Celular/efeitos dos fármacos , Células Cultivadas , Reprogramação Celular/efeitos dos fármacos , Colforsina/farmacologia , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dioxóis/farmacologia , Fibroblastos/efeitos dos fármacos , Camundongos Transgênicos , Miofibroblastos/citologia , Miofibroblastos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo
19.
Front Immunol ; 12: 669992, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34262562

RESUMO

Evidences highlight the role of various CD4+ helper T cells (CD4+ Th) subpopulations in orchestrating the immune responses against cancers. Epigenetics takes an important part in the regulation of CD4+ Th polarization and plasticity. In this review, we described the epigenetic factors that govern CD4+ T cells differentiation and recruitment in the tumor microenvironment and their subsequent involvement in the antitumor immunity. Finally, we discussed how to manipulate tumor reactive CD4+ Th responses by epigenetic drugs to improve anticancer immunotherapy.


Assuntos
Antineoplásicos/uso terapêutico , Reprogramação Celular/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Imunoterapia Adotiva , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Neoplasias/terapia , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos , Linfócitos T Auxiliares-Indutores/transplante , Animais , Antineoplásicos/efeitos adversos , Diferenciação Celular/efeitos dos fármacos , Humanos , Imunoterapia Adotiva/efeitos adversos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Resultado do Tratamento , Microambiente Tumoral
20.
Methods Mol Biol ; 2352: 45-55, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34324179

RESUMO

Astrocytes play important roles in neurodevelopment and diseases. Previous studies described ways to derive astrocytes from somatic cells by going through iPSC or iNSC/iNPC intermediates. Here we describe a method to directly convert mouse fibroblasts into functional astrocytes using small molecules without transgenes or viral transduction. The direct chemical reprogramming method described in this study provides a more rapid way to derive astrocytes from fibroblasts.


Assuntos
Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Técnicas de Reprogramação Celular , Reprogramação Celular/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Animais , Astrócitos/metabolismo , Biomarcadores , Diferenciação Celular/genética , Separação Celular , Células Cultivadas , Reprogramação Celular/genética , Fibroblastos/metabolismo , Expressão Gênica , Humanos , Imuno-Histoquímica , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Fatores de Transcrição/genética , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA