Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29.914
Filtrar
1.
Cogn Sci ; 48(5): e13452, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38742272

RESUMO

Slower perceptual alternations, a notable perceptual effect observed in psychiatric disorders, can be alleviated by antidepressant therapies that affect serotonin levels in the brain. While these phenomena have been well documented, the underlying neurocognitive mechanisms remain to be elucidated. Our study bridges this gap by employing a computational cognitive approach within a Bayesian predictive coding framework to explore these mechanisms in depression. We fitted a prediction error (PE) model to behavioral data from a binocular rivalry task, uncovering that significantly higher initial prior precision and lower PE led to a slower switch rate in patients with depression. Furthermore, serotonin-targeting antidepressant treatments significantly decreased the prior precision and increased PE, both of which were predictive of improvements in the perceptual alternation rate of depression patients. These findings indicated that the substantially slower perception switch rate in patients with depression was caused by the greater reliance on top-down priors and that serotonin treatment's efficacy was in its recalibration of these priors and enhancement of PE. Our study not only elucidates the cognitive underpinnings of depression, but also suggests computational modeling as a potent tool for integrating cognitive science with clinical psychology, advancing our understanding and treatment of cognitive impairments in depression.


Assuntos
Teorema de Bayes , Depressão , Humanos , Masculino , Feminino , Adulto , Percepção Visual , Antidepressivos/uso terapêutico , Serotonina/metabolismo , Pessoa de Meia-Idade
2.
Int J Mol Sci ; 25(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38732220

RESUMO

Serotonin is an essential neuromodulator for mental health and animals' socio-cognitive abilities. However, we previously found that a constitutive depletion of central serotonin did not impair rat cognitive abilities in stand-alone tests. Here, we investigated how a mild and acute decrease in brain serotonin would affect rats' cognitive abilities. Using a novel rat model of inducible serotonin depletion via the genetic knockdown of tryptophan hydroxylase 2 (TPH2), we achieved a 20% decrease in serotonin levels in the hypothalamus after three weeks of non-invasive oral doxycycline administration. Decision making, cognitive flexibility, and social recognition memory were tested in low-serotonin (Tph2-kd) and control rats. Our results showed that the Tph2-kd rats were more prone to choose disadvantageously in the long term (poor decision making) in the Rat Gambling Task and that only the low-serotonin poor decision makers were more sensitive to probabilistic discounting and had poorer social recognition memory than other low-serotonin and control individuals. Flexibility was unaffected by the acute brain serotonin reduction. Poor social recognition memory was the most central characteristic of the behavioral network of low-serotonin poor decision makers, suggesting a key role of social recognition in the expression of their profile. The acute decrease in brain serotonin appeared to specifically amplify the cognitive impairments of the subgroup of individuals also identified as poor decision makers in the population. This study highlights the great opportunity the Tph2-kd rat model offers to study inter-individual susceptibilities to develop cognitive impairment following mild variations of brain serotonin in otherwise healthy individuals. These transgenic and differential approaches together could be critical for the identification of translational markers and vulnerabilities in the development of mental disorders.


Assuntos
Tomada de Decisões , Serotonina , Triptofano Hidroxilase , Animais , Triptofano Hidroxilase/metabolismo , Triptofano Hidroxilase/genética , Serotonina/metabolismo , Ratos , Masculino , Comportamento Social , Técnicas de Silenciamento de Genes , Comportamento Animal , Cognição , Hipotálamo/metabolismo
3.
Mol Pain ; 20: 17448069241254455, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38728068

RESUMO

Pruritis, the sensation of itch, is produced by multiple substances, exogenous and endogenous, that sensitizes specialized sensory neurons (pruriceptors and pruri-nociceptors). Unfortunately, many patients with acute and chronic pruritis obtain only partial relief when treated with currently available treatment modalities. We recently demonstrated that the topical application of high molecular weight hyaluronan (HMWH), when combined with vehicles containing transdermal transport enhancers, produce potent long-lasting reversal of nociceptor sensitization associated with inflammatory and neuropathic pain. In the present experiments we tested the hypothesis that the topical formulation of HMWH with protamine, a transdermal transport enhancer, can also attenuate pruritis. We report that this topical formulation of HMWH markedly attenuates scratching behavior at the nape of the neck induced by serotonin (5-hydroxytryptamine, 5-HT), in male and female rats. Our results support the hypothesis that topical HMWH in a transdermal transport enhancer vehicle is a strong anti-pruritic.


Assuntos
Administração Cutânea , Ácido Hialurônico , Protaminas , Ratos Sprague-Dawley , Animais , Ácido Hialurônico/farmacologia , Ácido Hialurônico/química , Masculino , Feminino , Ratos , Protaminas/farmacologia , Peso Molecular , Serotonina/metabolismo , Administração Tópica
4.
BMC Complement Med Ther ; 24(1): 198, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773460

RESUMO

BACKGROUND: Yokukansan, a traditional Japanese medicine (Kampo), has been widely used to treat neurosis, dementia, and chronic pain. Previous in vitro studies have suggested that Yokukansan acts as a partial agonist of the 5-HT1A receptor, resulting in amelioration of chronic pain through inhibition of nociceptive neuronal activity. However, its effectiveness for treating postoperative pain remains unknown, although its analgesic mechanism of action has been suggested to involve serotonin and glutamatergic neurotransmission. This study aimed to investigate the effect of Yokukansan on postoperative pain in an animal model. METHODS: A mouse model of postoperative pain was created by plantar incision, and Yokukansan was administered orally the day after paw incision. Pain thresholds for mechanical and heat stimuli were examined in a behavioral experiment. In addition, to clarify the involvement of the serotonergic nervous system, we examined the analgesic effects of Yokukansan in mice that were serotonin-depleted by para-chlorophenylalanine (PCPA) treatment and intrathecal administration of NAN-190, 5-HT1A receptor antagonist. RESULTS: Orally administered Yokukansan increased the pain threshold dose-dependent in postoperative pain model mice. Pretreatment of para-chlorophenylalanine dramatically suppressed serotonin immunoreactivity in the spinal dorsal horn without changing the pain threshold after the paw incision. The analgesic effect of Yokukansan tended to be attenuated by para-chlorophenylalanine pretreatment and significantly attenuated by intrathecal administration of 2.5 µg of NAN-190 compared to that in postoperative pain model mice without para-chlorophenylalanine treatment and NAN-190 administration. CONCLUSION: This study demonstrated that oral administration of Yokukansan has acute analgesic effects in postoperative pain model mice. Behavioral experiments using serotonin-depleted mice and mice intrathecally administered with a 5-HT1A receptor antagonist suggested that Yokukansan acts as an agonist at the 5-HT1A receptor, one of the serotonin receptors, to produce analgesia.


Assuntos
Analgésicos , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Dor Pós-Operatória , Animais , Camundongos , Medicamentos de Ervas Chinesas/farmacologia , Masculino , Dor Pós-Operatória/tratamento farmacológico , Analgésicos/farmacologia , Serotonina/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Receptor 5-HT1A de Serotonina/efeitos dos fármacos , Administração Oral , Camundongos Endogâmicos ICR
5.
Sci Rep ; 14(1): 11092, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750089

RESUMO

Sudden infant death syndrome (SIDS) is the leading cause of post-neonatal infant mortality, but the underlying cause(s) are unclear. A subset of SIDS infants has abnormalities in the neurotransmitter, serotonin (5-hydroxytryptamine [5-HT]) and the adaptor molecule, 14-3-3 pathways in regions of the brain involved in gasping, response to hypoxia, and arousal. To evaluate our hypothesis that SIDS is, at least in part, a multi-organ dysregulation of 5-HT, we examined whether blood platelets, which have 5-HT and 14-3-3 signaling pathways similar to brain neurons, are abnormal in SIDS. We also studied platelet surface glycoprotein IX (GPIX), a cell adhesion receptor which is physically linked to 14-3-3. In infants dying of SIDS compared to infants dying of known causes, we found significantly higher intra-platelet 5-HT and 14-3-3 and lower platelet surface GPIX. Serum and plasma 5-HT were also elevated in SIDS compared to controls. The presence in SIDS of both platelet and brainstem 5-HT and 14-3-3 abnormalities suggests a global dysregulation of these pathways and the potential for platelets to be used as a model system to study 5-HT and 14-3-3 interactions in SIDS. Platelet and serum biomarkers may aid in the forensic determination of SIDS and have the potential to be predictive of SIDS risk in living infants.


Assuntos
Proteínas 14-3-3 , Plaquetas , Serotonina , Morte Súbita do Lactente , Humanos , Serotonina/sangue , Serotonina/metabolismo , Morte Súbita do Lactente/etiologia , Morte Súbita do Lactente/sangue , Plaquetas/metabolismo , Proteínas 14-3-3/sangue , Proteínas 14-3-3/metabolismo , Feminino , Masculino , Lactente , Recém-Nascido
6.
Toxicol Appl Pharmacol ; 486: 116950, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38701902

RESUMO

Antidepressant duloxetine has been shown protective effect on indomethacin-induced gastric ulcer, which was escorted by inflammation in the gastric mucosa. Cytokines are the principal mediators of inflammation. Thus, by screening the differential expression of cytokines in the gastric mucosa using cytokine array at 3 h after indomethacin exposure, when the gastric ulcer began to format, we found that indomethacin increased cytokines which promoted inflammation responses, whereas duloxetine decreased pro-inflammatory cytokines increased by indomethacin and increased RANTES expression. RANTES was consistently increased by pretreated with both 5 mg/kg and 20 mg/kg duloxetine at 3 h and 6 h after indomethacin exposure in male rats. Selective blockade of RANTES-CCR5 axis by a functional antagonist Met-RANTES or a CCR5 antagonist maraviroc suppressed the protection of duloxetine. Considering the pharmacologic action of duloxetine on reuptake of monoamine neurotransmitters, we examined the serotonin (5-HT), norepinephrine and dopamine contents in the blood and discovered 20 mg/kg duloxetine increased 5-HT levels in platelet-poor plasma, while treatment with 5-HT promoted expression of RANTES in the gastric mucosa and alleviated the indomethacin-induced gastric injury. Furthermore, duloxetine activated PI3K-AKT-VEGF signaling pathway, which was regulated by RANTES-CCR5, and selective inhibitor of VEGF receptor axitinib blocked the prophylactic effect of duloxetine. Furthermore, duloxetine also protected gastric mucosa from indomethacin in female rats, and RANTES was increased by duloxetine after 6 h after indomethacin exposure too. Together, our results identified the role of cytokines, particularly RANTES, and the underlying mechanisms in gastroprotective effect of duloxetine against indomethacin, which advanced our understanding in inflammatory modulation by monoamine-based antidepressants.


Assuntos
Quimiocina CCL5 , Cloridrato de Duloxetina , Mucosa Gástrica , Indometacina , Proteínas Proto-Oncogênicas c-akt , Ratos Sprague-Dawley , Serotonina , Transdução de Sinais , Úlcera Gástrica , Fator A de Crescimento do Endotélio Vascular , Animais , Cloridrato de Duloxetina/farmacologia , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/patologia , Mucosa Gástrica/metabolismo , Masculino , Indometacina/toxicidade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quimiocina CCL5/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ratos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/prevenção & controle , Úlcera Gástrica/patologia , Úlcera Gástrica/metabolismo , Serotonina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo
7.
Front Endocrinol (Lausanne) ; 15: 1331231, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694940

RESUMO

A subset of neuroendocrine tumors (NETs) can cause an excessive secretion of hormones, neuropeptides, and biogenic amines into the bloodstream. These so-called functional NETs evoke a hormone-related disease and lead to several different syndromes, depending on the factors released. One of the most common functional syndromes, carcinoid syndrome, is characterized mainly by over-secretion of serotonin. However, what distinguishes functional from non-functional tumors on a molecular level remains unknown. Here, we demonstrate that the expression of sortilin, a widely expressed transmembrane receptor involved in intracellular protein sorting, is significantly increased in functional compared to non-functional NETs and thus can be used as a biomarker for functional NETs. Furthermore, using a cell line model of functional NETs, as well as organoids, we demonstrate that inhibition of sortilin reduces cellular serotonin concentrations and may therefore serve as a novel therapeutic target to treat patients with carcinoid syndrome.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular , Tumores Neuroendócrinos , Serotonina , Feminino , Humanos , Masculino , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Síndrome do Carcinoide Maligno/metabolismo , Tumores Neuroendócrinos/metabolismo , Tumores Neuroendócrinos/patologia , Serotonina/metabolismo , Pessoa de Meia-Idade , Animais , Camundongos
8.
Nat Commun ; 15(1): 4152, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755120

RESUMO

Serotonin is a neuromodulator that affects multiple behavioral and cognitive functions. Nonetheless, how serotonin causes such a variety of effects via brain-wide projections and various receptors remains unclear. Here we measured brain-wide responses to optogenetic stimulation of serotonin neurons in the dorsal raphe nucleus (DRN) of the male mouse brain using functional MRI with an 11.7 T scanner and a cryoprobe. Transient activation of DRN serotonin neurons caused brain-wide activation, including the medial prefrontal cortex, the striatum, and the ventral tegmental area. The same stimulation under anesthesia with isoflurane decreased brain-wide activation, including the hippocampal complex. These brain-wide response patterns can be explained by DRN serotonergic projection topography and serotonin receptor expression profiles, with enhanced weights on 5-HT1 receptors. Together, these results provide insight into the DR serotonergic system, which is consistent with recent discoveries of its functions in adaptive behaviors.


Assuntos
Núcleo Dorsal da Rafe , Optogenética , Neurônios Serotoninérgicos , Serotonina , Animais , Núcleo Dorsal da Rafe/metabolismo , Núcleo Dorsal da Rafe/fisiologia , Masculino , Neurônios Serotoninérgicos/metabolismo , Neurônios Serotoninérgicos/fisiologia , Camundongos , Serotonina/metabolismo , Imageamento por Ressonância Magnética , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiologia , Camundongos Endogâmicos C57BL , Encéfalo/metabolismo , Encéfalo/fisiologia , Área Tegmentar Ventral/fisiologia , Área Tegmentar Ventral/metabolismo , Hipocampo/metabolismo , Hipocampo/fisiologia , Receptores de Serotonina/metabolismo , Receptores de Serotonina/genética
9.
Sci Rep ; 14(1): 10190, 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702366

RESUMO

Dysfunction of central serotonergic neurons is known to cause depressive disorders in humans, who often show reproductive and/or glucose metabolism disorders. This study examined whether dorsal raphe (DR) serotonergic neurons sense high glucose availability to upregulate reproductive function via activating hypothalamic arcuate (ARC) kisspeptin neurons (= KNDy neurons), a dominant stimulator of gonadotropin-releasing hormone (GnRH)/gonadotropin pulses, using female rats and goats. RNA-seq and histological analysis revealed that stimulatory serotonin-2C receptor (5HT2CR) was mainly expressed in the KNDy neurons in female rats. The serotonergic reuptake inhibitor administration into the mediobasal hypothalamus (MBH), including the ARC, significantly blocked glucoprivic suppression of luteinizing hormone (LH) pulses and hyperglycemia induced by intravenous 2-deoxy-D-glucose (2DG) administration in female rats. A local infusion of glucose into the DR significantly increased in vivo serotonin release in the MBH and partly restored LH pulses and hyperglycemia in the 2DG-treated female rats. Furthermore, central administration of serotonin or a 5HT2CR agonist immediately evoked GnRH pulse generator activity, and central 5HT2CR antagonism blocked the serotonin-induced facilitation of GnRH pulse generator activity in ovariectomized goats. These results suggest that DR serotonergic neurons sense high glucose availability to reduce gluconeogenesis and upregulate reproductive function by activating GnRH/LH pulse generator activity in mammals.


Assuntos
Glucose , Cabras , Hormônio Liberador de Gonadotropina , Hormônio Luteinizante , Receptor 5-HT2C de Serotonina , Neurônios Serotoninérgicos , Animais , Hormônio Luteinizante/metabolismo , Feminino , Receptor 5-HT2C de Serotonina/metabolismo , Ratos , Neurônios Serotoninérgicos/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Glucose/metabolismo , Serotonina/metabolismo , Kisspeptinas/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Dorsal da Rafe/metabolismo , Núcleo Dorsal da Rafe/efeitos dos fármacos , Ratos Sprague-Dawley
10.
Sci Rep ; 14(1): 10479, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714793

RESUMO

Enterochromaffin (EC) cells located within the intestinal mucosal epithelium release serotonin (5-HT) to regulate motility tones, barrier function and the immune system. Electroanalytical methodologies have been able to monitor steady state basal extracellular 5-HT levels but are unable to provide insight into how these levels are influenced by key regulatory processes such as release and uptake. We established a new measurement approach, amperometry approach curve profiling, which monitors the extracellular 5-HT level at different electrode-tissue (E-T) distances. Analysis of the current profile can provide information on contributions of regulatory components on the observed extracellular 5-HT level. Measurements were conducted from ex vivo murine ileum and colon using a boron-doped diamond (BDD) microelectrode. Amperometry approach curve profiling coupled with classical pharmacology demonstrated that extracellular 5-HT levels were significantly lower in the colon when compared to the ileum. This difference was due to a greater degree of activity of the 5-HT transporter (SERT) and a reduced amount of 5-HT released from colonic EC cells. The presence of an inhibitory 5-HT4 autoreceptor was observed in the colon, where a 40% increase in extracellular 5-HT was the half maximal inhibitory concentration for activation of the autoreceptor. This novel electroanalytical approach allows estimates of release and re-uptake and their contribution to 5-HT extracellular concentration from intestinal tissue be obtained from a single series of measurements.


Assuntos
Colo , Íleo , Mucosa Intestinal , Serotonina , Serotonina/metabolismo , Animais , Camundongos , Íleo/metabolismo , Mucosa Intestinal/metabolismo , Colo/metabolismo , Células Enterocromafins/metabolismo , Microeletrodos , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Masculino , Técnicas Eletroquímicas/métodos , Camundongos Endogâmicos C57BL
11.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731967

RESUMO

Tryptophan metabolites, such as 5-hydroxytryptophan (5-HTP), serotonin, and melatonin, hold significant promise as supplements for managing various mood-related disorders, including depression and insomnia. However, their chemical production via chemical synthesis and phytochemical extraction presents drawbacks, such as the generation of toxic byproducts and low yields. In this study, we explore an alternative approach utilizing S. cerevisiae STG S101 for biosynthesis. Through a series of eleven experiments employing different combinations of tryptophan supplementation, Tween 20, and HEPES buffer, we investigated the production of these indolamines. The tryptophan metabolites were analyzed using liquid chromatography with tandem mass spectrometry (LC-MS/MS). Notably, setups replacing peptone in the YPD media with tryptophan (Run 3) and incorporating tryptophan along with 25 mM HEPES buffer (Run 4) demonstrated successful biosynthesis of 5-HTP and serotonin. The highest 5-HTP and serotonin concentrations were 58.9 ± 16.0 mg L-1 and 0.0650 ± 0.00211 mg L-1, respectively. Melatonin concentrations were undetected in all the setups. These findings underscore the potential of using probiotic yeast strains as a safer and conceivably more cost-effective alternative for indolamine synthesis. The utilization of probiotic strains presents a promising avenue, potentially offering scalability, sustainability, reduced environmental impact, and feasibility for large-scale production.


Assuntos
5-Hidroxitriptofano , Vias Biossintéticas , Saccharomyces cerevisiae , Serotonina , Triptofano , Triptofano/metabolismo , Saccharomyces cerevisiae/metabolismo , Serotonina/metabolismo , Serotonina/biossíntese , 5-Hidroxitriptofano/metabolismo , Melatonina/metabolismo , Melatonina/biossíntese , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos
12.
Cell Commun Signal ; 22(1): 266, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741139

RESUMO

Glioblastoma (GBM) is a type of brain cancer categorized as a high-grade glioma. GBM is characterized by limited treatment options, low patient survival rates, and abnormal serotonin metabolism. Previous studies have investigated the tumor suppressor function of aldolase C (ALDOC), a glycolytic enzyme in GBM. However, it is unclear how ALDOC regulates production of serotonin and its associated receptors, HTRs. In this study, we analyzed ALDOC mRNA levels and methylation status using sequencing data and in silico datasets. Furthermore, we investigated pathways, phenotypes, and drug effects using cell and mouse models. Our results suggest that loss of ALDOC function in GBM promotes tumor cell invasion and migration. We observed that hypermethylation, which results in loss of ALDOC expression, is associated with serotonin hypersecretion and the inhibition of PPAR-γ signaling. Using several omics datasets, we present evidence that ALDOC regulates serotonin levels and safeguards PPAR-γ against serotonin metabolism mediated by 5-HT, which leads to a reduction in PPAR-γ expression. PPAR-γ activation inhibits serotonin release by HTR and diminishes GBM tumor growth in our cellular and animal models. Importantly, research has demonstrated that PPAR-γ agonists prolong animal survival rates and increase the efficacy of temozolomide in an orthotopic brain model of GBM. The relationship and function of the ALDOC-PPAR-γ axis could serve as a potential prognostic indicator. Furthermore, PPAR-γ agonists offer a new treatment alternative for glioblastoma multiforme (GBM).


Assuntos
Glioblastoma , PPAR gama , Temozolomida , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Animais , PPAR gama/metabolismo , Camundongos , Linhagem Celular Tumoral , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Progressão da Doença , Serotonina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Agonistas PPAR-gama
13.
ACS Chem Neurosci ; 15(10): 2006-2017, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38683969

RESUMO

Potently affecting human and animal brain and behavior, hallucinogenic drugs have recently emerged as potentially promising agents in psychopharmacotherapy. Complementing laboratory rodents, the zebrafish (Danio rerio) is a powerful model organism for screening neuroactive drugs, including hallucinogens. Here, we tested four novel N-benzyl-2-phenylethylamine (NBPEA) derivatives with 2,4- and 3,4-dimethoxy substitutions in the phenethylamine moiety and the -F, -Cl, and -OCF3 substitutions in the ortho position of the phenyl ring of the N-benzyl moiety (34H-NBF, 34H-NBCl, 24H-NBOMe(F), and 34H-NBOMe(F)), assessing their behavioral and neurochemical effects following chronic 14 day treatment in adult zebrafish. While the novel tank test behavioral data indicate anxiolytic-like effects of 24H-NBOMe(F) and 34H-NBOMe(F), neurochemical analyses reveal reduced brain norepinephrine by all four drugs, and (except 34H-NBCl) - reduced dopamine and serotonin levels. We also found reduced turnover rates for all three brain monoamines but unaltered levels of their respective metabolites. Collectively, these findings further our understanding of complex central behavioral and neurochemical effects of chronically administered novel NBPEAs and highlight the potential of zebrafish as a model for preclinical screening of small psychoactive molecules.


Assuntos
Comportamento Animal , Fenetilaminas , Peixe-Zebra , Animais , Fenetilaminas/farmacologia , Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Masculino , Alucinógenos/farmacologia , Psicotrópicos/farmacologia , Serotonina/metabolismo , Dopamina/metabolismo
14.
Brain Stimul ; 17(2): 421-430, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38574852

RESUMO

BACKGROUND: Studies in animals and humans have shown that cortical neuroplasticity can be modulated by increasing serotonin levels by administering selective serotonin reuptake inhibitors (SSRI). However, little is known about the mechanistic background, especially the contribution of intracortical inhibition and facilitation, which depend on gamma-aminobutyric acid (GABA) and glutamate. OBJECTIVE: We aimed to explore the relevance of drivers of plasticity (glutamate- and GABA-dependent processes) for the effects of serotonin enhancement on tDCS-induced plasticity in healthy humans. METHODS: A crossover, partially double-blinded, randomized, and sham-controlled study was conducted in 21 healthy right-handed individuals. In each of the 7 sessions, plasticity was induced via transcranial direct current stimulation (tDCS). Anodal, cathodal, and sham tDCS were applied to the left motor cortex under SSRI (20 mg/40 mg citalopram) or placebo. Short-interval cortical inhibition (SICI) and intracortical facilitation (ICF) were monitored by paired-pulse transcranial magnetic stimulation for 5-6 h after intervention. RESULTS: Under placebo, anodal tDCS-induced LTP-like plasticity decreased SICI and increased ICF. In contrast, cathodal tDCS-elicited LTD-like plasticity induced the opposite effect. Under 20 mg and 40 mg citalopram, anodal tDCS did not affect SICI largely, while ICF was enhanced and prolonged. For cathodal tDCS, citalopram converted the increase of SICI and decrease of ICF into antagonistic effects, and this effect was dosage-dependent since it lasted longer under 40 mg when compared to 20 mg. CONCLUSION: We speculate that the main effects of acute serotonergic enhancement on tDCS-induced plasticity, the increase and prolongation of LTP-like plasticity effects, involves mainly the glutamatergic system.


Assuntos
Estudos Cross-Over , Córtex Motor , Plasticidade Neuronal , Inibidores Seletivos de Recaptação de Serotonina , Estimulação Transcraniana por Corrente Contínua , Humanos , Plasticidade Neuronal/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Masculino , Adulto , Método Duplo-Cego , Feminino , Córtex Motor/fisiologia , Córtex Motor/efeitos dos fármacos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/administração & dosagem , Adulto Jovem , Estimulação Magnética Transcraniana , Serotonina/metabolismo , Citalopram/farmacologia , Potencial Evocado Motor/fisiologia , Potencial Evocado Motor/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo , Ácido Glutâmico/metabolismo
15.
BMC Psychiatry ; 24(1): 319, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38658877

RESUMO

BACKGROUND: The underlying neurobiology of the complex autism phenotype remains obscure, although accumulating evidence implicates the serotonin system and especially the 5HT2A receptor. However, previous research has largely relied upon association or correlation studies to link differences in serotonin targets to autism. To directly establish that serotonergic signalling is involved in a candidate brain function our approach is to change it and observe a shift in that function. We will use psilocybin as a pharmacological probe of the serotonin system in vivo. We will directly test the hypothesis that serotonergic targets of psilocybin - principally, but not exclusively, 5HT2A receptor pathways-function differently in autistic and non-autistic adults. METHODS: The 'PSILAUT' "shiftability" study is a case-control study autistic and non-autistic adults. How neural responses 'shift' in response to low doses (2 mg and 5 mg) of psilocybin compared to placebo will be examined using multimodal techniques including functional MRI and EEG. Each participant will attend on up to three separate visits with drug or placebo administration in a double-blind and randomized order. RESULTS: This study will provide the first direct evidence that the serotonin targets of psilocybin function differently in the autistic and non-autistic brain. We will also examine individual differences in serotonin system function. CONCLUSIONS: This work will inform our understanding of the neurobiology of autism as well as decisions about future clinical trials of psilocybin and/or related compounds including stratification approaches. TRIAL REGISTRATION: NCT05651126.


Assuntos
Transtorno Autístico , Encéfalo , Imageamento por Ressonância Magnética , Psilocibina , Adolescente , Adulto , Feminino , Humanos , Masculino , Adulto Jovem , Transtorno Autístico/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Estudos de Casos e Controles , Método Duplo-Cego , Eletroencefalografia , Alucinógenos/farmacologia , Alucinógenos/uso terapêutico , Psilocibina/uso terapêutico , Psilocibina/farmacologia , Receptor 5-HT2A de Serotonina/efeitos dos fármacos , Receptor 5-HT2A de Serotonina/metabolismo , Serotonina/metabolismo , Ensaios Clínicos Controlados Aleatórios como Assunto
16.
Biochem Biophys Res Commun ; 714: 149940, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38677008

RESUMO

Orthostatic hypotension (OH) is a common condition. Many potential etiologies of OH have been identified, but in clinical practice the underlying cause of OH is often unknown. In the present study, we identified a novel and extraordinary etiology of OH. We describe a first case of acquired severe OH with syncope, and the female patient had extremely low levels of catecholamines and serotonin in plasma, urine and cerebrospinal fluid (CSF). Her clinical and biochemical evidence showed a deficiency of the enzyme aromatic l-amino acid decarboxylase (AADC), which converts l-DOPA to dopamine, and 5-hydroxytryptophan to serotonin, respectively. The consequence of pharmacologic stimulation of catecholaminergic nerves and radionuclide examination revealed her catecholaminergic nerves denervation. Moreover, we found that the patient's serum showed presence of autoantibodies against AADC, and that isolated peripheral blood mononuclear cells (PBMCs) from the patient showed cytokine-induced toxicity against AADC. These observations suggest that her autoimmunity against AADC is highly likely to cause toxicity to adrenal medulla and catecholaminergic nerves which contain AADC, resulting in hypocatecholaminemia and severe OH. Administration of vitamin B6, an essential cofactor of AADC, enhanced her residual AADC activity and drastically improved her symptoms. Our data thus provide a new insight into pathogenesis and pathophysiology of OH.


Assuntos
Descarboxilases de Aminoácido-L-Aromático , Autoimunidade , Hipotensão Ortostática , Feminino , Humanos , Pessoa de Meia-Idade , Descarboxilases de Aminoácido-L-Aromático/deficiência , Autoanticorpos/sangue , Autoanticorpos/imunologia , Catecolaminas , Dopamina/metabolismo , Hipotensão Ortostática/etiologia , Hipotensão Ortostática/fisiopatologia , Serotonina/metabolismo
17.
Cell Host Microbe ; 32(5): 661-675.e10, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38657606

RESUMO

The intestine and liver are thought to metabolize dietary nutrients and regulate host nutrient homeostasis. Here, we find that the gut microbiota also reshapes the host amino acid (aa) landscape via efficiently metabolizing intestinal aa. To identify the responsible microbes/genes, we developed a metabolomics-based assay to screen 104 commensals and identified candidates that efficiently utilize aa. Using genetics, we identified multiple responsible metabolic genes in phylogenetically diverse microbes. By colonizing germ-free mice with the wild-type strain and their isogenic mutant deficient in individual aa-metabolizing genes, we found that these genes regulate the availability of gut and circulatory aa. Notably, microbiota genes for branched-chain amino acids (BCAAs) and tryptophan metabolism indirectly affect host glucose homeostasis via peripheral serotonin. Collectively, at single-gene level, this work characterizes a microbiota-encoded metabolic activity that affects host nutrient homeostasis and provides a roadmap to interrogate microbiota-dependent activity to improve human health.


Assuntos
Aminoácidos de Cadeia Ramificada , Aminoácidos , Microbioma Gastrointestinal , Homeostase , Triptofano , Animais , Microbioma Gastrointestinal/fisiologia , Camundongos , Aminoácidos/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Triptofano/metabolismo , Camundongos Endogâmicos C57BL , Nutrientes/metabolismo , Intestinos/microbiologia , Humanos , Metabolômica , Glucose/metabolismo , Serotonina/metabolismo , Vida Livre de Germes , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Masculino
18.
Pharmacol Res ; 203: 107171, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599469

RESUMO

The impact of Alzheimer's disease (AD) and its related dementias is rapidly expanding, and its mitigation remains an urgent social and technical challenge. To date there are no effective treatments or interventions for AD, but recent studies suggest that alcohol consumption is correlated with the risk of developing dementia. In this review, we synthesize data from preclinical, clinical, and epidemiological models to evaluate the combined role of alcohol consumption and serotonergic dysfunction in AD, underscoring the need for further research on this topic. We first discuss the limitations inherent to current data-collection methods, and how neuropsychiatric symptoms common among AD, alcohol use disorder, and serotonergic dysfunction may mask their co-occurrence. We additionally describe how excess alcohol consumption may accelerate the development of AD via direct effects on serotonergic function, and we explore the roles of neuroinflammation and proteostasis in mediating the relationship between serotonin, alcohol consumption, and AD. Lastly, we argue for a shift in current research to disentangle the pathogenic effects of alcohol on early-affected brainstem structures in AD.


Assuntos
Consumo de Bebidas Alcoólicas , Doença de Alzheimer , Serotonina , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/etiologia , Serotonina/metabolismo , Consumo de Bebidas Alcoólicas/efeitos adversos , Animais , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Alcoolismo/metabolismo
19.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38673988

RESUMO

In Parkinson's disease (PD), along with typical motor dysfunction, abnormal breathing is present; the cause of which is not well understood. The study aimed to analyze the effects of stimulation of the serotonergic system with 5-HT1A and 5-HT2A agonists in a model of PD induced by injection of 6-hydroxydopamine (6-OHDA). To model PD, bilateral injection of 6-OHDA into both striata was performed in male Wistar rats. Respiratory disturbances in response to 7% hypercapnia (CO2 in O2) in the plethysmographic chamber before and after stimulation of the serotonergic system and the incidence of apnea were studied in awake rats 5 weeks after 6-OHDA or vehicle injection. Administration of 6-OHDA reduced the concentration of serotonin (5-HT), dopamine (DA) and norepinephrine (NA) in the striatum and the level of 5-HT in the brainstem of treated rats, which have been associated with decreased basal ventilation, impaired respiratory response to 7% CO2 and increased incidence of apnea compared to Sham-operated rats. Intraperitoneal (i.p.) injection of the 5-HT1AR agonist 8-OH-DPAT and 5-HT2AR agonist NBOH-2C-CN increased breathing during normocapnia and hypercapnia in both groups of rats. However, it restored reactivity to hypercapnia in 6-OHDA group to the level present in Sham rats. Another 5-HT2AR agonist TCB-2 was only effective in increasing normocapnic ventilation in 6-OHDA rats. Both the serotonergic agonists 8-OH-DPAT and NBOH-2C-CN had stronger stimulatory effects on respiration in PD rats, compensating for deficits in basal ventilation and hypercapnic respiration. We conclude that serotonergic stimulation may have a positive effect on respiratory impairments that occur in PD.


Assuntos
Hipercapnia , Doença de Parkinson , Receptor 5-HT1A de Serotonina , Receptor 5-HT2A de Serotonina , Animais , Masculino , Ratos , Modelos Animais de Doenças , Dopamina/metabolismo , Hipercapnia/metabolismo , Hipercapnia/fisiopatologia , Norepinefrina/metabolismo , Norepinefrina/farmacologia , Oxidopamina/farmacologia , Doença de Parkinson/metabolismo , Ratos Wistar , Receptor 5-HT1A de Serotonina/metabolismo , Receptor 5-HT2A de Serotonina/metabolismo , Respiração/efeitos dos fármacos , Serotonina/metabolismo , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia
20.
Brain Res ; 1835: 148918, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38588847

RESUMO

The lateral habenula (LHb) projects to the ventral tegmental area (VTA) and dorsal raphe nuclei (DRN) that deliver dopamine (DA) and serotonin (5-HT) to cortical and limbic regions such as the medial prefrontal cortex (mPFC), hippocampus and basolateral amygdala (BLA). Dysfunctions of VTA-related mesocorticolimbic dopaminergic and DRN-related serotonergic systems contribute to non-motor symptoms in Parkinson's disease (PD). However, how the LHb affects the VTA and DRN in PD remains unclear. Here, we used electrophysiological and neurochemical approaches to explore the effects of LHb lesions on the firing activity of VTA and DRN neurons, as well as the levels of DA and 5-HT in related brain regions in unilateral 6-hydroxydopamie (6-OHDA)-induced PD rats. We found that compared to sham lesions, lesions of the LHb increased the firing rate of DA neurons in the VTA and 5-HT neurons in the DRN, but decreased the firing rate of GABAergic neurons in the same nucleus. In addition, lesions of the LHb increased the levels of DA and 5-HT in the mPFC, ventral hippocampus and BLA compared to sham lesions. These findings suggest that lesions of the LHb enhance the activity of mesocorticolimbic dopaminergic and serotonergic systems in PD.


Assuntos
Dopamina , Neurônios Dopaminérgicos , Núcleo Dorsal da Rafe , Habenula , Ratos Sprague-Dawley , Neurônios Serotoninérgicos , Serotonina , Área Tegmentar Ventral , Animais , Área Tegmentar Ventral/metabolismo , Habenula/metabolismo , Masculino , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Núcleo Dorsal da Rafe/metabolismo , Neurônios Serotoninérgicos/metabolismo , Neurônios Serotoninérgicos/fisiologia , Ratos , Serotonina/metabolismo , Dopamina/metabolismo , Oxidopamina/toxicidade , Transtornos Parkinsonianos/fisiopatologia , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/patologia , Córtex Pré-Frontal/metabolismo , Vias Neurais/metabolismo , Vias Neurais/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA