Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.058
Filtrar
1.
Cell Death Dis ; 15(4): 304, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38693139

RESUMO

Abnormal intraneuronal accumulation of soluble and insoluble α-synuclein (α-Syn) is one of the main pathological hallmarks of synucleinopathies, such as Parkinson's disease (PD). It has been well documented that the reversible liquid-liquid phase separation of α-Syn can modulate synaptic vesicle condensates at the presynaptic terminals. However, α-Syn can also form liquid-like droplets that may convert into amyloid-enriched hydrogels or fibrillar polymorphs under stressful conditions. To advance our understanding on the mechanisms underlying α-Syn phase transition, we employed a series of unbiased proteomic analyses and found that actin and actin regulators are part of the α-Syn interactome. We focused on Neural Wiskott-Aldrich syndrome protein (N-WASP) because of its association with a rare early-onset familial form of PD. In cultured cells, we demonstrate that N-WASP undergoes phase separation and can be recruited to synapsin 1 liquid-like droplets, whereas it is excluded from α-Syn/synapsin 1 condensates. Consistently, we provide evidence that wsp-1/WASL loss of function alters the number and dynamics of α-Syn inclusions in the nematode Caenorhabditis elegans. Together, our findings indicate that N-WASP expression may create permissive conditions that promote α-Syn condensates and their potentially deleterious conversion into toxic species.


Assuntos
Caenorhabditis elegans , Proteína Neuronal da Síndrome de Wiskott-Aldrich , alfa-Sinucleína , alfa-Sinucleína/metabolismo , Animais , Humanos , Caenorhabditis elegans/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Actinas/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Sinapsinas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo
2.
Elife ; 122024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713200

RESUMO

The cytosolic proteins synucleins and synapsins are thought to play cooperative roles in regulating synaptic vesicle (SV) recycling, but mechanistic insight is lacking. Here, we identify the synapsin E-domain as an essential functional binding-partner of α-synuclein (α-syn). Synapsin E-domain allows α-syn functionality, binds to α-syn, and is necessary and sufficient for enabling effects of α-syn at synapses of cultured mouse hippocampal neurons. Together with previous studies implicating the E-domain in clustering SVs, our experiments advocate a cooperative role for these two proteins in maintaining physiologic SV clusters.


Assuntos
Hipocampo , Neurônios , Ligação Proteica , Sinapsinas , alfa-Sinucleína , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/química , Animais , Sinapsinas/metabolismo , Sinapsinas/genética , Camundongos , Neurônios/metabolismo , Hipocampo/metabolismo , Vesículas Sinápticas/metabolismo , Domínios Proteicos , Células Cultivadas , Humanos , Sinapses/metabolismo
3.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732109

RESUMO

Adipose-derived mesenchymal stem cells (ASCs) are adult multipotent stem cells, able to differentiate toward neural elements other than cells of mesodermal lineage. The aim of this research was to test ASC neural differentiation using melatonin combined with conditioned media (CM) from glial cells. Isolated from the lipoaspirate of healthy donors, ASCs were expanded in a basal growth medium before undergoing neural differentiation procedures. For this purpose, CM obtained from olfactory ensheathing cells and from Schwann cells were used. In some samples, 1 µM of melatonin was added. After 1 and 7 days of culture, cells were studied using immunocytochemistry and flow cytometry to evaluate neural marker expression (Nestin, MAP2, Synapsin I, GFAP) under different conditions. The results confirmed that a successful neural differentiation was achieved by glial CM, whereas the addition of melatonin alone did not induce appreciable changes. When melatonin was combined with CM, ASC neural differentiation was enhanced, as demonstrated by a further improvement of neuronal marker expression, whereas glial differentiation was attenuated. A dynamic modulation was also observed, testing the expression of melatonin receptors. In conclusion, our data suggest that melatonin's neurogenic differentiation ability can be usefully exploited to obtain neuronal-like differentiated ASCs for potential therapeutic strategies.


Assuntos
Diferenciação Celular , Melatonina , Células-Tronco Mesenquimais , Melatonina/farmacologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Humanos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Tecido Adiposo/citologia , Neurônios/citologia , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Células de Schwann/citologia , Células de Schwann/metabolismo , Células de Schwann/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Adulto , Nestina/metabolismo , Nestina/genética , Proteína Glial Fibrilar Ácida/metabolismo , Neuroglia/efeitos dos fármacos , Neuroglia/citologia , Neuroglia/metabolismo , Sinapsinas/metabolismo
4.
Neurobiol Dis ; 195: 106502, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38608784

RESUMO

Synaptic changes are early manifestations of neuronal dysfunction in Huntington's disease (HD). However, the mechanisms by which mutant HTT protein impacts synaptogenesis and function are not well understood. Herein we explored HD pathogenesis in the BACHD mouse model by examining synaptogenesis and function in long term primary cortical cultures. At DIV14 (days in vitro), BACHD cortical neurons showed no difference from WT neurons in synaptogenesis as revealed by colocalization of a pre-synaptic (Synapsin I) and a post-synaptic (PSD95) marker. From DIV21 to DIV35, BACHD neurons showed progressively reduced colocalization of Synapsin I and PSD95 relative to WT neurons. The deficits were effectively rescued by treatment of BACHD neurons with BDNF. The recombinant apical domain of CCT1 (ApiCCT1) yielded a partial rescuing effect. BACHD neurons also showed culture age-related significant functional deficits as revealed by multielectrode arrays (MEAs). These deficits were prevented by BDNF, whereas ApiCCT1 showed a less potent effect. These findings are evidence that deficits in BACHD synapse and function can be replicated in vitro and that BDNF or a TRiC-inspired reagent can potentially be protective against these changes in BACHD neurons. Our findings support the use of cellular models to further explicate HD pathogenesis and potential treatments.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Córtex Cerebral , Modelos Animais de Doenças , Doença de Huntington , Neurônios , Sinapses , Animais , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Sinapses/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/patologia , Córtex Cerebral/metabolismo , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/patologia , Camundongos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/patologia , Camundongos Transgênicos , Células Cultivadas , Sinapsinas/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Camundongos Endogâmicos C57BL
5.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38673871

RESUMO

Mild traumatic brain injury (mTBI) affects millions of people in the U.S. Approximately 20-30% of those individuals develop adverse symptoms lasting at least 3 months. In a rat mTBI study, the closed-head impact model of engineered rotational acceleration (CHIMERA) produced significant axonal injury in the optic tract (OT), indicating white-matter damage. Because retinal ganglion cells project to the lateral geniculate nucleus (LGN) in the thalamus through the OT, we hypothesized that synaptic density may be reduced in the LGN of rats following CHIMERA injury. A modified SEQUIN (synaptic evaluation and quantification by imaging nanostructure) method, combined with immunofluorescent double-labeling of pre-synaptic (synapsin) and post-synaptic (PSD-95) markers, was used to quantify synaptic density in the LGN. Microglial activation at the CHIMERA injury site was determined using Iba-1 immunohistochemistry. Additionally, the effects of ketamine, a potential neuroprotective drug, were evaluated in CHIMERA-induced mTBI. A single-session repetitive (ssr-) CHIMERA (3 impacts, 1.5 joule/impact) produced mild effects on microglial activation at the injury site, which was significantly enhanced by post-injury intravenous ketamine (10 mg/kg) infusion. However, ssr-CHIMERA did not alter synaptic density in the LGN, although ketamine produced a trend of reduction in synaptic density at post-injury day 4. Further research is necessary to characterize the effects of ssr-CHIMERA and subanesthetic doses of intravenous ketamine on different brain regions and multiple time points post-injury. The current study demonstrates the utility of the ssr-CHIMERA as a rodent model of mTBI, which researchers can use to identify biological mechanisms of mTBI and to develop improved treatment strategies for individuals suffering from head trauma.


Assuntos
Ketamina , Microglia , Ratos Sprague-Dawley , Sinapses , Animais , Ketamina/administração & dosagem , Ketamina/farmacologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Ratos , Masculino , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/patologia , Traumatismos Cranianos Fechados/patologia , Axônios/efeitos dos fármacos , Axônios/metabolismo , Axônios/patologia , Modelos Animais de Doenças , Corpos Geniculados/patologia , Corpos Geniculados/efeitos dos fármacos , Concussão Encefálica/patologia , Concussão Encefálica/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Sinapsinas/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/administração & dosagem
6.
J Neurosci ; 44(17)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38471782

RESUMO

Cytoplasmic protein tyrosine phosphatase nonreceptor type 11 (PTPN11) and Drosophila homolog Corkscrew (Csw) regulate the mitogen-activated protein kinase (MAPK) pathway via a conserved autoinhibitory mechanism. Disease-causing loss-of-function (LoF) and gain-of-function (GoF) mutations both disrupt this autoinhibition to potentiate MAPK signaling. At the Drosophila neuromuscular junction glutamatergic synapse, LoF/GoF mutations elevate transmission strength and reduce activity-dependent synaptic depression. In both sexes of LoF/GoF mutations, the synaptic vesicles (SV)-colocalized synapsin phosphoprotein tether is highly elevated at rest, but quickly reduced with stimulation, suggesting a larger SV reserve pool with greatly heightened activity-dependent recruitment. Transmission electron microscopy of mutants reveals an elevated number of SVs clustered at the presynaptic active zones, suggesting that the increased vesicle availability is causative for the elevated neurotransmission. Direct neuron-targeted extracellular signal-regulated kinase (ERK) GoF phenocopies both increased local presynaptic MAPK/ERK signaling and synaptic transmission strength in mutants, confirming the presynaptic regulatory mechanism. Synapsin loss blocks this elevation in both presynaptic PTPN11 and ERK mutants. However, csw null mutants cannot be rescued by wild-type Csw in neurons: neurotransmission is only rescued by expressing Csw in both neurons and glia simultaneously. Nevertheless, targeted LoF/GoF mutations in either neurons or glia alone recapitulate the elevated neurotransmission. Thus, PTPN11/Csw mutations in either cell type are sufficient to upregulate presynaptic function, but a dual requirement in neurons and glia is necessary for neurotransmission. Taken together, we conclude that PTPN11/Csw acts in both neurons and glia, with LoF and GoF similarly upregulating MAPK/ERK signaling to enhance presynaptic Synapsin-mediated SV trafficking.


Assuntos
Proteínas de Drosophila , Sistema de Sinalização das MAP Quinases , Neuroglia , Neurônios , Terminações Pré-Sinápticas , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Sinapsinas , Transmissão Sináptica , Vesículas Sinápticas , Animais , Feminino , Masculino , Animais Geneticamente Modificados , Drosophila , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Mutação , Neuroglia/metabolismo , Neuroglia/fisiologia , Junção Neuromuscular/metabolismo , Junção Neuromuscular/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/fisiologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Sinapsinas/metabolismo , Sinapsinas/genética , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo
7.
Cell ; 187(9): 2175-2193.e21, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38552623

RESUMO

In addition to long-distance molecular motor-mediated transport, cellular vesicles also need to be moved at short distances with defined directions to meet functional needs in subcellular compartments but with unknown mechanisms. Such short-distance vesicle transport does not involve molecular motors. Here, we demonstrate, using synaptic vesicle (SV) transport as a paradigm, that phase separation of synaptic proteins with vesicles can facilitate regulated, directional vesicle transport between different presynaptic bouton sub-compartments. Specifically, a large coiled-coil scaffold protein Piccolo, in response to Ca2+ and via its C2A domain-mediated Ca2+ sensing, can extract SVs from the synapsin-clustered reserve pool condensate and deposit the extracted SVs onto the surface of the active zone protein condensate. We further show that the Trk-fused gene, TFG, also participates in COPII vesicle trafficking from ER to the ER-Golgi intermediate compartment via phase separation. Thus, phase separation may play a general role in short-distance, directional vesicle transport in cells.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório , Retículo Endoplasmático , Vesículas Sinápticas , Animais , Vesículas Sinápticas/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Retículo Endoplasmático/metabolismo , Cálcio/metabolismo , Complexo de Golgi/metabolismo , Ratos , Transporte Biológico , Terminações Pré-Sinápticas/metabolismo , Sinapsinas/metabolismo , Condensados Biomoleculares/metabolismo , Proteínas do Citoesqueleto/metabolismo , Separação de Fases
8.
J Clin Invest ; 134(4)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38175724

RESUMO

The mechanisms behind a lack of efficient fear extinction in some individuals are unclear. Here, by employing a principal components analysis-based approach, we differentiated the mice into extinction-resistant and susceptible groups. We determined that elevated synapsin 2a (Syn2a) in the infralimbic cortex (IL) to basolateral amygdala (BLA) circuit disrupted presynaptic orchestration, leading to an excitatory/inhibitory imbalance in the BLA region and causing extinction resistance. Overexpression or silencing of Syn2a levels in IL neurons replicated or alleviated behavioral, electrophysiological, and biochemical phenotypes in resistant mice. We further identified that the proline-rich domain H in the C-terminus of Syn2a was indispensable for the interaction with synaptogyrin-3 (Syngr3) and demonstrated that disrupting this interaction restored extinction impairments. Molecular docking revealed that ritonavir, an FDA-approved HIV drug, could disrupt Syn2a-Syngr3 binding and rescue fear extinction behavior in Syn2a-elevated mice. In summary, the aberrant elevation of Syn2a expression and its interaction with Syngr3 at the presynaptic site were crucial in fear extinction resistance, suggesting a potential therapeutic avenue for related disorders.


Assuntos
Medo , Córtex Pré-Frontal , Animais , Camundongos , Extinção Psicológica/fisiologia , Medo/fisiologia , Simulação de Acoplamento Molecular , Córtex Pré-Frontal/metabolismo , Sinapsinas/genética , Sinapsinas/metabolismo , Sinaptogirinas/metabolismo
9.
Brain Res ; 1823: 148671, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-37952872

RESUMO

The commonly used general anesthetic propofol can enhance the γ-aminobutyric acid-mediated inhibitory synaptic transmission and depress the glutamatergic excitatory synaptic transmission to achieve general anesthesia and other outcomes. In addition to the actions at postsynaptic sites, the modulation of presynaptic activity by propofol is thought to contribute to neurophysiological effects of the anesthetic, although potential targets of propofol within presynaptic nerve terminals are incompletely studied at present. In this study, we explored the possible linkage of propofol to synapsins, a family of neuron-specific phosphoproteins which are the most abundant proteins on presynaptic vesicles, in the adult mouse brain in vivo. We found that an intraperitoneal injection of propofol at a dose that caused loss of righting reflex increased basal levels of synapsin phosphorylation at the major representative phosphorylation sites (serine 9, serine 62/67, and serine 603) in the prefrontal cortex (PFC) of male and female mice. Propofol also elevated synapsin phosphorylation at these sites in the striatum and S9 and S62/67 phosphorylation in the hippocampus, while propofol had no effect on tyrosine hydroxylase phosphorylation in striatal nerve terminals. Total synapsin protein expression in the PFC, hippocampus, and striatum was not altered by propofol. These results reveal that synapsin could be a novel substrate of propofol in the presynaptic neurotransmitter release machinery. Propofol possesses the ability to upregulate synapsin phosphorylation in broad mouse brain regions.


Assuntos
Propofol , Sinapsinas , Feminino , Camundongos , Masculino , Animais , Sinapsinas/metabolismo , Propofol/farmacologia , Fosforilação , Terminações Pré-Sinápticas/metabolismo , Encéfalo/metabolismo , Serina/metabolismo
10.
Brain Res ; 1822: 148609, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37783259

RESUMO

BACKGROUND: It is unclear whether acupuncture has a rapid antidepressant effect and what is the main mechanism. METHODS: In this study, forced swimming stress test (FST) in mice were divided into five groups: control group, acupuncture group, scopolamine group, arecoline group, and acupuncture + arecoline group. Chronic unpredictable mild stress (CUMS) model rats were divided into six groups: naïve (non-CUMS) group, CUMS group, acupuncture group, scopolamine group, arecoline group, and acupuncture + arecoline group. Twenty-four hours after the end of treatment, FST was conducted in mice and rats. The expression of M1-AchR, AMPA receptors (GluR1 and GluR2), BDNF, mTOR, p-mTOR, synapsin I, and PSD95 in the prefrontal cortex was determined by western blot. The spine density of neurons in the prefrontal cortex was detected by golgi staining. RESULTS: The results showed that acupuncture reduced the immobility time of FST in two depression models. Acupuncture inhibited the expression of M1-AchR and promoted the expression of GluR1, GluR2, BDNF, p-mTOR, synapsin I, PSD95, and increased the density of neuron dendritic spine in the prefrontal cortex. CONCLUSIONS: The rapid antidepressant effect of acupuncture may be activating the "glutamate tide" - AMPA receptor activation - BDNF release - mTORC1 pathway activation through inhibiting the expression of M1-AchR in the prefrontal cortex, thereby increasing the expression of synaptic proteins and regulating synaptic plasticity.


Assuntos
Terapia por Acupuntura , Depressão , Ratos , Camundongos , Animais , Depressão/terapia , Depressão/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Sinapsinas/metabolismo , Arecolina/metabolismo , Arecolina/farmacologia , Antidepressivos/farmacologia , Antidepressivos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Modelos Animais de Doenças , Escopolamina/farmacologia , Córtex Pré-Frontal/metabolismo , Plasticidade Neuronal , Hipocampo/metabolismo , Estresse Psicológico/terapia , Estresse Psicológico/metabolismo
11.
Exp Mol Med ; 55(11): 2357-2375, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37907739

RESUMO

Dopamine neurons are essential for voluntary movement, reward learning, and motivation, and their dysfunction is closely linked to various psychological and neurodegenerative diseases. Hence, understanding the detailed signaling mechanisms that functionally modulate dopamine neurons is crucial for the development of better therapeutic strategies against dopamine-related disorders. Phospholipase Cγ1 (PLCγ1) is a key enzyme in intracellular signaling that regulates diverse neuronal functions in the brain. It was proposed that PLCγ1 is implicated in the development of dopaminergic neurons, while the physiological function of PLCγ1 remains to be determined. In this study, we investigated the physiological role of PLCγ1, one of the key effector enzymes in intracellular signaling, in regulating dopaminergic function in vivo. We found that cell type-specific deletion of PLCγ1 does not adversely affect the development and cellular morphology of midbrain dopamine neurons but does facilitate dopamine release from dopaminergic axon terminals in the striatum. The enhancement of dopamine release was accompanied by increased colocalization of vesicular monoamine transporter 2 (VMAT2) at dopaminergic axon terminals. Notably, dopamine neuron-specific knockout of PLCγ1 also led to heightened expression and colocalization of synapsin III, which controls the trafficking of synaptic vesicles. Furthermore, the knockdown of VMAT2 and synapsin III in dopamine neurons resulted in a significant attenuation of dopamine release, while this attenuation was less severe in PLCγ1 cKO mice. Our findings suggest that PLCγ1 in dopamine neurons could critically modulate dopamine release at axon terminals by directly or indirectly interacting with synaptic machinery, including VMAT2 and synapsin III.


Assuntos
Dopamina , Proteínas Vesiculares de Transporte de Monoamina , Animais , Camundongos , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Terminações Pré-Sinápticas/metabolismo , Sinapsinas/genética , Sinapsinas/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/genética , Proteínas Vesiculares de Transporte de Monoamina/metabolismo
12.
Neuroscience ; 535: 88-98, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37925051

RESUMO

The benefits of aerobic exercises for memory are known, but studies of strength training on memory consolidation are still scarce. Exercise stimulates the release of metabolites and myokines that reaching the brain stimulate the activation of NMDA-receptors and associated pathways related to cognition and synaptic plasticity. The aim of the present study was to investigate whether the acute strength exercise could promote the consolidation of a weak memory. We also investigated whether the effects of strength exercise on memory consolidation and on the BDNF and synapsin I levels depends on the activation of NMDA-receptors. Male Wistar rats were submitted to strength exercise session after a weak training in contextual fear conditioning paradigm to investigate the induction of memory consolidation. To investigate the participation of NMDA-receptors animals were submitted to contextual fear training and strength exercise and infused with MK801 or saline immediately after exercise. To investigate the participation of NMDA-receptors in BDNF and synapsin I levels the animals were submitted to acute strength exercise and infused with MK801 or saline immediately after exercise (in absence of behavior experiment). Results showed that exercise induced the consolidation of a weak memory and this effect was dependent on the activation of NMDA-receptors. The hippocampal overexpression of BDNF and Synapsin I through exercise where NMDA-receptors dependent. Our findings showed that strength exercise strengthened fear memory consolidation and modulates the overexpression of BDNF and synapsin I through the activation of NMDA-receptors dependent signaling pathways.


Assuntos
Consolidação da Memória , N-Metilaspartato , Ratos , Animais , Masculino , N-Metilaspartato/metabolismo , Consolidação da Memória/fisiologia , Ratos Wistar , Maleato de Dizocilpina/farmacologia , Sinapsinas/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hipocampo/metabolismo , Medo/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo
13.
Brain Res Bull ; 204: 110798, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37890595

RESUMO

BACKGROUND: Chronic cerebral hypoperfusion (CCH) is a frequently observed underlying pathology of both Alzheimer's disease (AD) and vascular dementia (VD), which is a common consequence of cerebral blood flow (CBF) dysregulation. Synaptic damage has been proven as a crucial causative factor for CCH-related cognitive impairment. This study aimed to investigate the neuroprotective impact of environmental enrichment (EE) intervention on CCH-induced synaptic destruction and the consequent cognitive impairment. Furthermore, the underlying mechanism of this neuroprotective effect was explored to provide new insights into therapeutic interventions for individuals suffering from AD or VD. METHODS: In this experiment, all rats were initially acclimatized to a standard environment (SE) for a period of one week. On the seventh day, rats underwent either bilateral common carotid artery occlusion (2VO) surgery or sham surgery (Sham) before being subjected to a four-week procedure of exposure to an EE, except for the control group. During the EE or SE procedure, intraperitoneal injection of chloroquine (CQ) into rats was performed once daily for four weeks. Following this, cognitive function was assessed using the Morris water maze (MWM) test. The synapse ultrastructure was subsequently observed using transmission electron microscopy. Expression levels of autophagy-related proteins (LC3, LAMP1, and P62) and synapse-related proteins (Synapsin I and PSD-95) were detected through Western blotting. Finally, immunofluorescence was used to examine the expression levels of Synapsin I and PSD-95 and the colocalization of LAMP-1 and LC3 in the hippocampus. RESULTS: After undergoing 2VO, rats exposed to SE exhibited cognitive impairment, autophagic dysfunction, and synapse damage. The synapse damage was evidenced by ultrastructural damage and degradation of synapse-related proteins. However, these effects were significantly mitigated by exposure to an EE intervention. Moreover, the intervention led to an improvement in autophagic dysfunction. CONCLUSION: The study found that EE had a positive impact on CCH-induced synaptic damage. Specifically, EE was found to increase synaptic plasticity-associated proteins and postsynaptic density thickness, while decreasing synaptic space. This multifaceted effect resulted in an amelioration of CCH-induced cognitive impairment. It was shown that this beneficial outcome was mediated via the activation of the autophagy-lysosomal pathway. Overall, the findings suggest that EE may have a therapeutic potential for cognitive impairments associated with CCH through autophagy-mediated synaptic improvement.


Assuntos
Doença de Alzheimer , Isquemia Encefálica , Disfunção Cognitiva , Demência Vascular , Ratos , Animais , Sinapsinas/metabolismo , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/terapia , Disfunção Cognitiva/metabolismo , Isquemia Encefálica/patologia , Transdução de Sinais/fisiologia , Autofagia/fisiologia , Demência Vascular/metabolismo , Doença de Alzheimer/metabolismo , Hipocampo/metabolismo , Aprendizagem em Labirinto/fisiologia
14.
Nat Commun ; 14(1): 6730, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872159

RESUMO

Neuronal transmission relies on the regulated secretion of neurotransmitters, which are packed in synaptic vesicles (SVs). Hundreds of SVs accumulate at synaptic boutons. Despite being held together, SVs are highly mobile, so that they can be recruited to the plasma membrane for their rapid release during neuronal activity. However, how such confinement of SVs corroborates with their motility remains unclear. To bridge this gap, we employ ultrafast single-molecule tracking (SMT) in the reconstituted system of native SVs and in living neurons. SVs and synapsin 1, the most highly abundant synaptic protein, form condensates with liquid-like properties. In these condensates, synapsin 1 movement is slowed in both at short (i.e., 60-nm) and long (i.e., several hundred-nm) ranges, suggesting that the SV-synapsin 1 interaction raises the overall packing of the condensate. Furthermore, two-color SMT and super-resolution imaging in living axons demonstrate that synapsin 1 drives the accumulation of SVs in boutons. Even the short intrinsically-disordered fragment of synapsin 1 was sufficient to restore the native SV motility pattern in synapsin triple knock-out animals. Thus, synapsin 1 condensation is sufficient to guarantee reliable confinement and motility of SVs, allowing for the formation of mesoscale domains of SVs at synapses in vivo.


Assuntos
Sinapsinas , Vesículas Sinápticas , Animais , Vesículas Sinápticas/metabolismo , Sinapsinas/genética , Sinapsinas/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Animais Geneticamente Modificados
15.
Nat Neurosci ; 26(10): 1685-1700, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37723322

RESUMO

Neural systems encode information in the frequency of action potentials, which is then decoded by synaptic transmission. However, the rapid, synchronous release of neurotransmitters depletes synaptic vesicles (SVs), limiting release at high firing rates. How then do synapses convey information about frequency? Here, we show in mouse hippocampal neurons and slices that the adaptor protein AP-3 makes a subset of SVs that respond specifically to high-frequency stimulation. Neurotransmitter transporters slot onto these SVs in different proportions, contributing to the distinct properties of release observed at different excitatory synapses. Proteomics reveals that AP-3 targets the phospholipid flippase ATP8A1 to SVs; loss of ATP8A1 recapitulates the defect in SV mobilization at high frequency observed with loss of AP-3. The mechanism involves recruitment of synapsin by the cytoplasmically oriented phosphatidylserine translocated by ATP8A1. Thus, ATP8A1 enables the subset of SVs made by AP-3 to release at high frequency.


Assuntos
Complexo 3 de Proteínas Adaptadoras , Adenosina Trifosfatases , Fosfolipídeos , Transmissão Sináptica , Vesículas Sinápticas , Animais , Camundongos , Fosfolipídeos/metabolismo , Sinapses/metabolismo , Sinapsinas/metabolismo , Vesículas Sinápticas/metabolismo , Complexo 3 de Proteínas Adaptadoras/metabolismo , Adenosina Trifosfatases/metabolismo
16.
Int J Dev Neurosci ; 83(8): 703-714, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37655366

RESUMO

Epileptogenesis can be associated with altered genetic control of the GABAergic system. Here we analyzed Krushinsky-Molodkina (KM) rats genetically prone to audiogenic epilepsy. KM rats express fully formed audiogenic seizures (AGSs) not early, then they reach 3 months. At the age of 1-2 months, KM rats either do not express AGS or demonstrate an incomplete pattern of seizure. Such long-term development of AGS susceptibility makes KM rats an especially convenient model to investigate the mechanisms and dynamics of the development of inherited epilepsy. The analysis of the GABAergic system of the hippocampus of KM rats was done during postnatal development at the 15th, 60th, and 120th postnatal days. Wistar rats of corresponding ages were used as a control. In the hippocampus of KM pups, we observed a decrease in the expression of glutamic acid decarboxylase 67 (GAD67) and parvalbumin (PV), which points to a decrease in the activity of GABAergic neurons. Analysis of the 2-month-old KM rats showed an increase in GAD67 and PV expression while synapsin I and vesicular GABA transporter (VGAT) were decreased. In adult KM rats, the expression of GAD67, PV, and synapsin I was upregulated. Altogether, the obtained data indicate significant alterations in GABAergic transmission in the hippocampus of audiogenic KM rats during the first postnatal months.


Assuntos
Epilepsia Reflexa , Ratos , Animais , Epilepsia Reflexa/genética , Epilepsia Reflexa/metabolismo , Ratos Wistar , Sinapsinas/metabolismo , Convulsões , Hipocampo/metabolismo , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Estimulação Acústica
17.
Eur J Pharmacol ; 950: 175772, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37146708

RESUMO

Mangiferin is a glucosyl xanthone that has been shown to be a neuroprotective agent against brain disorders involving excess glutamate. However, the effect of mangiferin on the function of the glutamatergic system has not been investigated. In this study, we used synaptosomes from the rat cerebral cortex to investigate the effect of mangiferin on glutamate release and identify the possible underlying mechanism. We observed that mangiferin produced a concentration-dependent reduction in the release of glutamate elicited by 4-aminopyridine with an IC50 value of 25 µM. Inhibition of glutamate release was blocked by removing extracellular calcium and by treatment with the vacuolar-type H+-ATPase inhibitor bafilomycin A1, which prevents the uptake and storage of glutamate in vesicles. Moreover, we showed that mangiferin decreased the 4-aminopyridine-elicited FM1-43 release and synaptotagmin 1 luminal domain antibody (syt1-L ab) uptake from synaptosomes, which correlated with decreased synaptic vesicle exocytosis. Transmission electron microscopy in synaptosomes also showed that mangiferin attenuated the 4-aminopyridine-elicited decrease in the number of synaptic vesicles. In addition, antagonism of Ca2+/calmodulin-dependent kinase II (CaMKII) and protein kinase A (PKA) counteracted mangiferin's effect on glutamate release. Mangiferin also decreased the phosphorylation of CaMKII, PKA, and synapsin I elicited by 4-aminopyridine treatment. Our data suggest that mangiferin reduces PKA and CaMKII activation and synapsin I phosphorylation, which could decrease synaptic vesicle availability and lead to a subsequent reduction in vesicular glutamate release from synaptosomes.


Assuntos
Ácido Glutâmico , Xantonas , Ratos , Animais , Ácido Glutâmico/metabolismo , Ratos Sprague-Dawley , Sinapsinas/metabolismo , Fosforilação , Sinaptossomos/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Córtex Cerebral , 4-Aminopiridina/farmacologia , Xantonas/farmacologia , Cálcio/metabolismo
18.
Neurochem Int ; 167: 105537, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37164158

RESUMO

The purpose of this study was to evaluate the effect of cynarin, a caffeoylquinic acid derivative in artichoke, on glutamate release elicited by 4-aminopyridine (4-AP) in rat cortical nerve terminals (synaptosomes). We observed that cynarin decreased 4-aminopyridine-elicited glutamate release, which was prevented by the removal of external free Ca2+ with ethylene glycol bis (ß-aminoethyl ether)-N,N,N,N-tetraacetic acid (EGTA) or the blockade of P/Q-type calcium channels with ω-agatoxin IVA. Molecular docking also revealed that cynarin formed a hydrogen bond with the P/Q-type Ca2+ channel, indicating a mechanism of action involving Ca2+ influx inhibition. Additionally, the inhibitory effect of cynarin on glutamate release is associated with a change in the available synaptic vesicles, as cynarin decreased 4-AP-elicited FM1-43 release or hypertonic sucrose-evoked glutamate release from synaptosomes. Furthermore, the suppression of protein kinase A (PKA) prevented the effect of cynarin on 4-AP-elicited glutamate release. 4-AP-elicited PKA and synapsin I or synaptosomal-associated protein of 25 kDa (SNAP-25) phosphorylation at PKA-specific residues were also attenuated by cynarin. Our data indicate that cynarin, through the suppression of P/Q-type Ca2+ channels, inhibits PKA activation and attenuates synapsin I and SNAP-25 phosphorylation at PKA-specific residues, thus decreasing synaptic vesicle availability and contributing to glutamate release inhibition in cerebral cortex terminals.


Assuntos
Cynara scolymus , Ácido Glutâmico , Ratos , Animais , Ácido Glutâmico/metabolismo , Ratos Sprague-Dawley , Cynara scolymus/metabolismo , Sinaptossomos/metabolismo , Sinapsinas/metabolismo , Sinapsinas/farmacologia , Simulação de Acoplamento Molecular , Potenciais da Membrana , 4-Aminopiridina/farmacologia , Canais de Cálcio Tipo P/metabolismo , Córtex Cerebral/metabolismo , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Terminações Pré-Sinápticas/metabolismo
19.
Int J Mol Sci ; 24(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37240370

RESUMO

Amyotrophic lateral sclerosis (ALS) is manifested as skeletal muscle denervation, loss of motor neurons and finally severe respiratory failure. Mutations of RNA-binding protein FUS are one of the common genetic reasons of ALS accompanied by a 'dying back' type of degeneration. Using fluorescent approaches and microelectrode recordings, the early structural and functional alterations in diaphragm neuromuscular junctions (NMJs) were studied in mutant FUS mice at the pre-onset stage. Lipid peroxidation and decreased staining with a lipid raft marker were found in the mutant mice. Despite the preservation of the end-plate structure, immunolabeling revealed an increase in levels of presynaptic proteins, SNAP-25 and synapsin 1. The latter can restrain Ca2+-dependent synaptic vesicle mobilization. Indeed, neurotransmitter release upon intense nerve stimulation and its recovery after tetanus and compensatory synaptic vesicle endocytosis were markedly depressed in FUS mice. There was a trend to attenuation of axonal [Ca2+]in increase upon nerve stimulation at 20 Hz. However, no changes in neurotransmitter release and the intraterminal Ca2+ transient in response to low frequency stimulation or in quantal content and the synchrony of neurotransmitter release at low levels of external Ca2+ were detected. At a later stage, shrinking and fragmentation of end plates together with a decrease in presynaptic protein expression and disturbance of the neurotransmitter release timing occurred. Overall, suppression of synaptic vesicle exo-endocytosis upon intense activity probably due to alterations in membrane properties, synapsin 1 levels and Ca2+ kinetics could be an early sign of nascent NMJ pathology, which leads to neuromuscular contact disorganization.


Assuntos
Esclerose Lateral Amiotrófica , Animais , Camundongos , Esclerose Lateral Amiotrófica/genética , Proteína FUS de Ligação a RNA/genética , Sinapsinas/genética , Sinapsinas/metabolismo , Junção Neuromuscular/metabolismo , Neurotransmissores/metabolismo
20.
J Neurochem ; 165(6): 772-790, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37026513

RESUMO

Chitinase-3-like protein 1 (CHI3L1) is a secreted glycoprotein characterized by its ability to regulate multiple biological processes, such as the inflammatory response and gene transcriptional signaling activation. Abnormal CHI3L1 expression has been associated with multiple neurological disorders and serves as a biomarker for the early detection of several neurodegenerative diseases. Aberrant CHI3L1 expression is also reportedly associated with brain tumor migration and metastasis, as well as contributions to immune escape, playing important roles in brain tumor progression. CHI3L1 is synthesized and secreted mainly by reactive astrocytes in the central nervous system. Thus, targeting astrocytic CHI3L1 could be a promising approach for the treatment of neurological diseases, such as traumatic brain injury, ischemic stroke, Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, and glioma. Based on current knowledge of CHI3L1, we assume that it acts as a molecule mediating several signaling pathways driving the initiation and progression of neurological disorders. This narrative review is the first to introduce the potential roles of astrocytic CHI3L1 in neurological disorders. We also equally explore astrocytic CHI3L1 mRNA expression under physiological and pathological conditions. Inhibiting CHI3L1 and disrupting its interaction with its receptors through multiple mechanisms of action are briefly discussed. These endeavors highlight the pivotal roles of astrocytic CHI3L1 in neurological disorders and could contribute to the development of effective inhibitors based on the strategy of structure-based drug discovery, which could be an attractive therapeutic approach for neurological disease treatment.


Assuntos
Neoplasias Encefálicas , Quitinases , Doenças Neurodegenerativas , Humanos , Proteína 1 Semelhante à Quitinase-3/metabolismo , Astrócitos/metabolismo , Quitinases/metabolismo , Doenças Neurodegenerativas/metabolismo , Sinapsinas/metabolismo , Neoplasias Encefálicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA