Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
PLoS One ; 16(12): e0261283, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34898653

RESUMO

The present study aims to analyze the effectiveness of ovitraps in the capture of Hg leucocelaenus eggs and evaluate the influence of the dry and rainy seasons on their abundance and hatching rates. The eggs were collected in the Atlantic Forest of State of Rio de Janeiro, Brazil, an area in which the yellow fever virus is known to circulate. We distributed 15 ovitraps in three sampling points, with five ovitraps per point. We distributed 15 ovitraps in three sampling points on trees within a forested area, which were sequentially numbered, monitored, and replaced every two weeks from October 2016 to April 2018. There was a high dominance of Hg. leucocelaenus eggs (98.4%) and a variation in egg hatching rates between the wet and dry seasons. These rates were 1.5 times higher in the rainy season than in the dry season. The rainy season also showed a greater abundance of eggs and higher values of ovitrap positivity and egg density indexes in the installed ovitraps. The abundances of Hg. leucocelaenus eggs were positively correlated with mean monthly temperature and air humidity but not significantly correlated with accumulated precipitation. These results, as well as their implications for the possible use of ovitraps to monitor vector mosquitoes of yellow fever in the study region, are discussed.


Assuntos
Culicidae/metabolismo , Oviposição/fisiologia , Animais , Brasil , Culicidae/fisiologia , Culicidae/virologia , Secas , Florestas , Insetos Vetores , Mosquitos Vetores , Densidade Demográfica , Chuva , Estações do Ano , Temperatura , Árvores , Febre Amarela/epidemiologia , Febre Amarela/transmissão , Vírus da Febre Amarela/patogenicidade
2.
Viruses ; 13(10)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34696408

RESUMO

The 2021 re-emergence of yellow fever in non-human primates in the state of Rio Grande do Sul (RS), southernmost Brazil, resulted in the death of many howler monkeys (genus Alouatta) and led the state to declare a Public Health Emergency of State Importance, despite no human cases reported. In this study, near-complete genomes of yellow fever virus (YFV) recovered from the outbreak were sequenced and examined aiming at a better understanding of the phylogenetic relationships and the spatio-temporal dynamics of the virus distribution. Our results suggest that the most likely sequence of events involved the reintroduction of YFV from the state of São Paulo to RS through the states of Paraná and Santa Catarina, by the end of 2020. These findings reinforce the role of genomic surveillance in determining the pathways of distribution of the virus and in providing references for the implementation of preventive measures for populations in high risk areas.


Assuntos
Febre Amarela/epidemiologia , Febre Amarela/genética , Vírus da Febre Amarela/genética , Alouatta/virologia , Animais , Brasil/epidemiologia , Surtos de Doenças , Monitoramento Epidemiológico/veterinária , Genômica , Filogenia , Primatas/virologia , Sequenciamento Completo do Genoma/métodos , Febre Amarela/transmissão , Vírus da Febre Amarela/patogenicidade , Zoonoses/virologia
3.
Pathog Dis ; 79(4)2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33739369

RESUMO

The 2019 and 2020 sporadic outbreaks of yellow fever (YF) in Sub-Saharan African countries had raised a lot of global health concerns. This article aims to narratively review the vector biology, YF vaccination program, environmental factors and climatic changes, and to understand how they could facilitate the reemergence of YF. This study comprehensively reviewed articles that focused on the interplay and complexity of YF virus (YFV) vector diversity/competence, YF vaccine immunodynamics and climatic change impacts on YFV transmission as they influence the 2019/2020 sporadic outbreaks in Sub-Saharan Africa (SSA). Based on available reports, vectorial migration, climatic changes and YF immunization level could be reasons for the re-mergence of YF at the community and national levels. Essentially, the drivers of YFV infection due to spillover are moderately constant. However, changes in land use and landscape have been shown to influence sylvan-to-urban spillover. Furthermore, increased precipitation and warmer temperatures due to climate change are likely to broaden the range of mosquitoes' habitat. The 2019/2020 YF outbreaks in SSA is basically a result of inadequate vaccination campaigns, YF surveillance and vector control. Consequently, and most importantly, adequate immunization coverage must be implemented and properly achieved under the responsibility of the public health stakeholders.


Assuntos
Surtos de Doenças , Vacina contra Febre Amarela/administração & dosagem , Febre Amarela/epidemiologia , Febre Amarela/prevenção & controle , Vírus da Febre Amarela/patogenicidade , Aedes/virologia , África Subsaariana/epidemiologia , Animais , Mudança Climática , Saúde Global/tendências , Humanos , Incidência , Mosquitos Vetores/virologia , Chuva , Vacinação/métodos , Febre Amarela/transmissão , Febre Amarela/virologia , Vírus da Febre Amarela/fisiologia
4.
Front Immunol ; 11: 577751, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33133096

RESUMO

Introduction: Although effective live attenuated yellow fever (YF) vaccines have been available for over 9 decades sporadic outbreaks continue to occur in endemic regions. These may be linked to several factors including epidemiological factors such as vector and intermediate host distribution or vaccine coverage and efficacy. The World Health Organization's research priorities include gathering systematic evidence around the potential need for booster vaccination with YF vaccine whether this follows full or fractional doses in children. Knowledge on the longevity of response to YF vaccine and the implications of this response needs to be consolidated to guide future vaccination policy. Methods: We measured anti-YF IgG by microneutralization assay in a group of 481 African infants who had received YF vaccine as part of routine EPI programmes, to explore serological protection from YF 5-6 years post YF vaccination, as well as the effect of co variates. Findings: Notably, 22.2% of the cohort had undetectable antibody concentrations, with another 7.5% revealing concentrations below the threshold of seropositivity of 0.5 IU/mL. Sex, season, country and time since vaccination did not affect the longevity of antibody concentration or having antibody concentrations above a defined threshold. Conclusion: Roughly 30% of children in this cohort did not demonstrate anti-yellow fever antibody concentrations above the defined threshold of protection, with 20% having no demonstrable antibody. Knowledge on the longevity of response to YF vaccine and the implications needs to be consolidated to guide future vaccination policy.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Programas de Imunização , Imunogenicidade da Vacina , Imunoglobulina G/sangue , Vacina contra Febre Amarela/uso terapêutico , Febre Amarela/prevenção & controle , Vírus da Febre Amarela/imunologia , Biomarcadores/sangue , Criança , Pré-Escolar , Feminino , Gâmbia , Interações Hospedeiro-Patógeno , Humanos , Esquemas de Imunização , Lactente , Masculino , Mali , Testes Sorológicos , Fatores de Tempo , Resultado do Tratamento , Febre Amarela/sangue , Febre Amarela/imunologia , Febre Amarela/virologia , Vírus da Febre Amarela/patogenicidade
5.
Front Immunol ; 11: 575074, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193365

RESUMO

Combined cellular and humoral host immune response determine the clinical course of a viral infection and effectiveness of vaccination, but currently the cellular immune response cannot be measured on simple blood samples. As functional activity of immune cells is determined by coordinated activity of signaling pathways, we developed mRNA-based JAK-STAT signaling pathway activity assays to quantitatively measure the cellular immune response on Affymetrix expression microarray data of various types of blood samples from virally infected patients (influenza, RSV, dengue, yellow fever, rotavirus) or vaccinated individuals, and to determine vaccine immunogenicity. JAK-STAT1/2 pathway activity was increased in blood samples of patients with viral, but not bacterial, infection and was higher in influenza compared to RSV-infected patients, reflecting known differences in immunogenicity. High JAK-STAT3 pathway activity was associated with more severe RSV infection. In contrast to inactivated influenza virus vaccine, live yellow fever vaccine did induce JAK-STAT1/2 pathway activity in blood samples, indicating superior immunogenicity. Normal (healthy) JAK-STAT1/2 pathway activity was established, enabling assay interpretation without the need for a reference sample. The JAK-STAT pathway assays enable measurement of cellular immune response for prognosis, therapy stratification, vaccine development, and clinical testing.


Assuntos
Vírus da Dengue/imunologia , Imunidade Celular , Orthomyxoviridae/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Rotavirus/imunologia , Vacinas Virais/uso terapêutico , Viroses/imunologia , Vírus da Febre Amarela/imunologia , Biomarcadores/sangue , Dengue/sangue , Dengue/imunologia , Dengue/prevenção & controle , Dengue/virologia , Vacinas contra Dengue/uso terapêutico , Vírus da Dengue/patogenicidade , Diagnóstico Diferencial , Interações Hospedeiro-Patógeno , Humanos , Imunogenicidade da Vacina , Vacinas contra Influenza/uso terapêutico , Influenza Humana/sangue , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Análise de Sequência com Séries de Oligonucleotídeos , Orthomyxoviridae/patogenicidade , Valor Preditivo dos Testes , RNA Mensageiro/sangue , RNA Mensageiro/genética , Infecções por Vírus Respiratório Sincicial/sangue , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/patogenicidade , Rotavirus/patogenicidade , Infecções por Rotavirus/sangue , Infecções por Rotavirus/imunologia , Infecções por Rotavirus/prevenção & controle , Infecções por Rotavirus/virologia , Vacinas contra Rotavirus , Transdução de Sinais/genética , Viroses/sangue , Viroses/prevenção & controle , Viroses/virologia , Febre Amarela/sangue , Febre Amarela/imunologia , Febre Amarela/prevenção & controle , Febre Amarela/virologia , Vacina contra Febre Amarela/uso terapêutico , Vírus da Febre Amarela/patogenicidade
6.
PLoS Negl Trop Dis ; 14(10): e0008658, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33017419

RESUMO

BACKGROUND: From the end of 2016 until the beginning of 2019, Brazil faced a massive sylvatic yellow fever (YF) outbreak. The 2016-2019 YF epidemics affected densely populated areas, especially the Southeast region, causing thousands of deaths of humans and non-human primates (NHP). METHODOLOGY/PRINCIPAL FINDINGS: We conducted a molecular investigation of yellow fever virus (YFV) RNA in 781 NHP carcasses collected in the urban, urban-rural interface, and rural areas of Minas Gerais state, from January 2017 to December 2018. Samples were analyzed according to the period of sampling, NHP genera, sampling areas, and sampling areas/NHP genera to compare the proportions of YFV-positive carcasses and the estimated YFV genomic loads. YFV infection was confirmed in 38.1% of NHP carcasses (including specimens of the genera Alouatta, Callicebus, Callithrix, and Sapajus), from the urban, urban-rural interface, and rural areas. YFV RNA detection was positively associated with epidemic periods (especially from December to March) and the rural environment. Higher median viral genomic loads (one million times) were estimated in carcasses collected in rural areas compared to urban ones. CONCLUSIONS/SIGNIFICANCE: The results showed the wide occurrence of YF in Minas Gerais in epidemic and non-epidemic periods. According to the sylvatic pattern of YF, a gradient of viral dissemination from rural towards urban areas was observed. A high YF positivity was observed for NHP carcasses collected in urban areas with a widespread occurrence in 67 municipalities of Minas Gerais, including large urban centers. Although there was no documented case of urban/Aedes YFV transmission to humans in Brazil during the 2016-2019 outbreaks, YFV-infected NHP in urban areas with high infestation by Aedes aegypti poses risks for YFV urban/Aedes transmission and urbanization.


Assuntos
Febre Amarela/epidemiologia , Febre Amarela/prevenção & controle , Febre Amarela/transmissão , Zoonoses/virologia , Aedes/virologia , Alouatta/virologia , Animais , Brasil/epidemiologia , Callicebus/virologia , Callithrix/virologia , Reservatórios de Doenças/virologia , Epidemias , Genoma Viral , Humanos , Mosquitos Vetores/virologia , Primatas/virologia , Sapajus/virologia , Vírus da Febre Amarela/isolamento & purificação , Vírus da Febre Amarela/patogenicidade , Zoonoses/epidemiologia , Zoonoses/transmissão
7.
Proc Natl Acad Sci U S A ; 117(18): 9865-9875, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32321830

RESUMO

Recent epidemics demonstrate the global threat of Zika virus (ZIKV), a flavivirus transmitted by mosquitoes. Although infection is usually asymptomatic or mild, newborns of infected mothers can display severe symptoms, including neurodevelopmental abnormalities and microcephaly. Given the large-scale spread, symptom severity, and lack of treatment or prophylaxis, a safe and effective ZIKV vaccine is urgently needed. However, vaccine design is complicated by concern that elicited antibodies (Abs) may cross-react with other flaviviruses that share a similar envelope protein, such as dengue virus, West Nile virus, and yellow fever virus. This cross-reactivity may worsen symptoms of a subsequent infection through Ab-dependent enhancement. To better understand the neutralizing Ab response and risk of Ab-dependent enhancement, further information on germline Ab binding to ZIKV and the maturation process that gives rise to potently neutralizing Abs is needed. Here we use binding and structural studies to compare mature and inferred-germline Ab binding to envelope protein domain III of ZIKV and other flaviviruses. We show that affinity maturation of the light-chain variable domain is important for strong binding of the recurrent VH3-23/VK1-5 neutralizing Abs to ZIKV envelope protein domain III, and identify interacting residues that contribute to weak, cross-reactive binding to West Nile virus. These findings provide insight into the affinity maturation process and potential cross-reactivity of VH3-23/VK1-5 neutralizing Abs, informing precautions for protein-based vaccines designed to elicit germline versions of neutralizing Abs.


Assuntos
Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Antivirais/imunologia , Proteínas do Envelope Viral/imunologia , Infecção por Zika virus/imunologia , Zika virus/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Vírus da Dengue/imunologia , Vírus da Dengue/patogenicidade , Epitopos/imunologia , Células Germinativas/imunologia , Humanos , Recém-Nascido , Domínios Proteicos/imunologia , Vacinas Virais/imunologia , Vírus do Nilo Ocidental/imunologia , Vírus do Nilo Ocidental/patogenicidade , Vírus da Febre Amarela/imunologia , Vírus da Febre Amarela/patogenicidade , Zika virus/isolamento & purificação , Infecção por Zika virus/diagnóstico , Infecção por Zika virus/virologia
8.
Am J Trop Med Hyg ; 103(1): 38-40, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32228776

RESUMO

In the most recent Brazilian yellow fever (YF) outbreak, a group of clinicians and researchers initiated in mid-January 2018 a considerable effort to develop a multicenter randomized controlled clinical trial to evaluate the effect of sofosbuvir on YF viremia and clinical outcomes (Brazilian Clinical Trials Registry: RBR-93dp9n). The approval of this protocol had urgency given the seasonal/short-lived pattern of YF transmission, large number of human cases, and epidemic transmission at the outskirts of a large urban center. However, many intricacies in the research regulatory and ethical submission systems in Brazil were indomitable even under such pressing conditions. By April 2018, we had enrolled 29 patients for a target sample size of 90 participants. Had enrollment been initiated 3 weeks earlier, an additional 31 patients could have been enrolled, reaching the prespecified sample size for the interim analysis. This recent experience highlights the urgent need to improve local preparedness for research in the setting of explosive outbreaks, as has been seen in the last few years in different countries.


Assuntos
Pesquisa Biomédica/legislação & jurisprudência , Doenças Transmissíveis Emergentes/epidemiologia , Surtos de Doenças , Ensaios Clínicos Controlados Aleatórios como Assunto/legislação & jurisprudência , Viremia/epidemiologia , Febre Amarela/epidemiologia , Vírus da Febre Amarela/patogenicidade , Aedes/virologia , Animais , Antivirais/uso terapêutico , Pesquisa Biomédica/ética , Brasil/epidemiologia , Doenças Transmissíveis Emergentes/tratamento farmacológico , Doenças Transmissíveis Emergentes/virologia , Regulamentação Governamental , Hospitalização/estatística & dados numéricos , Humanos , Mosquitos Vetores/virologia , Seleção de Pacientes/ética , Ensaios Clínicos Controlados Aleatórios como Assunto/ética , Sofosbuvir/uso terapêutico , Viremia/tratamento farmacológico , Febre Amarela/tratamento farmacológico , Febre Amarela/virologia , Vírus da Febre Amarela/efeitos dos fármacos , Vírus da Febre Amarela/fisiologia
9.
Sci Adv ; 6(5): eaaw7449, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-32064329

RESUMO

Disease epidemics and outbreaks often generate conspiracy theories and misperceptions that mislead people about the risks they face and how best to protect themselves. We investigate the effectiveness of interventions aimed at combating false and unsupported information about the Zika epidemic and subsequent yellow fever outbreak in Brazil. Results from a nationally representative survey show that conspiracy theories and other misperceptions about Zika are widely believed. Moreover, results from three preregistered survey experiments suggest that efforts to counter misperceptions about diseases during epidemics and outbreaks may not always be effective. We find that corrective information not only fails to reduce targeted Zika misperceptions but also reduces the accuracy of other beliefs about the disease. In addition, although corrective information about the better-known threat from yellow fever was more effective, none of these corrections affected support for vector control policies or intentions to engage in preventive behavior.


Assuntos
Surtos de Doenças/prevenção & controle , Epidemias , Febre Amarela/epidemiologia , Infecção por Zika virus/epidemiologia , Animais , Brasil/epidemiologia , Humanos , Mosquitos Vetores/virologia , Febre Amarela/virologia , Vírus da Febre Amarela/patogenicidade , Zika virus/patogenicidade , Infecção por Zika virus/virologia
10.
Virol J ; 17(1): 9, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31973727

RESUMO

Yellow fever (YF) is an acute viral disease, affecting humans and non-human primates (NHP), caused by the yellow fever virus (YFV). Despite the existence of a safe vaccine, YF continues to cause morbidity and mortality in thousands of people in Africa and South America. Since 2016, massive YF outbreaks have taken place in Brazil, reaching YF-free zones, causing thousands of deaths of humans and NHP. Here we reviewed the main epidemiological aspects, new clinical findings in humans, and issues regarding YFV infection in vectors and NHP in Brazil. The 2016-2019 YF epidemics have been considered the most significant outbreaks of the last 70 years in the country, and the number of human cases was 2.8 times higher than total cases in the previous 36 years. A new YFV lineage was associated with the recent outbreaks, with persistent circulation in Southeast Brazil until 2019. Due to the high number of infected patients, it was possible to evaluate severity and death predictors and new clinical features of YF. Haemagogus janthinomys and Haemagogus leucocelaenus were considered the primary vectors during the outbreaks, and no human case suggested the occurrence of the urban transmission cycle. YFV was detected in a variety of NHP specimens presenting viscerotropic disease, similar to that described experimentally. Further studies regarding NHP sensitivity to YFV, YF pathogenesis, and the duration of the immune response in NHP could contribute to YF surveillance, control, and future strategies for NHP conservation.


Assuntos
Febre Amarela , Vírus da Febre Amarela , Aedes/virologia , Animais , Brasil/epidemiologia , Culicidae/virologia , Surtos de Doenças , Reservatórios de Doenças/virologia , Epidemias , Humanos , Mosquitos Vetores/virologia , Primatas/virologia , Viroses/epidemiologia , Febre Amarela/epidemiologia , Febre Amarela/prevenção & controle , Febre Amarela/transmissão , Vírus da Febre Amarela/imunologia , Vírus da Febre Amarela/isolamento & purificação , Vírus da Febre Amarela/patogenicidade , Zoonoses/epidemiologia , Zoonoses/transmissão , Zoonoses/virologia
11.
Vopr Virusol ; 65(4): 212-217, 2020 Sep 17.
Artigo em Russo | MEDLINE | ID: mdl-33533224

RESUMO

INTRODUCTION: The only currently available live vaccine against yellow fever (YF) based on chicken embryos infected with an attenuated 17D strain of the YF virus is one of the most effective vaccine preparations. However, the live vaccine is associated with "viscerotropic syndrome" (approximately 0.4 cases per 100 000 vaccinated). Therefore, the development and introduction of highly purified inactivated vaccine against YF is intended to ensure the maximum safety of vaccination against one of the most common human viral diseases.Goals and objectives. Development and evaluation of immunogenicity of the cultural inactivated vaccine against YF at the laboratory model level. MATERIAL AND METHODS: Adaptation of 17D strain of YF virus to Vero cell culture, cultivation, removal of cellular DNA, inactivation with ß-propiolactone, concentration, chromatographic purification, determination of protein and antigen of YF virus, assessment of immunogenicity in mice in parallel with commercial live vaccine. RESULTS AND DISCUSSION: Immunogenicity: the determination of specific antibodies of class G (IgG) and virus neutralizing antibodies in the sera of immunized mice showed high level of antibodies exceeding that of immunized with commercial live vaccine. The optimal dose of antigen in the vaccine (total protein) was 50 µg/ml (5 µg/0.1 ml -dose and volume per 1 vaccination of mice). Thus, the laboratory version of cultural inactivated vaccine against YF is as effective (and even superior) as the commercial live vaccine. CONCLUSION: Laboratory version of cultural inactivated vaccine against YF, which is not inferior in immunogenicity (in animal model) to commercial live vaccine, has been developed.


Assuntos
Vacinas Atenuadas/farmacologia , Vacina contra Febre Amarela/farmacologia , Febre Amarela/tratamento farmacológico , Vírus da Febre Amarela/efeitos dos fármacos , Animais , Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Antivirais/isolamento & purificação , Antígenos Virais/isolamento & purificação , Chlorocebus aethiops , Feminino , Humanos , Camundongos , Vacinas Atenuadas/imunologia , Células Vero , Febre Amarela/genética , Febre Amarela/virologia , Vírus da Febre Amarela/genética , Vírus da Febre Amarela/patogenicidade
12.
Biomolecules ; 9(11)2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31698857

RESUMO

Zika virus (ZIKV) was first discovered in 1947 in Africa. Since then, sporadic ZIKV infections of humans have been reported in Africa and Asia. For a long time, this virus was mostly unnoticed due to its mild symptoms and low fatality rates. However, during the 2015-2016 epidemic in Central and South America, when millions of people were infected, it was discovered that ZIKV causes microcephaly in the babies of mothers infected during pregnancy. An examination of the M and C proteins of the ZIKV shell using the disorder predictor PONDR VLXT revealed that the M protein contains relatively high disorder levels comparable only to those of the yellow fever virus (YFV). On the other hand, the disorder levels in the C protein are relatively low, which can account for the low case fatality rate (CFR) of this virus in contrast to the more virulent YFV, which is characterized by high disorder in its C protein. A larger variation was found in the percentage of intrinsic disorder (PID) in the C protein of various ZIKV strains. Strains of African lineage are characterized by higher PIDs. Using both in vivo and in vitro experiments, laboratories have also previously shown that strains of African origin have a greater potential to inflict higher fetal morbidity than do strains of Asian lineage, with dengue-2 virus (DENV-2) having the least potential. Strong correlations were found between the potential to inflict fetal morbidity and shell disorder in ZIKV (r2 = 0.9) and DENV-2 (DENV-2 + ZIKV, r2 = 0.8). A strong correlation between CFR and PID was also observed when ZIKV was included in an analysis of sets of shell proteins from a variety of flaviviruses (r2 = 0.8). These observations have potential implications for antiviral vaccine development and for the design of cancer therapeutics in terms of developing therapeutic viruses that penetrate hard-to-reach organs.


Assuntos
Microcefalia/epidemiologia , Complicações Infecciosas na Gravidez/epidemiologia , Infecção por Zika virus/epidemiologia , Zika virus/genética , Dengue/epidemiologia , Dengue/genética , Dengue/virologia , Vírus da Dengue/genética , Vírus da Dengue/patogenicidade , Epidemias , Feminino , Humanos , Microcefalia/genética , Microcefalia/patologia , Microcefalia/virologia , Mortalidade , Gravidez , Complicações Infecciosas na Gravidez/genética , Complicações Infecciosas na Gravidez/patologia , Complicações Infecciosas na Gravidez/virologia , Proteínas Virais/genética , Virulência/genética , Febre Amarela/epidemiologia , Febre Amarela/genética , Febre Amarela/virologia , Vírus da Febre Amarela/genética , Vírus da Febre Amarela/patogenicidade , Zika virus/patogenicidade , Infecção por Zika virus/genética , Infecção por Zika virus/virologia
13.
Viruses ; 11(10)2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31627415

RESUMO

Yellow fever virus (YFV) represents a re-emerging zoonotic pathogen, transmitted by mosquito vectors to humans from primate reservoirs. Sporadic outbreaks of YFV occur in endemic tropical regions, causing a viral hemorrhagic fever (VHF) associated with high mortality rates. Despite a highly effective vaccine, no antiviral treatments currently exist. Therefore, YFV represents a neglected tropical disease and is chronically understudied, with many aspects of YFV biology incompletely defined including host range, host-virus interactions and correlates of host immunity and pathogenicity. In this article, we review the current state of YFV research, focusing on the viral lifecycle, host responses to infection, species tropism and the success and associated limitations of the YFV-17D vaccine. In addition, we highlight the current lack of available treatments and use publicly available sequence and structural data to assess global patterns of YFV sequence diversity and identify potential drug targets. Finally, we discuss how technological advances, including real-time epidemiological monitoring of outbreaks using next-generation sequencing and CRISPR/Cas9 modification of vector species, could be utilized in future battles against this re-emerging pathogen which continues to cause devastating disease.


Assuntos
Interações Hospedeiro-Patógeno , Mosquitos Vetores/virologia , Primatas/virologia , Febre Amarela/prevenção & controle , Vírus da Febre Amarela/patogenicidade , Animais , Sistemas CRISPR-Cas , Surtos de Doenças/prevenção & controle , Humanos , Mosquitos Vetores/genética , Doenças Negligenciadas/prevenção & controle , Doenças Negligenciadas/virologia , Tropismo Viral , Febre Amarela/imunologia , Febre Amarela/transmissão , Vacina contra Febre Amarela/imunologia , Vírus da Febre Amarela/imunologia
14.
J Virol ; 94(1)2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31597773

RESUMO

The recent reemergence of yellow fever virus (YFV) in Brazil has raised serious concerns due to the rapid dissemination of the virus in the southeastern region. To better understand YFV genetic diversity and dynamics during the recent outbreak in southeastern Brazil, we generated 18 complete and nearly complete genomes from the peak of the epidemic curve from nonhuman primates (NHPs) and human infected cases across the Espírito Santo and Rio de Janeiro states. Genomic sequencing of 18 YFV genomes revealed the estimated timing, source, and likely routes of yellow fever virus transmission and dispersion during one of the largest outbreaks ever registered in Brazil. We showed that during the recent epidemic, YFV was reintroduced from Minas Gerais to the Espírito Santo and Rio de Janeiro states multiple times between 2016 and 2019. The analysis of data from portable sequencing could identify the corridor of spread of YFV. These findings reinforce the idea that continued genomic surveillance strategies can provide information on virus genetic diversity and transmission dynamics that might assist in understanding arbovirus epidemics.IMPORTANCE Arbovirus infections in Brazil, including yellow fever, dengue, zika, and chikungunya, result in considerable morbidity and mortality and are pressing public health concerns. However, our understanding of these outbreaks is hampered by the limited availability of genomic data. In this study, we investigated the genetic diversity and spatial distribution of YFV during the current outbreak by analyzing genomic data from areas in southeastern Brazil not covered by other previous studies. To gain insights into the routes of YFV introduction and dispersion, we tracked the virus by sequencing YFV genomes sampled from nonhuman primates and infected patients from the southeastern region. Our study provides an understanding of how YFV initiates transmission in new Brazilian regions and illustrates that genomics in the field can augment traditional approaches to infectious disease surveillance and control.


Assuntos
Surtos de Doenças , Genoma Viral , Febre Amarela/epidemiologia , Febre Amarela/transmissão , Vírus da Febre Amarela/genética , Aedes/virologia , Alouatta/virologia , Animais , Brasil/epidemiologia , Callithrix/virologia , Cebus/virologia , Feminino , Variação Genética , Humanos , Incidência , Leontopithecus/virologia , Masculino , Mosquitos Vetores/virologia , Filogenia , Filogeografia , Sequenciamento Completo do Genoma , Febre Amarela/virologia , Vírus da Febre Amarela/classificação , Vírus da Febre Amarela/isolamento & purificação , Vírus da Febre Amarela/patogenicidade
15.
Nucleic Acids Res ; 47(18): 9789-9802, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31392996

RESUMO

Members of the Flaviviridae family, including dengue virus (DENV) and yellow fever virus, cause serious disease in humans, whilst maternal infection with Zika virus (ZIKV) can induce microcephaly in newborns. Following infection, flaviviral RNA genomes are translated to produce the viral replication machinery but must then serve as a template for the transcription of new genomes. However, the ribosome and viral polymerase proceed in opposite directions along the RNA, risking collisions and abortive replication. Whilst generally linear, flavivirus genomes can adopt a circular conformation facilitated by long-range RNA-RNA interactions, shown to be essential for replication. Using an in vitro reconstitution approach, we demonstrate that circularization inhibits de novo translation initiation on ZIKV and DENV RNA, whilst the linear conformation is translation-competent. Our results provide a mechanism to clear the viral RNA of ribosomes in order to promote efficient replication and, therefore, define opposing roles for linear and circular conformations of the flavivirus genome.


Assuntos
Vírus da Dengue/genética , Flavivirus/genética , Biossíntese de Proteínas , Zika virus/genética , Vírus da Dengue/patogenicidade , Flavivirus/patogenicidade , Genoma Viral/genética , Genômica , Humanos , Recém-Nascido , RNA Viral/genética , Replicação Viral/genética , Vírus da Febre Amarela/genética , Vírus da Febre Amarela/patogenicidade , Zika virus/patogenicidade , Infecção por Zika virus/genética , Infecção por Zika virus/virologia
16.
Artigo em Inglês | MEDLINE | ID: mdl-31380302

RESUMO

The present study shows that the most prominent human arboviruses worldwide (dengue viruses 1, 2, 3, and 4, Chikungunya virus, and Zika virus) can infect wild animals and transfer from urban to sylvatic maintenance cycles in South America, as did the yellow fever virus (YFV) in the past. All these viruses are transmitted by the anthropophilic mosquito Aedes aegypti and cause epidemics throughout Brazil. The YFV is the oldest example of an urban arbovirus that became sylvatic in South America. Currently, the disease is a zoonosis of non-human primates that moves like a wave through the forests of the Brazilian countryside, traveling thousands of kilometers, killing many animals and eventually infecting man. However, since 2016, this zoonotic wave has reached the highly populated areas of Southeast Brazil, producing the largest human outbreak in the past 60 years. As with the YFV, sylvatic cycles may occur with dengue, Chikungunya, and Zika. In order to become sylvatic, arboviruses require an apparently unlikely conjunction of factors to unexpectedly take place. These arboviruses could start to infect sylvatic primates and be transmitted by Haemagogus mosquitoes that inhabit tree canopies. We mention here publications reporting evidence of sylvatic cycles of dengue, Chikungunya, and Zika virus in South America. Indeed, it is almost unfeasible to control these cycles of arboviruses since it is impossible to know where, when or why an arboviral spill-over would occur in wild animals. The sylvatic maintenance cycle could preclude the eradication of an arbovirus. Moreover, an arbovirus in a sylvatic cycle could re-emerge anytime, infecting humans and producing outbreaks. In case of the reemergence of an arbovirus, it is crucial to prevent the occurrence of an urban cycle as a spill-back from the sylvatic cycle.


Assuntos
Infecções por Arbovirus/epidemiologia , Febre de Chikungunya/epidemiologia , Dengue/epidemiologia , Primatas/virologia , Febre Amarela/epidemiologia , Infecção por Zika virus/epidemiologia , Zoonoses/epidemiologia , Aedes/virologia , Animais , Animais Selvagens/virologia , Infecções por Arbovirus/transmissão , Arbovírus/patogenicidade , Brasil/epidemiologia , Febre de Chikungunya/transmissão , Vírus Chikungunya/patogenicidade , Dengue/transmissão , Vírus da Dengue/patogenicidade , Humanos , Mosquitos Vetores/virologia , Febre Amarela/transmissão , Vírus da Febre Amarela/patogenicidade , Zika virus/patogenicidade , Infecção por Zika virus/transmissão , Zoonoses/transmissão
17.
Artigo em Inglês | MEDLINE | ID: mdl-31262759

RESUMO

Yellow fever virus (YFV) is a human Flavivirus reemerging in parts of the world. While a vaccine is available, large outbreaks have recently occurred in Brazil and certain African countries. Development of an effective antiviral against YFV is crucial, as there is no available effective drug against YFV. We have identified several novel nucleoside analogs with potent antiviral activity against YFV with 50% effective concentration (EC50) values between 0.25 and 1 µM with selectivity indices over 100 in culture.


Assuntos
Antivirais/uso terapêutico , Nucleosídeos/análogos & derivados , Nucleosídeos/uso terapêutico , Febre Amarela/tratamento farmacológico , Vírus da Febre Amarela/efeitos dos fármacos , Vírus da Febre Amarela/patogenicidade , África , Animais , Brasil , Linhagem Celular Tumoral , Chlorocebus aethiops , Humanos , Estrutura Molecular , Células Vero , Febre Amarela/virologia
18.
Cell Rep ; 26(6): 1598-1613.e8, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30726741

RESUMO

Flaviviruses cause systemic or neurotropic-encephalitic pathology in humans. The flavivirus nonstructural protein 1 (NS1) is a secreted glycoprotein involved in viral replication, immune evasion, and vascular leakage during dengue virus infection. However, the contribution of secreted NS1 from related flaviviruses to viral pathogenesis remains unknown. Here, we demonstrate that NS1 from dengue, Zika, West Nile, Japanese encephalitis, and yellow fever viruses selectively binds to and alters permeability of human endothelial cells from lung, dermis, umbilical vein, brain, and liver in vitro and causes tissue-specific vascular leakage in mice, reflecting the pathophysiology of each flavivirus. Mechanistically, each flavivirus NS1 leads to differential disruption of endothelial glycocalyx components, resulting in endothelial hyperpermeability. Our findings reveal the capacity of a secreted viral protein to modulate endothelial barrier function in a tissue-specific manner both in vitro and in vivo, potentially influencing virus dissemination and pathogenesis and providing targets for antiviral therapies and vaccine development.


Assuntos
Vírus da Dengue/genética , Células Endoteliais/virologia , Glicocálix/virologia , Proteínas não Estruturais Virais/genética , Animais , Encéfalo/patologia , Encéfalo/virologia , Linhagem Celular , Permeabilidade da Membrana Celular , Dengue/genética , Dengue/metabolismo , Dengue/patologia , Vírus da Dengue/metabolismo , Vírus da Dengue/patogenicidade , Derme/patologia , Derme/virologia , Vírus da Encefalite Japonesa (Espécie)/genética , Vírus da Encefalite Japonesa (Espécie)/metabolismo , Vírus da Encefalite Japonesa (Espécie)/patogenicidade , Células Endoteliais/patologia , Expressão Gênica , Glicocálix/química , Humanos , Fígado/patologia , Fígado/virologia , Pulmão/patologia , Pulmão/virologia , Masculino , Camundongos , Especificidade de Órgãos , Cultura Primária de Células , Veias Umbilicais/patologia , Veias Umbilicais/virologia , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Vírus do Nilo Ocidental/genética , Vírus do Nilo Ocidental/metabolismo , Vírus do Nilo Ocidental/patogenicidade , Vírus da Febre Amarela/genética , Vírus da Febre Amarela/metabolismo , Vírus da Febre Amarela/patogenicidade , Zika virus/genética , Zika virus/metabolismo , Zika virus/patogenicidade
19.
Nat Commun ; 9(1): 3603, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30190477

RESUMO

Interferons (IFNs) contribute to cell-intrinsic antiviral immunity by inducing hundreds of interferon-stimulated genes (ISGs). In a screen to identify antiviral ISGs, we unexpectedly found that LY6E, a member of the LY6/uPAR family, enhanced viral infection. Here, we show that viral enhancement by ectopically expressed LY6E extends to several cellular backgrounds and affects multiple RNA viruses. LY6E does not impair IFN antiviral activity or signaling, but rather promotes viral entry. Using influenza A virus as a model, we narrow the enhancing effect of LY6E to uncoating after endosomal escape. Diverse mammalian orthologs of LY6E also enhance viral infectivity, indicating evolutionary conservation of function. By structure-function analyses, we identify a single amino acid in a predicted loop region that is essential for viral enhancement. Our study suggests that LY6E belongs to a class of IFN-inducible host factors that enhance viral infectivity without suppressing IFN antiviral activity.


Assuntos
Antígenos de Superfície/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Vírus de RNA/patogenicidade , Animais , Antígenos de Superfície/genética , Evolução Biológica , Linhagem Celular , Fibroblastos/virologia , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Regulação da Expressão Gênica , Humanos , Vírus da Influenza A/patogenicidade , Interferons/genética , Interferons/metabolismo , Leucina , Infecções por Vírus de RNA/metabolismo , Vírus de RNA/fisiologia , Internalização do Vírus , Replicação Viral , Vírus da Febre Amarela/patogenicidade
20.
Sci Rep ; 8(1): 13408, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30194325

RESUMO

Deep sequencing of live-attenuated viral vaccines has focused on vaccines in current use. Here we report characterization of a discontinued live yellow fever (YF) vaccine associated with severe adverse events. The French neurotropic vaccine (FNV) strain of YF virus was derived empirically in 1930 by 260 passages of wild-type French viscerotropic virus (FVV) in mouse brain. The vaccine was administered extensively in French-speaking Africa until discontinuation in 1982, due to high rates of post-vaccination encephalitis in children. Using rare archive strains of FNV, viral RNAs were sequenced and analyzed by massively parallel, in silico methods. Diversity and specific population structures were compared in reference to the wild-type parental strain FVV, and between the vaccine strains themselves. Lower abundance of polymorphism content was observed for FNV strains relative to FVV. Although the vaccines were of lower diversity than FVV, heterogeneity between the vaccines was observed. Reversion to wild-type identity was variably observed in the FNV strains. Specific population structures were recovered from vaccines with neurotropic properties; loss of neurotropism in mice was associated with abundance of wild-type RNA populations. The analysis provides novel sequence evidence that FNV is genetically unstable, and that adaptation of FNV contributed to the neurotropic adverse phenotype.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Polimorfismo Genético , Vacina contra Febre Amarela/genética , Febre Amarela , Vírus da Febre Amarela/genética , África/epidemiologia , Animais , Criança , Pré-Escolar , Encefalomielite Aguda Disseminada/epidemiologia , Encefalomielite Aguda Disseminada/genética , Humanos , Camundongos , Análise de Sequência de DNA , Tropismo Viral/genética , Febre Amarela/epidemiologia , Febre Amarela/genética , Febre Amarela/prevenção & controle , Vacina contra Febre Amarela/administração & dosagem , Vacina contra Febre Amarela/efeitos adversos , Vírus da Febre Amarela/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA