Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 200
Filtrar
1.
Vet Res ; 55(1): 136, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39390593

RESUMO

Influenza remains a severe respiratory illness that poses significant global health threats. Recent studies have identified distinct microbial communities within the respiratory tract, from nostrils to alveoli. This research explores specific anti-influenza respiratory microbes using a mouse model supported by 16S rDNA sequencing and untargeted metabolomics. The study found that transferring respiratory microbes from mice that survived H9N2 influenza to antibiotic-treated mice enhanced infection resistance. Notably, the levels of Aeromicrobium were significantly higher in the surviving mice. Mice pre-treated with antibiotics and then inoculated with Aeromicrobium camelliae showed reduced infection severity, as evidenced by decreased weight loss, higher survival rates, and lower lung viral titres. Metabolomic analysis revealed elevated LysoPE (16:0) levels in mildly infected mice. In vivo and in vitro experiments indicated that LysoPE (16:0) suppresses inducible nitric oxide synthase (INOS) and cyclooxygenase-2 (COX2) expression, enhancing anti-influenza defences. Our findings suggest that Aeromicrobium camelliae could serve as a potential agent for influenza prevention and a prognostic marker for influenza outcomes.


Assuntos
Vírus da Influenza A Subtipo H9N2 , Infecções por Orthomyxoviridae , Animais , Camundongos , Infecções por Orthomyxoviridae/veterinária , Infecções por Orthomyxoviridae/virologia , Vírus da Influenza A Subtipo H9N2/fisiologia , Feminino , Camundongos Endogâmicos BALB C , Antibacterianos/farmacologia
2.
Arch Virol ; 169(9): 192, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225747

RESUMO

Nanoparticles have gained attention as potential antiviral agents, but the effects of graphene oxide nanoparticles (GONPs) on influenza virus remain unclear. In this study, we evaluated the antiviral activity of GONPs against influenza virus strain A/Hunan-Lengshuitan/11197/2013(H9N2). Our results show that GONPs with a diameter of 4 nm exerted an antiviral effect, whereas those with a diameter of 400 nm had no effect. Treatment with 4-nm GONPs reduced viral titers by more than 99% and inhibited viral nucleoprotein expression in a dose-dependent manner. We also confirmed that 4-nm GONPs inhibited the infectivity of H9N2 in MDCK cells. A transmission electron microscopic analysis revealed morphological abnormalities in the GONP-treated virus, including the destruction of the envelope glycoprotein spikes and an irregular shape, suggesting that GONPs cause the destruction of the viral coat proteins. Our results highlight the potential utility of GONPs in the prevention and treatment of viral infections, especially those of emerging and re-emerging viruses.


Assuntos
Antivirais , Grafite , Vírus da Influenza A Subtipo H9N2 , Nanopartículas , Grafite/farmacologia , Grafite/química , Vírus da Influenza A Subtipo H9N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H9N2/fisiologia , Vírus da Influenza A Subtipo H9N2/genética , Animais , Cães , Antivirais/farmacologia , Células Madin Darby de Rim Canino , Nanopartículas/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Replicação Viral/efeitos dos fármacos
3.
Poult Sci ; 103(10): 104125, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39137496

RESUMO

After viral infection, the virus relies on the host cell's complex metabolic and biosynthetic machinery for replication. However, the impact of avian influenza virus (AIV) on metabolites and gene expression in poultry cells remains unclear. To investigate this, we infected chicken embryo fibroblasts DF1 cells with H9N2 AIV at an MOI of 3. Our aim was to explore how H9N2 AIV alters DF1 cells metabolic pathways to facilitate its replication. We employed metabolomics and transcriptomics techniques to analyze changes in metabolite content and gene expression. Metabolomics analysis revealed a significant increase in glutathione-related metabolites, including reduced glutathione (GSH), oxidized glutathione (GSSG) and total glutathione (T-GSH) upon H9N2 AIV infection in DF1 cells. Elisa results confirmed elevated levels of GSH, GSSG, and T-GSH consistent with metabolomics findings, noting a pronounced increase in GSSG compared to GSH. Transcriptomics showed significant alterations in genes involved in glutathione synthesis and metabolism post-H9N2 infection. However, adding the glutathione synthesis inhibitor BSO exogenously significantly promoted H9N2 replication in DF1 cells. This was accompanied by increased mRNA levels of pro-inflammatory cytokines (IL-1ß, IFN-γ) and decreased mRNA levels of anti-inflammatory cytokines (TGF-ß, IL-13). BSO also reduced catalase (CAT) gene expression and inhibited its activity, leading to higher reactive oxygen species (ROS) and malondialdehyde (MDA) level in DF1 cells. qPCR results indicated decreased mRNA levels of Nrf2, NQO1, and HO-1 with BSO, ultimately increasing oxidative stress in DF1 cells. Therefore, the above results indicated that H9N2 AIV infection in DF1 cells activated the glutathione metabolic pathway to enhance the cell's self-defense mechanism against H9N2 replication. However, when GSH synthesis is inhibited within the cells, it leads to an elevated oxidative stress level, thereby promoting H9N2 replication within the cells through Nrf2/HO-1 pathway. This study provides a theoretical basis for future rational utilization of the glutathione metabolic pathway to prevent viral replication.


Assuntos
Galinhas , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Animais , Vírus da Influenza A Subtipo H9N2/fisiologia , Influenza Aviária/virologia , Embrião de Galinha , Linhagem Celular , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/metabolismo , Doenças das Aves Domésticas/genética , Replicação Viral/efeitos dos fármacos , Glutationa/metabolismo , Fibroblastos/virologia , Fibroblastos/metabolismo , Expressão Gênica/efeitos dos fármacos
4.
Virology ; 597: 110121, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38917688

RESUMO

The H7 subtype avian influenza viruses are circulating widely worldwide, causing significant economic losses to the poultry industry and posing a serious threat to human health. In 2019, H7N2 and H7N9 co-circulated in Chinese poultry, yet the risk of H7N2 remained unclear. We isolated and sequenced four H7N2 viruses from chickens, revealing them as novel reassortants with H7N9-derived HA, M, NS genes and H9N2-derived PB2, PB1, PA,NP, NA genes. To further explore the key segment of pathogenicity, H7N2-H7N9NA and H7N2-H9N2HA single-substitution were constructed. Pathogenicity study showed H7N2 isolates to be highly pathogenic in chickens, with H7N2-H7N9NA slightly weaker than H7N2-Wild type. Transcriptomic analysis suggested that H7N9-derived HA genes primarily drove the high pathogenicity of H7N2 isolates, eliciting a strong inflammatory response. These findings underscored the increased threat posed by reassorted H7N2 viruses to chickens, emphasizing the necessity of long-term monitoring of H7 subtype avian influenza viruses.


Assuntos
Galinhas , Vírus da Influenza A Subtipo H7N2 , Subtipo H7N9 do Vírus da Influenza A , Influenza Aviária , Vírus Reordenados , Animais , Galinhas/virologia , Influenza Aviária/virologia , Influenza Aviária/transmissão , Subtipo H7N9 do Vírus da Influenza A/genética , Subtipo H7N9 do Vírus da Influenza A/patogenicidade , Subtipo H7N9 do Vírus da Influenza A/isolamento & purificação , Vírus Reordenados/patogenicidade , Vírus Reordenados/genética , Vírus da Influenza A Subtipo H7N2/patogenicidade , Vírus da Influenza A Subtipo H7N2/genética , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/transmissão , Virulência , Filogenia , Vírus da Influenza A Subtipo H9N2/genética , Vírus da Influenza A Subtipo H9N2/patogenicidade , Vírus da Influenza A Subtipo H9N2/fisiologia , China
5.
Virology ; 596: 110124, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38838475

RESUMO

While mammals can be infected by influenza A virus either sporadically or with well adapted lineages, aquatic birds are the natural reservoir of the pathogen. So far most of the knowledge on influenza virus dynamics was however gained on mammalian models. In this study, we infected turkeys using a low pathogenic avian influenza virus and determined the infection dynamics with a target-cell limited model. Results showed that turkeys had a different set of infection characteristics, compared with humans and ponies. The viral clearance rates were similar between turkeys and ponies but higher than that in humans. The cell death rates and cell to cell transmission rates were similar between turkeys and humans but higher than those in ponies. Overall, this study indicated the variations of within-host dynamics of influenza infection in avian, humans, and other mammalian systems.


Assuntos
Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Perus , Animais , Perus/virologia , Influenza Aviária/virologia , Influenza Aviária/transmissão , Vírus da Influenza A Subtipo H9N2/genética , Vírus da Influenza A Subtipo H9N2/patogenicidade , Vírus da Influenza A Subtipo H9N2/fisiologia , Humanos , Cavalos , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/veterinária , Infecções por Orthomyxoviridae/transmissão , Influenza Humana/virologia
6.
Poult Sci ; 103(8): 103885, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38851182

RESUMO

Avian influenza, particularly the H9N2 subtype, presents significant challenges to poultry health, underscoring the need for effective antiviral interventions. This study explores the antiviral capabilities of Belamcanda extract, a traditional Chinese medicinal herb, against H9N2 Avian influenza virus (AIV) in specific pathogen-free (SPF) chicks. Through a comprehensive approach, we evaluated the impact of the extract on cytokine modulation and crucial immunological signaling pathways, essential for understanding the host-virus interaction. Our findings demonstrate that Belamcanda extract significantly modulates the expression of key inflammatory cytokines, including tumor necrosis factor alpha (TNF-α), interleukin-1 (IL-1), interleukin-2 (IL-2), and interleukin-6 (IL-6), which are pivotal to the host's response to H9N2 AIV infection. Western blot analysis further revealed that the extract markedly reduces the expression of critical immune signaling molecules such as toll-like receptor 3 (TLR3), TIR-domain-containing adapter-inducing interferon-ß (TRIF), and nuclear factor kappa B (NF-κB). These insights into the mechanisms by which Belamcanda extract influences host immune responses and hinders viral replication highlight its potential as an innovative antiviral agent for poultry health management. The study advances our comprehension of natural compounds' antiviral mechanisms and lays the groundwork for developing strategies to manage viral infections in poultry. The demonstrated ability of Belamcanda extract to modulate immune responses and inhibit viral replication establishes it as a promising candidate for future antiviral therapy development, especially in light of the need for effective treatments against evolving influenza virus strains and the critical demand for enhanced poultry health management strategies.


Assuntos
Antivirais , Galinhas , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Doenças das Aves Domésticas , Animais , Vírus da Influenza A Subtipo H9N2/fisiologia , Vírus da Influenza A Subtipo H9N2/efeitos dos fármacos , Influenza Aviária/virologia , Influenza Aviária/tratamento farmacológico , Antivirais/farmacologia , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/imunologia , Organismos Livres de Patógenos Específicos , Inflamação/tratamento farmacológico , Inflamação/veterinária , Inflamação/virologia , Citocinas/metabolismo , Citocinas/genética , Extratos Vegetais/farmacologia
7.
Nat Commun ; 15(1): 3450, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664395

RESUMO

Influenza A viruses (IAVs) of subtype H9N2 have reached an endemic stage in poultry farms in the Middle East and Asia. As a result, human infections with avian H9N2 viruses have been increasingly reported. In 2017, an H9N2 virus was isolated for the first time from Egyptian fruit bats (Rousettus aegyptiacus). Phylogenetic analyses revealed that bat H9N2 is descended from a common ancestor dating back centuries ago. However, the H9 and N2 sequences appear to be genetically similar to current avian IAVs, suggesting recent reassortment events. These observations raise the question of the zoonotic potential of the mammal-adapted bat H9N2. Here, we investigate the infection and transmission potential of bat H9N2 in vitro and in vivo, the ability to overcome the antiviral activity of the human MxA protein, and the presence of N2-specific cross-reactive antibodies in human sera. We show that bat H9N2 has high replication and transmission potential in ferrets, efficiently infects human lung explant cultures, and is able to evade antiviral inhibition by MxA in transgenic B6 mice. Together with its low antigenic similarity to the N2 of seasonal human strains, bat H9N2 fulfils key criteria for pre-pandemic IAVs.


Assuntos
Quirópteros , Furões , Vírus da Influenza A Subtipo H9N2 , Infecções por Orthomyxoviridae , Replicação Viral , Animais , Furões/virologia , Vírus da Influenza A Subtipo H9N2/genética , Vírus da Influenza A Subtipo H9N2/fisiologia , Vírus da Influenza A Subtipo H9N2/patogenicidade , Vírus da Influenza A Subtipo H9N2/isolamento & purificação , Quirópteros/virologia , Humanos , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/imunologia , Camundongos , Filogenia , Influenza Humana/transmissão , Influenza Humana/virologia , Pulmão/virologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue
8.
Nat Commun ; 15(1): 3449, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664384

RESUMO

In 2017, a novel influenza A virus (IAV) was isolated from an Egyptian fruit bat. In contrast to other bat influenza viruses, the virus was related to avian A(H9N2) viruses and was probably the result of a bird-to-bat transmission event. To determine the cross-species spill-over potential, we biologically characterize features of A/bat/Egypt/381OP/2017(H9N2). The virus has a pH inactivation profile and neuraminidase activity similar to those of human-adapted IAVs. Despite the virus having an avian virus-like preference for α2,3 sialic acid receptors, it is unable to replicate in male mallard ducks; however, it readily infects ex-vivo human respiratory cell cultures and replicates in the lungs of female mice. A/bat/Egypt/381OP/2017 replicates in the upper respiratory tract of experimentally-infected male ferrets featuring direct-contact and airborne transmission. These data suggest that the bat A(H9N2) virus has features associated with increased risk to humans without a shift to a preference for α2,6 sialic acid receptors.


Assuntos
Quirópteros , Patos , Furões , Vírus da Influenza A Subtipo H9N2 , Infecções por Orthomyxoviridae , Receptores de Superfície Celular , Animais , Quirópteros/virologia , Humanos , Furões/virologia , Feminino , Masculino , Vírus da Influenza A Subtipo H9N2/fisiologia , Vírus da Influenza A Subtipo H9N2/patogenicidade , Vírus da Influenza A Subtipo H9N2/isolamento & purificação , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/transmissão , Camundongos , Patos/virologia , Replicação Viral , Influenza Humana/virologia , Influenza Humana/transmissão , Pulmão/virologia , Influenza Aviária/virologia , Influenza Aviária/transmissão , Neuraminidase/metabolismo
9.
Int J Mol Sci ; 25(5)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38473897

RESUMO

The H9N2 avian influenza virus causes reduced production performance and immunosuppression in chickens. The chicken yolk sac immunoglobulins (IgY) receptor (FcRY) transports from the yolk into the embryo, providing offspring with passive immunity to infection against common poultry pathogens. FcRY is expressed in many tissues/organs of the chicken; however, there are no reports investigating FcRY expression in chicken macrophage cells, and how H9N2-infected HD11 cells (a chicken macrophage-like cell line) regulate FcRY expression remains uninvestigated. This study used the H9N2 virus as a model pathogen to explore the regulation of FcRY expression in avian macrophages. FcRY was highly expressed in HD11 cells, as shown by reverse transcription polymerase chain reactions, and indirect immunofluorescence indicated that FcRY was widely expressed in HD11 cells. HD11 cells infected with live H9N2 virus exhibited downregulated FcRY expression. Transfection of eukaryotic expression plasmids encoding each viral protein of H9N2 into HD11 cells revealed that nonstructural protein (NS1) and matrix protein (M1) downregulated FcRY expression. In addition, the use of a c-jun N-terminal kinase (JNK) activator inhibited the expression of FcRY, while a JNK inhibitor antagonized the downregulation of FcRY expression by live H9N2 virus, NS1 and M1 proteins. Finally, a dual luciferase reporter system showed that both the M1 protein and the transcription factor c-jun inhibited FcRY expression at the transcriptional level. Taken together, the transcription factor c-jun was a negative regulator of FcRY, while the live H9N2 virus, NS1, and M1 proteins downregulated the FcRY expression through activating the JNK signaling pathway. This provides an experimental basis for a novel mechanism of immunosuppression in the H9N2 avian influenza virus.


Assuntos
Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Animais , Galinhas/metabolismo , Vírus da Influenza A Subtipo H9N2/fisiologia , Sistema de Sinalização das MAP Quinases , Linhagem Celular , Macrófagos/metabolismo , Fatores de Transcrição/metabolismo
10.
J Virol ; 98(3): e0151223, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38415626

RESUMO

H9N2 avian influenza is a low-pathogenic avian influenza circulating in poultry and wild birds worldwide and frequently contributes to chicken salpingitis that is caused by avian pathogenic Escherichia coli (APEC), leading to huge economic losses and risks for food safety. Currently, how the H9N2 virus contributes to APEC infection and facilitates salpingitis remains elusive. In this study, in vitro chicken oviduct epithelial cell (COEC) model and in vivo studies were performed to investigate the role of H9N2 viruses on secondary APEC infection, and we identified that H9N2 virus enhances APEC infection both in vitro and in vivo. To understand the mechanisms behind this phenomenon, adhesive molecules on the cell surface facilitating APEC adhesion were checked, and we found that H9N2 virus could upregulate the expression of fibronectin, which promotes APEC adhesion onto COECs. We further investigated how fibronectin expression is regulated by H9N2 virus infection and revealed that transforming growth factor beta (TGF-ß) signaling pathway is activated by the NS1 protein of the virus, thus regulating the expression of adhesive molecules. These new findings revealed the role of H9N2 virus in salpingitis co-infected with APEC and discovered the molecular mechanisms by which the H9N2 virus facilitates APEC infection, offering new insights to the etiology of salpingitis with viral-bacterial co-infections.IMPORTANCEH9N2 avian influenza virus (AIV) widely infects poultry and is sporadically reported in human infections. The infection in birds frequently causes secondary bacterial infections, resulting in severe symptoms like pneumonia and salpingitis. Currently, the mechanism that influenza A virus contributes to secondary bacterial infection remains elusive. Here we discovered that H9N2 virus infection promotes APEC infection and further explored the underlying molecular mechanisms. We found that fibronectin protein on the cell surface is vital for APEC adhesion and also showed that H9N2 viral protein NS1 increased the expression of fibronectin by activating the TGF-ß signaling pathway. Our findings offer new information on how AIV infection promotes APEC secondary infection, providing potential targets for mitigating severe APEC infections induced by H9N2 avian influenza, and also give new insights on the mechanisms on how viruses promote secondary bacterial infections in animal and human diseases.


Assuntos
Infecções por Escherichia coli , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Doenças das Aves Domésticas , Salpingite , Animais , Feminino , Humanos , Galinhas , Escherichia coli , Fibronectinas/metabolismo , Vírus da Influenza A Subtipo H9N2/fisiologia , Influenza Aviária/complicações , Oviductos/metabolismo , Aves Domésticas , Doenças das Aves Domésticas/metabolismo , Doenças das Aves Domésticas/virologia , Salpingite/metabolismo , Salpingite/veterinária , Salpingite/virologia , Fator de Crescimento Transformador beta/metabolismo , Proteínas Virais/metabolismo , Infecções por Escherichia coli/complicações , Infecções por Escherichia coli/veterinária
11.
Microb Pathog ; 175: 105983, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36641002

RESUMO

The H9N2 subtype of avian influenza virus (AIV) is common in poultry production. It causes mild clinical signs but rarely leads to poultry mortalities. However, higher mortality can occur in chickens with co-infections, especially avian pathogenic Escherichia coli (APEC), which results in huge economic losses for the poultry industry. Unfortunately, the mechanism of co-infection remains unknown. Our previous studies screened several proteins associated with bacterial adhesion, including transforming growth factor beta-1 (TGF-ß1), integrins, cortactin, E-cadherin, vinculin, and fibromodulin. Herein, we investigated the contribution of TGF-ß1 to APEC adhesion after H9N2 infection. We first infected H9N2 and APEC in chicken, chicken embryo and DF-1 cells, and demonstrated that H9N2 infection promotes APEC adhesion to hosts in vitro and in vivo by plate count method. Through real-time fluorescence quantification and enzyme-linked immunosorbent assay, it was demonstrated that H9N2 infection not only increases TGF-ß1 expression but also its activity in a time-dependent manner. Then, through exogenous addition of TGF-ß1 and overexpression, we further demonstrated that TGF-ß1 can increase the adhesion of endothelial cells to DF-1 cells. Furthermore, the capacity of APEC adhesion to DF-1 cells was significantly decreased either by adding a TGF-ß1 receptor inhibitor or using small interfering RNAs to interfere with the expression of TGF-ß1. To sum up, H9N2 infection can promote the upregulation of TGF-ß1 and then increase the adhesion ability of APEC. Targeting TGF-ß1 and its associated pathway will provide valuable insights into the clinical treatment of E. coli secondary infection induced by H9N2 infection.


Assuntos
Coinfecção , Infecções por Escherichia coli , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Doenças das Aves Domésticas , Embrião de Galinha , Animais , Galinhas , Vírus da Influenza A Subtipo H9N2/fisiologia , Coinfecção/veterinária , Escherichia coli/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Células Endoteliais , Infecções por Escherichia coli/veterinária
12.
Arch Razi Inst ; 78(6): 1746-1752, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38828164

RESUMO

Influenza viruses can multiply in quails and be transmitted to other animal species. As vaccination reduces virus shedding in chickens, the effect of the killed H9N2 avian influenza virus (AIV) on tissue distribution and virus shedding was evaluated in quails. One hundred 20-day-old quails were divided into six equal groups, kept in separate pens, and fed ad libitum. Before vaccination, blood samples were randomly collected from the wing veins. Four groups were vaccinated with the inactivated H9N2 Razi Institute vaccine at 21 days subcutaneously at the back of neck. Three weeks later, two groups were re-vaccinated. Two weeks later, at the age of 56 days, three groups were challenged with 100 µL of allantoic fluid containing 105 EID50 H9N2 through the oculonasal route. Blood samples were collected from quails at 42, 56, 63, and 70 days from each group to determine AIV antibodies by the hemagglutination inhibition test. Three quails were randomly selected and euthanized from each group on days 1, 3, and 6 post-inoculation (PI). Tissue samples were collected, and the RT-PCR test was performed. No clinical signs or gross lesions existed in any of the groups during the experiment. However, the virus was detected in different tissues on the first, third, and sixth days after the challenge in unvaccinated challenged birds. Virus detection was significantly more frequent in the quails vaccinated once and challenged than in the twice-vaccinated challenged group (P≤0.05). On the third day of PI, the virus was detected in some organs of the challenged groups. On the sixth day of PI, the virus was detected only in the lungs of two unvaccinated and once-vaccinated challenged birds. It was concluded that the vaccination of quails against AIV H9 is necessary to protect them from clinical signs, as well as respiratory tract and intestine replication. Two-time vaccination significantly protects the respiratory and intestine tracts, compared to one-time vaccination (P≤0.05).


Assuntos
Coturnix , Vírus da Influenza A Subtipo H9N2 , Vacinas contra Influenza , Influenza Aviária , Vacinação , Eliminação de Partículas Virais , Animais , Vírus da Influenza A Subtipo H9N2/imunologia , Vírus da Influenza A Subtipo H9N2/fisiologia , Influenza Aviária/prevenção & controle , Influenza Aviária/virologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , Vacinação/veterinária , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/administração & dosagem , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/prevenção & controle , Anticorpos Antivirais/sangue
13.
FASEB J ; 36(10): e22537, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36070077

RESUMO

Influenza A viruses (IAVs) rely on viral ribonucleoprotein (vRNP) complexes to control transcription and replication. Each vRNP consists of one viral genomic RNA segment associated with multiple nucleoproteins (NP) and a trimeric IAV RNA polymerase complex. Previous studies showed that post-translational modifications of vRNP components, such as NP, by host factors would in turn affect the IAV life cycle or modulate host anti-viral response. In this study, we found host E3 ubiquitin ligase Pirh2 interacted with NP and mediated short-chain ubiquitination of NP at lysine 351, which suppressed NP-PB2 interaction and vRNP formation. In addition, we showed that knockdown of Pirh2 promoted IAV replication, whereas overexpression of Pirh2 inhibited IAV replication. However, Pirh2-ΔRING lacking E3 ligase activity failed to inhibit IAV infection. Moreover, we showed that Pirh2 had no effect on the replication of a rescued virus, WSN-K351R, carrying lysine-to-arginine substitution at residue 351. Interestingly, by analyzing human and avian IAVs from 2011 to 2020 in influenza research databases, we found that 99.18% of 26 977 human IAVs encode lysine, but 95.3% of 9956 avian IAVs encode arginine at residue 351 of NP protein. Consistently, knockdown of Pirh2 failed to promote propagation of two avian-like influenza viruses, H9N2-W1 and H9N2-C1, which naturally encode arginine at residue 351 of NP. Taken together, we demonstrated that Pirh2 is a host factor restricting IAV infection by modulating short-chain ubiquitination of NP. Meanwhile, it is noteworthy that residue 351 of NP targeted by Pirh2 may associate with the evasion of human anti-viral response against avian-like influenza viruses.


Assuntos
Vírus da Influenza A Subtipo H9N2 , Ribonucleoproteínas , Ubiquitina-Proteína Ligases , Replicação Viral , Arginina/metabolismo , Interações entre Hospedeiro e Microrganismos , Humanos , Vírus da Influenza A Subtipo H9N2/genética , Vírus da Influenza A Subtipo H9N2/fisiologia , Influenza Humana/virologia , Lisina/metabolismo , RNA Viral/metabolismo , Ribonucleoproteínas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
14.
Vet Microbiol ; 272: 109499, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35835006

RESUMO

Respiratory viral infections are among the major causes of disease in poultry. While viral dual infections are known to occur, viral interference in chicken airways is mechanistically hardly understood. The effects of infectious bronchitis virus (IBV) infection on tissue morphology, sialic acid (sia) expression and susceptibility of the chicken trachea for superinfection with IBV or avian influenza virus (AIV) were studied. In vivo, tracheal epithelium of chickens infected with IBV QX showed marked inflammatory cell infiltration and loss of cilia and goblet cells five days post inoculation. Plant lectin staining indicated that sialic acids redistributed from the apical membrane of the ciliated epithelium and the goblet cell cytoplasm to the basement membrane region of the epithelium. After administration of recombinant viral attachment proteins to slides of infected tissue, retained binding of AIV hemagglutinin, absence of binding of the receptor binding domain (RBD) of IBV M41 and partial reduction of IBV QX RBD were observed. Adult chicken trachea rings were used as ex vivo model to study the effects of IBV QX-induced pathological changes and receptor redistribution on secondary viral infection. AIV H9N2 infection after primary IBV infection was delayed; however, final viral loads reached similar levels as in previously uninfected trachea rings. In contrast, IBV M41 superinfection resulted in 1000-fold lower viral titers over the course of 48 h. In conclusion, epithelial changes in the chicken trachea after viral infection coincide with redistribution and likely specific downregulation of viral receptors, with the extend of subsequent viral interference dependent on viral species.


Assuntos
Coinfecção , Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Vírus da Influenza A Subtipo H9N2 , Doenças das Aves Domésticas , Superinfecção , Animais , Galinhas , Coinfecção/veterinária , Infecções por Coronavirus/veterinária , Vírus da Bronquite Infecciosa/fisiologia , Vírus da Influenza A Subtipo H9N2/fisiologia , Superinfecção/veterinária , Traqueia
15.
Virology ; 574: 25-36, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35878455

RESUMO

H9N2 avian influenza virus causes significant economic losses to the poultry industry, due to its wide-spread prevalence and propensity to induce secondary and mixed infections. Antigenic drift limits vaccine efficacy. New anti-viral therapies are needed to complement existing control measures. At the maximum non-cytotoxic concentration (25 mg/mL), cedar pine needle extract inhibited H9N2 avian influenza virus proliferation in vitro and in vivo. Cedar pine needle extract reduced the haemagglutinin titre, inhibited H9N2 avian influenza virus nucleocapsid protein expression, and indirectly regulate type I and II interferon expression. Interleukin-6 expression increased during the pre-infection period but decreased during the mid-to-late stages of infection. Cedar pine needle extract may inhibit the proliferation of pathogens, regulate the immune response, and reduce host tissue damage and may serve as a potential target for drug development against H9N2 avian influenza virus.


Assuntos
Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Doenças das Aves Domésticas , Animais , Galinhas , Vírus da Influenza A Subtipo H9N2/fisiologia , Aves Domésticas
16.
Vet Microbiol ; 264: 109303, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34923246

RESUMO

In this study, whether H9N2 influenza A virus (IAV) infection contributed to secondary Klebsiella pneumoniae infection was investigated. From post-infection onwards, clinical symptoms were monitored, examined and recorded daily for 11 days. As a result, no clinical signs were observed in the mice infected with single H9N2 IAV, implying that H9N2 IAV was less pathogenic to mice. Compared to single K. pneumonia infection, K. pneumoniae infection following H9N2 IAV infection exacerbates lung histopathological lesions and apoptosis, resulting in more severe diseases. Lung index of the mice with H9N2 IAV and K. pneumoniae co-infection was significantly higher than those in the other groups. Bacterial loads in the tissues in H9N2 IAV and K. pneumoniae co-infection group were significantly higher than those in the single K. pneumoniae infection group at 7 dpi. It demonstrated that prior H9N2 IAV infection contributed to K. pneumonia proliferation and delayed bacterial clearance in mice. Secondary K. pneumoniae infection influences seroconversion of anti-H9N2 antibody titers and the cytokine profiles. The findings demonstrated that H9N2 IAV infection facilitated secondary K. pneumonia infection, causing severe the diseases in mice.


Assuntos
Vírus da Influenza A Subtipo H9N2 , Klebsiella pneumoniae , Infecções por Orthomyxoviridae , Pneumonia , Animais , Coinfecção , Vírus da Influenza A Subtipo H9N2/fisiologia , Klebsiella pneumoniae/fisiologia , Camundongos , Infecções por Orthomyxoviridae/microbiologia , Infecções por Orthomyxoviridae/virologia , Pneumonia/microbiologia , Pneumonia/virologia
17.
Emerg Microbes Infect ; 10(1): 2223-2234, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34753400

RESUMO

Avian influenza virus (AIV) subtypes H5N1 and H9N2 co-circulate in poultry in Bangladesh, causing significant bird morbidity and mortality. Despite their importance to the poultry value chain, the role of farms in spreading and maintaining AIV infections remains poorly understood in most disease-endemic settings. To address this crucial gap, we conducted a cross-sectional study between 2017 and 2019 in the Chattogram Division of Bangladesh in clinically affected and dead chickens in farms with suspected AIV infection. Viral prevalence of each subtype was approximately 10% among farms for which veterinary advice was sought, indicating high levels of virus circulation in chicken farms despite the low number of reported outbreaks. Co-circulation of both subtypes was common in farms, with our findings suggest that in the field, the co-circulation of H5N1 and H9N2 can modulate disease severity, which could facilitate an underestimated level of AIV transmission in the poultry value chain. Finally, using newly generated whole-genome sequences, we investigate the evolutionary history of a small subset of H5N1 and H9N2 viruses. Our analyses revealed that for both subtypes, the sampled viruses were genetically most closely related to other viruses isolated in Bangladesh and represented multiple independent incursions. However, due to lack of longitudinal surveillance in this region, it is difficult to ascertain whether these viruses emerged from endemic strains circulating in Bangladesh or from neighbouring countries. We also show that amino acids at putative antigenic residues underwent a distinct replacement during 2012 which coincides with the use of H5N1 vaccines.


Assuntos
Virus da Influenza A Subtipo H5N1/genética , Vírus da Influenza A Subtipo H9N2/genética , Influenza Aviária/virologia , Doenças das Aves Domésticas/virologia , Animais , Bangladesh/epidemiologia , Galinhas , Estudos Transversais , Surtos de Doenças , Evolução Molecular , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Virus da Influenza A Subtipo H5N1/fisiologia , Vírus da Influenza A Subtipo H9N2/isolamento & purificação , Vírus da Influenza A Subtipo H9N2/fisiologia , Influenza Aviária/epidemiologia , Epidemiologia Molecular , Filogenia , Doenças das Aves Domésticas/epidemiologia , Conformação Proteica
18.
Emerg Microbes Infect ; 10(1): 2098-2112, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34709136

RESUMO

H9N2 avian influenza viruses are widely prevalent in birds and pose an increasing threat to humans because of their enhanced virulence and transmissibility in mammals. Active surveillance on the prevalence and evolution of H9N2 viruses in different avian hosts will help develop eradication measures. We isolated 16 H9N2 viruses from chickens, green peafowls, and wild birds in eastern China from 2017 to 2019 and characterized their comparative genetic evolution, receptor-binding specificity, antigenic diversity, replication, and transmission in chickens and mice. The phylogenetic analysis indicated that the green peafowl viruses and swan reassortant shared the same ancestor with the poultry H9N2 viruses prevalent in eastern China, while the seven wild bird viruses belonged to wild bird lineage. The chicken, peafowl, and swan H9N2 viruses that belonged to the poultry lineage preferentially recognized α-2, 6-linked sialic acids (human-like receptor), but the wild bird lineage viruses can bind both α-2, 3 (avian-like receptor) and human-like receptor similarly. Interestingly, the H9N2 viruses of poultry lineage replicated well and transmitted efficiently, but the viruses of wild bird lineage replicated and transmitted with low efficiency. Importantly, the H9N2 viruses of poultry lineage replicated in higher titer in mammal cells and mice than the viruses of wild birds lineage. Altogether, our study indicates that co-circulation of the H9N2 viruses in poultry, wild birds, and ornamental birds increased their cross-transmission risk in different birds because of their widespread dissemination.


Assuntos
Aves/virologia , Vírus da Influenza A Subtipo H9N2/genética , Influenza Aviária/virologia , Doenças das Aves Domésticas/virologia , Receptores Virais/metabolismo , Replicação Viral , Animais , Animais Selvagens/virologia , Galinhas , China , Humanos , Vírus da Influenza A Subtipo H9N2/classificação , Vírus da Influenza A Subtipo H9N2/isolamento & purificação , Vírus da Influenza A Subtipo H9N2/fisiologia , Influenza Aviária/genética , Influenza Aviária/metabolismo , Camundongos , Filogenia , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/metabolismo , Receptores Virais/genética
19.
Emerg Microbes Infect ; 10(1): 2030-2041, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34666614

RESUMO

The segmented genome of influenza A virus has conferred significant evolutionary advantages to this virus through genetic reassortment, a mechanism that facilitates the rapid expansion of viral genetic diversity upon influenza co-infections. Therefore, co-infection of genetically diverse avian influenza viruses in poultry may pose a significant public health risk in generating novel reassortants with increased zoonotic potential. This study investigated the reassortment patterns of a Pearl River Delta-lineage avian influenza A(H7N9) virus and four genetically divergent avian influenza A(H9N2) viruses upon co-infection in embryonated chicken eggs and chickens. To characterize "within-host" and "between-host" genetic diversity, we further monitored the viral genotypes that were subsequently transmitted to contact chickens in serial transmission experiments. We observed that co-infection with A(H7N9) and A(H9N2) viruses may lead to the emergence of novel reassortant viruses in ovo and in chickens, albeit with different reassortment patterns. Novel reassortants detected in donor chickens co-infected with different combinations of the same A(H7N9) virus and different A(H9N2) viruses showed distinct onward transmission potential to contact chickens. Sequential transmission of novel reassortant viruses was only observed in one out of four co-infection combinations. Our results demonstrated different patterns by which influenza viruses may acquire genetic diversity through co-infection in ovo, in vivo, and under sequential transmission conditions.


Assuntos
Subtipo H7N9 do Vírus da Influenza A/genética , Vírus da Influenza A Subtipo H9N2/genética , Influenza Aviária/virologia , Influenza Humana/virologia , Doenças das Aves Domésticas/virologia , Animais , Embrião de Galinha , Galinhas , Coinfecção/transmissão , Coinfecção/virologia , Genótipo , Humanos , Subtipo H7N9 do Vírus da Influenza A/fisiologia , Vírus da Influenza A Subtipo H9N2/fisiologia , Influenza Aviária/transmissão , Influenza Humana/transmissão , Filogenia , Doenças das Aves Domésticas/transmissão , Vírus Reordenados/genética , Vírus Reordenados/fisiologia , Recombinação Genética , Zoonoses Virais/transmissão , Zoonoses Virais/virologia
20.
Mol Immunol ; 140: 106-119, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34678620

RESUMO

The recent advances in our understanding of the host factors in orchestrating qualitatively different immune responses against influenza Type A virus (IAV) have changed the perception of conventional approaches for controlling avian influenza virus (AIV) infection in chickens. Given that infection-induced pathogenicity and replication of influenza virus largely rely on regulating host immune responses, immunoregulatory cytokine profiles often determine the disease outcomes. However, in contrast to the function of other inflammatory cytokines, interleukin-17A (IL-17A) has been described as a 'double-edged sword', indicating that in addition to antiviral host responses, IL-17A has a distinct role in promoting viral infection. Therefore, in the present study, we investigated the chicken IL-17A mediated antiviral immune effects on IAVs infection in primary chicken embryo fibroblasts cells (CEFs). To this end, we first bioengineered a food-grade Lactic Acid Producing Bacteria (LAB), Lactococcus lactis (L. lactis), secreting bioactive recombinant chicken IL-17A (sChIL-17A). Next, the functionality of sChIL-17A was confirmed by transcriptional upregulation of several genes associated with antiviral host responses, including granulocyte-monocyte colony-stimulating factor (GM-CSF) (CSF3 in the chickens), interleukin-6 (IL-6), interferon-α (IFN-α), -ß and -γ genes in primary CEFs cells. Consistent with our hypothesis that such a pro-inflammatory state may translate to immunoprotection against IAVs infection, we observed that sChIL-17A pre-treatment could significantly limit the viral replication and protect the primary CEFs cells against two heterotypic IAVs such as A/turkey/Wisconsin/1/1966(H9N2) and A/PR/8/1934(H1N1). Together, the data presented in this work suggest that exogenous application of sChIL-17A secreted by modified LAB vector may represent an alternative strategy for improving antiviral immunity against avian influenza virus infection in chickens.


Assuntos
Bioengenharia , Citoproteção , Fibroblastos/virologia , Vetores Genéticos/metabolismo , Vírus da Influenza A Subtipo H1N1/fisiologia , Vírus da Influenza A Subtipo H9N2/fisiologia , Interleucina-17/farmacologia , Lactobacillales/genética , Animais , Morte Celular/efeitos dos fármacos , Células Cultivadas , Embrião de Galinha , Galinhas/virologia , Efeito Citopatogênico Viral/efeitos dos fármacos , Citoproteção/efeitos dos fármacos , Cães , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Perfilação da Expressão Gênica , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H9N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H9N2/genética , Influenza Aviária/imunologia , Influenza Aviária/virologia , Interleucina-17/genética , Células Madin Darby de Rim Canino , Nisina/farmacologia , Fenótipo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/farmacologia , Transcrição Gênica/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA