Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
J Gen Virol ; 105(5)2024 May.
Article in English | MEDLINE | ID: mdl-38787366

ABSTRACT

Flaviviruses target their replication on membranous structures derived from the ER, where both viral and host proteins play crucial structural and functional roles. Here, we have characterized the involvement of the ER-associated degradation (ERAD) pathway core E3 ligase complex (SEL1L-HRD1) regulator proteins in the replication of Japanese encephalitis virus (JEV). Through high-resolution immunofluorescence imaging of JEV-infected HeLa cells, we observe that the virus replication complexes marked by NS1 strongly colocalize with the ERAD adapter SEL1L, lectin OS9, ER-membrane shuttle factor HERPUD1, E3 ubiquitin ligase HRD1 and rhomboid superfamily member DERLIN1. NS5 positive structures also show strong overlap with SEL1L. While these effectors show significant transcriptional upregulation, their protein levels remain largely stable in infected cells. siRNA mediated depletion of OS9, SEL1L, HERPUD1 and HRD1 significantly inhibit viral RNA replication and titres, with SEL1L depletion showing the maximum attenuation of replication. By performing protein translation arrest experiments, we show that SEL1L, and OS9 are stabilised upon JEV infection. Overall results from this study suggest that these ERAD effector proteins are crucial host-factors for JEV replication.


Subject(s)
Encephalitis Virus, Japanese , Endoplasmic Reticulum-Associated Degradation , Membrane Proteins , Ubiquitin-Protein Ligases , Virus Replication , Humans , Encephalitis Virus, Japanese/physiology , Encephalitis Virus, Japanese/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , HeLa Cells , Membrane Proteins/metabolism , Membrane Proteins/genetics , Host-Pathogen Interactions , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/virology , Proteins/metabolism , Proteins/genetics , Antigens, Differentiation
2.
Arch Microbiol ; 205(5): 211, 2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37119317

ABSTRACT

N-terminal acetylation of proteins is an important post-translational modification (PTM) found in eukaryotes and prokaryotes. In bacteria, N-terminal acetylation is suggested to play various regulatory roles related to protein stability, gene expression, stress response, and virulence; however, the mechanism of such response remains unclear. The proteins, namely RimI/RimJ, are involved in N-terminal acetylation in mycobacteria. In this study, we used CRISPR interference (CRISPRi) to silence rimI/rimJ in Mycobacterium smegmatis mc2155 to investigate the physiological effects of N-terminal acetylation in cell survival and stress response. Repeat analysis of growth curves in rich media and biofilm analysis in minimal media of various mutant strains and wild-type bacteria did not show significant differences that could be attributed to the rimI/rimJ silencing. However, total proteome and acetylome profiles varied significantly across mutants and wild-type strains, highlighting the role of RimI/RimJ in modulating levels of proprotein acetylation in the cellular milieu. Further, we observed a significant increase in the minimum inhibitory concentration (MIC) (from 64 to 1024 µg ml-1) for the drug isoniazid in rimI mutant strains. The increase in MIC value for the drug isoniazid in the mutant strains suggests the link between N-terminal acetylation and antibiotic resistance. The study highlights the utility of CRISPRi as a convenient tool to study the role of PTMs, such as acetylation in mycobacteria. It also identifies rimI/rimJ genes as necessary for managing cellular response against antibiotic stress. Further research would be required to decipher the potential of targeting acetylation to enhance the efficacy of existing antibiotics.


Subject(s)
Isoniazid , Mycobacterium smegmatis , Mycobacterium smegmatis/genetics , Mycobacterium smegmatis/metabolism , Isoniazid/pharmacology , Clustered Regularly Interspaced Short Palindromic Repeats , Bacterial Proteins/metabolism
3.
Microbiology (Reading) ; 168(8)2022 08.
Article in English | MEDLINE | ID: mdl-35917161

ABSTRACT

Era GTPase is universally present in microbes including Mycobacterium tuberculosis (Mtb) complex bacteria. While Era is known to regulate ribosomal assembly in Escherichia coli and predicted to be essential for in vitro growth, its function in mycobacteria remains obscured. Herein, we show that Era ortholog in the attenuated Mtb H37Ra strain, MRA_2388 (annotated as EraMT) is a cell envelope localized protein harbouring critical GTP-binding domains, which interacts with several envelope proteins of Mtb. The purified Era from M. smegmatis (annotated as EraMS) exhibiting ~90 % sequence similarity with EraMT, exists in monomeric conformation. While it is co-purified with RNA upon overexpression in E. coli, the presence of RNA does not modulate the GTPase activity of the EraMS as against its counterpart from other organisms. CRISPRi silencing of eraMT does not show any substantial effect on the in vitro growth of Mtb H37Ra, which suggests a redundant function of Era in mycobacteria. Notably, no effect on ribosome assembly, protein synthesis or bacterial susceptibility to protein synthesis inhibitors was observed upon depletion of EraMT in Mtb H37Ra, further indicating a divergent role of Era GTPase in mycobacteria.


Subject(s)
Escherichia coli Proteins , Mycobacterium tuberculosis , ras Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , GTP-Binding Proteins/chemistry , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , RNA , Ribosomes/genetics , Ribosomes/metabolism
4.
Cell Microbiol ; 23(5): e13311, 2021 05.
Article in English | MEDLINE | ID: mdl-33486886

ABSTRACT

The spread of infection is directly determined by the ability of a pathogen to invade and infect host tissues. The process involves adherence due to host-pathogen interactions and traversal into deeper tissues. Mycobacterium tuberculosis (Mtb) primarily infects the lung but is unique in its ability to infect almost any other organ of the human host including immune privileged sites such as the central nervous system (CNS). The extreme invasiveness of this bacterium is not fully understood. In the current study, we report that cell surface Mtb glyceraldehyde-3-phosphate dehydrogenase (GAPDH) functions as a virulence factor by multiple mechanisms. Firstly, it serves as a dual receptor for both plasminogen (Plg) and plasmin (Plm). CRISPRi-mediated silencing of this essential enzyme confirmed its role in the recruitment of Plg/Plm. Our studies further demonstrate that soluble GAPDH can re-associate on Mtb bacilli to promote plasmin(ogen) recruitment. The direct association of plasmin(ogen) via cell surface GAPDH or by the re-association of soluble GAPDH enhanced bacterial adherence to and traversal across lung epithelial cells. Furthermore, the association of GAPDH with host extracellular matrix (ECM) proteins coupled with its ability to recruit plasmin(ogen) may endow cells with the ability of directed proteolytic activity vital for tissue invasion.


Subject(s)
Adhesins, Bacterial/metabolism , Fibrinolysin/metabolism , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/pathogenicity , Plasminogen/metabolism , Virulence Factors/metabolism , A549 Cells , Adhesins, Bacterial/genetics , Bacterial Adhesion , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Glyceraldehyde-3-Phosphate Dehydrogenases/genetics , Humans , Protein Binding , Virulence , Virulence Factors/genetics
5.
J Proteome Res ; 20(9): 4415-4426, 2021 09 03.
Article in English | MEDLINE | ID: mdl-34343006

ABSTRACT

Persisters are a subpopulation of bacteria that resist killing by antibiotics, even though they are genetically similar to their drug-susceptible counterpart. Like in several other bacteria, persisters are also reported in the human pathogen Mycobacterium tuberculosis (Mtb). Stochastic formation of Mtb persisters with a high level of antimicrobial tolerance set the stage for subsequent multidrug-resistant mutations. Despite significant advancement in our understanding, much remains to be learnt about the biology of this drug-recalcitrant bacterial subpopulation. Most of the information pertaining to the metabolic evolution required for emergence of drug tolerance in tuberculosis (TB) pathogens has come from transcriptional, metabolomic, and mutagenesis studies. Since proteins are the key functional molecules regulating the majority of metabolic activities in the cell, investigation of the whole-cell protein expression profile will further provide valuable insights into the physiology of Mtb persisters. We performed a quantitative proteomic analysis of Mtb H37Rv cultured under an in vitro persistence model to identify the proteomic profile of the phenotypic drug-tolerant bacterial population. Our study reveals that proteins related to intermediary metabolism and respiration, cell-wall and cell processes, lipid metabolism, information pathways, and virulence, detoxification and adaptation functional categories are primarily modulated in the persister subpopulation. Further, we demonstrate that various surface-localized mycobacterial membrane protein large (MmpL) proteins, which exhibit a high level of expression in Mtb persisters, are crucial for the mycobacterial survival during persistent growth state. A drug-induced persister subpopulation of Mtb exhibit various differentially regulated proteins that might be critical in mitigating the antimicrobial effect of drugs and can be further explored to develop novel anti-TB agents. The peptide identifications and tandem mass spectra (MS/MS) have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD013621.


Subject(s)
Mycobacterium tuberculosis , Pharmaceutical Preparations , Antitubercular Agents/pharmacology , Humans , Proteomics , Tandem Mass Spectrometry
6.
J Biol Chem ; 295(28): 9455-9473, 2020 07 10.
Article in English | MEDLINE | ID: mdl-32409584

ABSTRACT

The human pathogen Mycobacterium tuberculosis (Mtb) harbors a well-orchestrated Clp (caseinolytic protease) proteolytic machinery consisting of two oligomeric segments, a barrel-shaped heterotetradecameric protease core comprising the ClpP1 and ClpP2 subunits, and hexameric ring-like ATP-dependent unfoldases composed of ClpX or ClpC1. The roles of the ClpP1P2 protease subunits are well-established in Mtb, but the potential roles of the associated unfoldases, such as ClpC1, remain elusive. Using a CRISPR interference-mediated gene silencing approach, here we demonstrate that clpC1 is indispensable for the extracellular growth of Mtb and for its survival in macrophages. The results from isobaric tags for relative and absolute quantitation-based quantitative proteomic experiments with clpC1- and clpP2-depleted Mtb cells suggested that the ClpC1P1P2 complex critically maintains the homeostasis of various growth-essential proteins in Mtb, several of which contain intrinsically disordered regions at their termini. We show that the Clp machinery regulates dosage-sensitive proteins such as the small heat shock protein Hsp20, which exists in a dodecameric conformation. Further, we observed that Hsp20 is poorly expressed in WT Mtb and that its expression is greatly induced upon depletion of clpC1 or clpP2 Remarkably, high Hsp20 protein levels were detected in the clpC1(-) or clpP2(-) knockdown strains but not in the parental bacteria, despite significant induction of hsp20 transcripts. In summary, the cellular levels of oligomeric proteins such as Hsp20 are maintained post-translationally through their recognition, disassembly, and degradation by ClpC1, which requires disordered ends in its protein substrates.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Heat-Shock Proteins/metabolism , Intrinsically Disordered Proteins/biosynthesis , Mycobacterium tuberculosis/metabolism , Bacterial Proteins/genetics , Gene Knockdown Techniques , Heat-Shock Proteins/genetics , Humans , Intrinsically Disordered Proteins/genetics , Mycobacterium tuberculosis/genetics , Protein Domains , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , THP-1 Cells
7.
J Proteome Res ; 19(6): 2316-2336, 2020 06 05.
Article in English | MEDLINE | ID: mdl-32407090

ABSTRACT

Comparative phosphoproteomics of Mycobacterium tuberculosis (Mtb)- and Mycobacterium bovis BCG (BCG)-infected macrophages could be instrumental in understanding the characteristic post-translational modifications of host proteins and their subsequent involvement in determining Mtb pathogenesis. To identify proteins acquiring a distinct phosphorylation status, herein, we compared the phosphorylation profile of macrophages upon exposure to Mtb and BCG. We observed a significant dephosphorylation of proteins following Mtb infection relative to those with uninfected or BCG-infected cells. A comprehensive tandem mass tag mass spectrometry (MS) approach detected ∼10% phosphosites on a variety of host proteins that are modulated in response to infection. Interestingly, the innate immune-enhancing interferon (IFN)-stimulated genes were identified as a class of proteins differentially phosphorylated during infection, including the cytosolic RNA sensor RIG-I, which has been implicated in the immune response to bacterial infection. We show that Mtb infection results in the activation of RIG-I in primary human macrophages. Studies using RIG-I knockout macrophages reveal that the Mtb-mediated activation of RIG-I promotes IFN-ß, IL-1α, and IL-1ß levels, dampens autophagy, and facilitates intracellular Mtb survival. To our knowledge, this is the first study providing exhaustive information on relative and quantitative changes in the global phosphoproteome profile of host macrophages that can be further explored in designing novel anti-TB drug targets. The peptide identification and MS/MS spectra have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD013171.


Subject(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Humans , Macrophages , RNA , Tandem Mass Spectrometry
8.
Plasmid ; 110: 102515, 2020 07.
Article in English | MEDLINE | ID: mdl-32535164

ABSTRACT

Due to lipid-rich cell wall, slow growth and pathogenic nature, it is difficult to manipulate Mycobacterium tuberculosis (Mtb) genome by conventional tools. Recently we have introduced a novel CRISPRi approach for repression of genes in mycobacteria. Although the existing CRISPRi plasmid is proven useful for silencing individual targets, disruption of multiple ORFs remains challenging in mycobacteria. Herein, we report construction of the guide sequence expressing plasmid, pGrna to facilitate cloning and expression of multiple guide sequence cassettes targeting a versatile set of Mtb genes from a single plasmid. Using the modified plasmid, pGrna2, it was shown that expression of all the 10 extracellular sigma factor-encoding genes together with sigB and sigF can be efficiently repressed in Mtb expressing dCas9. In vitro growth analysis indicates that simultaneous knockdown of these non-essential transcriptional regulators is lethal for growth. Importantly, the Δ12sig strain exhibits sensitivity to transcriptional inhibitor rifampicin and oxidative stress diamide, further implying involvement of these genes in controlling bacterial stress response. To the best of my knowledge, this is the first report wherein 12 genes have been efficiently silenced together in a single recombinant strain of Mtb. The modified pGrna2 plasmid offers a powerful tool to decipher the functioning of genes that are redundant or regulate a particular metabolic pathway and can be useful in identification of novel anti-tuberculosis drug targets.


Subject(s)
Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/genetics , CRISPR-Cas Systems , Gene Expression Regulation, Bacterial , Gene Silencing , Mycobacterium tuberculosis/genetics , Plasmids/genetics , Gene Editing , Mycobacterium tuberculosis/growth & development
9.
J Biol Chem ; 292(27): 11326-11335, 2017 07 07.
Article in English | MEDLINE | ID: mdl-28515317

ABSTRACT

Mycobacterium tuberculosis causes tuberculosis in humans and predominantly infects alveolar macrophages. To survive inside host lesions and to evade immune surveillance, this pathogen has developed many strategies. For example, M. tuberculosis uses host-derived lipids/fatty acids as nutrients for prolonged persistence within hypoxic host microenvironments. M. tuberculosis imports these metabolites through its respective transporters, and in the case of host fatty acids, a pertinent question arises: does M. tuberculosis have the enzyme(s) for cleavage of fatty acids from host lipids? We show herein that a previously uncharacterized membrane-associated M. tuberculosis protein encoded by Rv2672 is conserved exclusively in actinomycetes, exhibits both lipase and protease activities, is secreted into macrophages, and catalyzes host lipid hydrolysis. In light of these functions, we annotated Rv2672 as mycobacterial secreted hydrolase 1 (Msh1). Furthermore, we found that this enzyme is up-regulated both in an in vitro model of hypoxic stress and in a mouse model of M. tuberculosis infection, suggesting that the pathogen requires Msh1 under hypoxic conditions. Silencing Msh1 expression compromised the ability of M. tuberculosis to proliferate inside lipid-rich foamy macrophages but not under regular culture conditions in vitro, underscoring Msh1's importance for M. tuberculosis persistence in lipid-rich microenvironments. Of note, this is the first report providing insight into the mechanism of host lipid catabolism by an M. tuberculosis enzyme, augmenting our current understanding of how M. tuberculosis meets its nutrient requirements under hypoxic conditions.


Subject(s)
Bacterial Proteins/metabolism , Foam Cells/metabolism , Foam Cells/microbiology , Hydrolases/metabolism , Mycobacterium tuberculosis/enzymology , Tuberculosis/enzymology , Animals , Cell Hypoxia , Foam Cells/pathology , Lipid Metabolism , Mice , Mycobacterium tuberculosis/pathogenicity , RAW 264.7 Cells , Tuberculosis/genetics , Tuberculosis/pathology
10.
Nature ; 460(7251): 98-102, 2009 Jul 02.
Article in English | MEDLINE | ID: mdl-19516256

ABSTRACT

With 8.9 million new cases and 1.7 million deaths per year, tuberculosis is a leading global killer that has not been effectively controlled. The causative agent, Mycobacterium tuberculosis, proliferates within host macrophages where it modifies both its intracellular and local tissue environment, resulting in caseous granulomas with incomplete bacterial sterilization. Although infection by various mycobacterial species produces a cyclic AMP burst within macrophages that influences cell signalling, the underlying mechanism for the cAMP burst remains unclear. Here we show that among the 17 adenylate cyclase genes present in M. tuberculosis, at least one (Rv0386) is required for virulence. Furthermore, we demonstrate that the Rv0386 adenylate cyclase facilitates delivery of bacterial-derived cAMP into the macrophage cytoplasm. Loss of Rv0386 and the intramacrophage cAMP it delivers results in reductions in TNF-alpha production via the protein kinase A and cAMP response-element-binding protein pathway, decreased immunopathology in animal tissues, and diminished bacterial survival. Direct intoxication of host cells by bacterial-derived cAMP may enable M. tuberculosis to modify both its intracellular and tissue environments to facilitate its long-term survival.


Subject(s)
Adenylyl Cyclases/metabolism , Cyclic AMP/metabolism , Macrophages/metabolism , Macrophages/pathology , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/pathogenicity , Tuberculosis/pathology , Adenylyl Cyclases/genetics , Animals , Cell Line , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Cytosol/metabolism , Cytosol/microbiology , Macrophages/immunology , Macrophages/microbiology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/growth & development , Phosphoric Diester Hydrolases/genetics , Phosphoric Diester Hydrolases/metabolism , Phosphorylation , Tuberculosis/immunology , Tuberculosis/microbiology , Tumor Necrosis Factor-alpha/biosynthesis , Tumor Necrosis Factor-alpha/metabolism , Virulence/genetics
11.
RSC Adv ; 14(38): 27530-27554, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39221132

ABSTRACT

1-Deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) is a key enzyme of the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway operating in several pathogens, including Mycobacterium and Plasmodium. Since a DXR homologue is not present in humans, it is an important antimicrobial target. Fosmidomycin (FSM) and its analogues inhibit DXR function by chelating the divalent metal (Mn2+ or Mg2+) in its active site via a hydroxamate metal binding group (MBG). The latter, however, enhances the polarity of molecules and is known to display metabolic instability and toxicity issues. While attempts have been made to increase the lipophilicity of FSM by substituting the linker chain and prodrug approach, very few efforts have been made to replace the hydroxamate group with other lipophilic MBGs. We report a systematic in silico and experimental investigation to identify novel MBGs for designing non-hydroxamate lipophilic DXR inhibitors. The SAR studies with selected MBG fragments identified novel inhibitors of E. Coli DXR with IC50 values ranging from 0.29 to 106 µM. The promising inhibitors were also screened against ESKAPE pathogens and M. tuberculosis.

12.
Commun Biol ; 7(1): 949, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107377

ABSTRACT

The limitations of TB treatment are the long duration and immune-dampening effects of anti-tuberculosis therapy. The Cell wall plays a crucial role in survival and virulence; hence, enzymes involved in its biosynthesis are good therapeutic targets. Here, we identify Mycobacterium tuberculosis (Mtb) GlmM, (GlmMMtb) engaged in the UDP-GlcNAc synthesis pathway as an essential enzyme. We generated a conditional knockdown strain, Rv-glmMkD using the CRISPR interference-mediated gene silencing approach. Depletion of GlmMMtb affects the morphology and thickness of the cell wall. The Rv-glmMkD strain attenuated Mtb survival in vitro, in the host macrophages (ex vivo), and in a murine mice infection model (in vivo). Results suggest that the depletion of GlmMMtb induces M1 macrophage polarization, prompting a pro-inflammatory cytokine response, apparent from the upregulation of activation markers, including IFNÉ£ and IL-17 that resists the growth of Mtb. These observations provide a rationale for exploring GlmMMtb as a potential therapeutic target.


Subject(s)
Bacterial Proteins , Macrophages , Mycobacterium tuberculosis , Tuberculosis , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/pathogenicity , Animals , Mice , Tuberculosis/immunology , Tuberculosis/microbiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Macrophages/immunology , Macrophages/microbiology , Macrophages/metabolism , Mice, Inbred C57BL , Female , Host-Pathogen Interactions/immunology , Disease Models, Animal , Humans
13.
Sci Rep ; 14(1): 12170, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38806590

ABSTRACT

Tuberculosis (TB) continues to be a global health crisis, necessitating urgent interventions to address drug resistance and improve treatment efficacy. In this study, we validate lumazine synthase (RibH), a vital enzyme in the riboflavin biosynthetic pathway, as a potential drug target against Mycobacterium tuberculosis (M. tb) using a CRISPRi-based conditional gene knockdown strategy. We employ a high-throughput molecular docking approach to screen ~ 600,000 compounds targeting RibH. Through in vitro screening of 55 shortlisted compounds, we discover 3 compounds that exhibit potent antimycobacterial activity. These compounds also reduce intracellular burden of M. tb during macrophage infection and prevent the resuscitation of the nutrient-starved persister bacteria. Moreover, these three compounds enhance the bactericidal effect of first-line anti-TB drugs, isoniazid and rifampicin. Corroborating with the in silico predicted high docking scores along with favourable ADME and toxicity profiles, all three compounds demonstrate binding affinity towards purified lumazine synthase enzyme in vitro, in addition these compounds exhibit riboflavin displacement in an in vitro assay with purified lumazine synthase indicative of specificity of these compounds to the active site. Further, treatment of M. tb with these compounds indicate reduced production of flavin adenine dinucleotide (FAD), the ultimate end product of the riboflavin biosynthetic pathway suggesting the action of these drugs on riboflavin biosynthesis. These compounds also show acceptable safety profile in mammalian cells, with a high selective index. Hence, our study validates RibH as an important drug target against M. tb and identifies potent antimycobacterial agents.


Subject(s)
Antitubercular Agents , Molecular Docking Simulation , Mycobacterium tuberculosis , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/drug effects , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Multienzyme Complexes/antagonists & inhibitors , Multienzyme Complexes/metabolism , Drug Discovery , Bacterial Proteins/metabolism , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Humans , Tuberculosis/drug therapy , Tuberculosis/microbiology , Microbial Sensitivity Tests , Animals
14.
Gene ; 857: 147173, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36627091

ABSTRACT

A simple, rapid and low-cost diagnostic test, which can detect both the drug-sensitive and the drug-resistant tuberculosis (TB) cases is the need of the hour. Here, we developed a Cas9/gRNA-assisted quantitative Real-Time PCR (qRT-PCR) (CARP) assay to detect single nucleotide mutations causing drug resistance in the TB pathogen, Mycobacterium tuberculosis (Mtb). Guide RNAs (gRNAs) were designed against S531 and H526 positions in the rifampicin (RIF)-resistance-determining region (RRDR) of the Mtb rpoB gene that exhibit frequent mutations in the RR clinical isolates of Mtb. Conditions were optimised for in vitro Cas9 cleavage such that single nucleotide changes at these positions can be recognised by Cas9/gRNA complex with high sensitivity and 100% specificity. Further estimation of Cas9/gRNA-based cleavage of target DNA by qRT-PCR led to rapid detection of drug-resistant sequences. The newly designed CARP assay holds a great deal of promise in the diagnosis and prognosis of patients suffering from TB, in a cost-effective manner.


Subject(s)
Carps , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Animals , Rifampin/pharmacology , Point Mutation , Real-Time Polymerase Chain Reaction , CRISPR-Cas Systems , Drug Resistance, Bacterial/genetics , Tuberculosis, Multidrug-Resistant/diagnosis , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/genetics , Mutation , DNA-Directed RNA Polymerases/genetics , Microbial Sensitivity Tests , Bacterial Proteins/genetics , Bacterial Proteins/pharmacology
15.
Microbiol Spectr ; 11(3): e0031223, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37022172

ABSTRACT

Protein folding is a crucial process in maintaining protein homeostasis, also known as proteostasis, in the cell. The requirement for the assistance of molecular chaperones in the appropriate folding of several proteins has already called into question the previously held view of spontaneous protein folding. These chaperones are highly ubiquitous cellular proteins, which not only help in mediating the proper folding of other nascent polypeptides but are also involved in refolding of the misfolded or the aggregated proteins. Hsp90 family proteins such as high-temperature protein G (HtpG) are abundant and ubiquitously expressed in both eukaryotic and prokaryotic cells. Although HtpG is known as an ATP-dependent chaperone protein in most organisms, function of this protein remains obscured in mycobacterial pathogens. Here, we aim to investigate significance of HtpG as a chaperone in the physiology of Mycobacterium tuberculosis. We report that M. tuberculosis HtpG (mHtpG) is a metal-dependent ATPase which exhibits chaperonin activity towards denatured proteins in coordination with the DnaK/DnaJ/GrpE chaperone system via direct association with DnaJ2. Increased expression of DnaJ1, DnaJ2, ClpX, and ClpC1 in a ΔhtpG mutant strain further suggests cooperativity of mHtpG with various chaperones and proteostasis machinery in M. tuberculosis. IMPORTANCE M. tuberculosis is exposed to variety of extracellular stressful conditions and has evolved mechanisms to endure and adapt to the adverse conditions for survival. mHtpG, despite being dispensable for M. tuberculosis growth under in vitro conditions, exhibits a strong and direct association with DnaJ2 cochaperone and assists the mycobacterial DnaK/DnaJ/GrpE (KJE) chaperone system. These findings suggest the potential role of mHtpG in stress management of the pathogen. Mycobacterial chaperones are responsible for folding of nascent protein as well as reactivation of protein aggregates. M. tuberculosis shows differential adaptive response subject to the availability of mHtpG. While its presence facilitates improved protein refolding via stimulation of the KJE chaperone activity, in the absence of mHtpG, M. tuberculosis enhances expression of DnaJ1/J2 cochaperones as well as Clp protease machinery for maintenance of proteostasis. Overall, this study provides a framework for future investigation to better decipher the mycobacterial proteostasis network in the light of stress adaptability and/or survival.


Subject(s)
Escherichia coli Proteins , Mycobacterium tuberculosis , Tuberculosis , Humans , Heat-Shock Proteins/metabolism , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , HSP70 Heat-Shock Proteins , HSP40 Heat-Shock Proteins/genetics , Escherichia coli Proteins/metabolism , Bacterial Proteins/metabolism , Escherichia coli/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism
16.
Commun Biol ; 6(1): 708, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37433855

ABSTRACT

Survival response of the human tuberculosis pathogen, Mycobacterium tuberculosis (Mtb) to a diverse environmental cues is governed through its versatile transcription regulatory mechanisms with the help of a large pool of transcription regulators (TRs). Rv1830 is one such conserved TR, which remains uncharacterized in Mtb. It was named as McdR based on an effect on cell division upon its overexpression in Mycobacterium smegmatis. Recently, it has been implicated in antibiotic resilience in Mtb and reannotated as ResR. While Rv1830 affects cell division by modulating the expression of M. smegmatis whiB2, the underlying cause of its essentiality and regulation of drug resilience in Mtb is yet to be deciphered. Here we show that ResR/McdR, encoded by ERDMAN_2020 in virulent Mtb Erdman, is pivotal for bacterial proliferation and crucial metabolic activities. Importantly, ResR/McdR directly regulates ribosomal gene expression and protein synthesis, requiring distinct disordered N-terminal sequence. Compared to control, bacteria depleted with resR/mcdR exhibit delayed recovery post-antibiotic treatment. A similar effect upon knockdown of rplN operon genes further implicates ResR/McdR-regulated protein translation machinery in attributing drug resilience in Mtb. Overall, findings from this study suggest that chemical inhibitors of ResR/McdR may be proven effective as adjunctive therapy for shortening the duration of TB treatment.


Subject(s)
Mycobacterium tuberculosis , Humans , Mycobacterium tuberculosis/genetics , Protein Biosynthesis , Ribosomes , Anti-Bacterial Agents , Cell Division
17.
ACS Omega ; 7(30): 26749-26766, 2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35936415

ABSTRACT

The fundamental to the pathogenicity of Mycobacterium tuberculosis (Mtb) is the modulation in the control mechanisms that play a role in sensing and counteracting the microbicidal milieu encompassing various cellular stresses inside the human host. To understand such changes, we measured the cellular proteome of Mtb subjected to different stresses using a quantitative proteomics approach. We identified defined sets of Mtb proteins that are modulated in response to acid and a sublethal dose of diamide and H2O2 treatments. Notably, proteins involved in metabolic, catalytic, and binding functions are primarily affected under these stresses. Moreover, our analysis led to the observations that during acidic stress Mtb enters into energy-saving mode simultaneously modulating the acid tolerance system, whereas under diamide and H2O2 stresses, there were prominent changes in the biosynthesis and homeostasis pathways, primarily modifying the resistance mechanism in diamide-treated bacteria while causing metabolic arrest in H2O2-treated bacilli. Overall, we delineated the adaptive mechanisms that Mtb may utilize under physiological stresses and possible overlap between the responses to these stress conditions. In addition to offering important protein signatures that can be exploited for future mechanistic studies, our study highlights the importance of proteomics in understanding complex adjustments made by the human pathogen during infection.

18.
Sci Rep ; 12(1): 13801, 2022 08 13.
Article in English | MEDLINE | ID: mdl-35963878

ABSTRACT

There is an urgent need to validate new drug targets and identify small molecules that possess activity against both drug-resistant and drug-sensitive bacteria. The enzymes belonging to amino acid biosynthesis have been shown to be essential for growth in vitro, in vivo and have not been exploited much for the development of anti-tubercular agents. Here, we have identified small molecule inhibitors targeting homoserine acetyl transferase (HSAT, MetX, Rv3341) from M. tuberculosis. MetX catalyses the first committed step in L-methionine and S-adenosyl methionine biosynthesis resulting in the formation of O-acetyl-homoserine. Using CRISPRi approach, we demonstrate that conditional repression of metX resulted in inhibition of M. tuberculosis growth in vitro. We have determined steady state kinetic parameters for the acetylation of L-homoserine by Rv3341. We show that the recombinant enzyme followed Michaelis-Menten kinetics and utilizes both acetyl-CoA and propionyl-CoA as acyl-donors. High-throughput screening of a 2443 compound library resulted in identification of small molecule inhibitors against MetX enzyme from M. tuberculosis. The identified lead compounds inhibited Rv3341 enzymatic activity in a dose dependent manner and were also active against HSAT homolog from S. aureus. Molecular docking of the identified primary hits predicted residues that are essential for their binding in HSAT homologs from M. tuberculosis and S. aureus. ThermoFluor assay demonstrated direct binding of the identified primary hits with HSAT proteins. Few of the identified small molecules were able to inhibit growth of M. tuberculosis and S. aureus in liquid cultures. Taken together, our findings validated HSAT as an attractive target for development of new broad-spectrum anti-bacterial agents that should be effective against drug-resistant bacteria.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Homoserine/pharmacology , Humans , Molecular Docking Simulation , Staphylococcus aureus
19.
Prog Mol Biol Transl Sci ; 179: 11-76, 2021.
Article in English | MEDLINE | ID: mdl-33785174

ABSTRACT

This chapter provides a detailed description of the history of CRISPR-Cas and its evolution into one of the most efficient genome-editing strategies. The chapter begins by providing information on early findings that were critical in deciphering the role of CRISPR-Cas associated systems in prokaryotes. It then describes how CRISPR-Cas had been evolved into an efficient genome-editing strategy. In the subsequent section, latest developments in the genome-editing approaches based on CRISPR-Cas are discussed. The chapter ends with the recent classification and possible evolution of CRISPR-Cas systems.


Subject(s)
CRISPR-Cas Systems , Gene Editing , CRISPR-Cas Systems/genetics , Humans
20.
Commun Biol ; 4(1): 410, 2021 03 25.
Article in English | MEDLINE | ID: mdl-33767335

ABSTRACT

Intracellular pathogens including Mycobacterium tuberculosis (Mtb) have evolved with strategies to uptake amino acids from host cells to fulfil their metabolic requirements. However, Mtb also possesses de novo biosynthesis pathways for all the amino acids. This raises a pertinent question- how does Mtb meet its histidine requirements within an in vivo infection setting? Here, we present a mechanism in which the host, by up-regulating its histidine catabolizing enzymes through interferon gamma (IFN-γ) mediated signalling, exerts an immune response directed at starving the bacillus of intracellular free histidine. However, the wild-type Mtb evades this host immune response by biosynthesizing histidine de novo, whereas a histidine auxotroph fails to multiply. Notably, in an IFN-γ-/- mouse model, the auxotroph exhibits a similar extent of virulence as that of the wild-type. The results augment the current understanding of host-Mtb interactions and highlight the essentiality of Mtb histidine biosynthesis for its pathogenesis.


Subject(s)
Histidine/biosynthesis , Host-Pathogen Interactions , Interferon-gamma/metabolism , Mycobacterium tuberculosis/metabolism , Mycobacterium tuberculosis/pathogenicity , Animals , Female , Histidine/deficiency , Humans , Mice , Mice, Inbred C57BL , RAW 264.7 Cells , Rabbits , Signal Transduction , THP-1 Cells , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL