Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Food Microbiol ; 93: 103614, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32912586

ABSTRACT

There are growing demands globally to use safe, efficacious and environmentally friendly sanitizers for post-harvest treatment of fresh produce to reduce or eliminate spoilage and foodborne pathogens. Here, we compared the efficacy of a pH-neutral electrolyzed oxidizing water (Ecas4 Anolyte; ECAS) with that of an approved peroxyacetic acid-based sanitizer (Ecolab Tsunami® 100) in reducing the total microbial load and inoculated Escherichia coli, Salmonella Enteritidis and Listeria innocua populations on post-harvest baby spinach leaves over 10 days. The impact of both sanitizers on the overall quality of the spinach leaves during storage was also assessed by shelf life and vitamin C content measurements. ECAS at 50 ppm and 85 ppm significantly reduced the bacterial load compared to tap water-treated or untreated (control) leaves, and at similar levels (approx. 10-fold reduction) to those achieved using 50 ppm of Ecolab Tsunami® 100. While there were no obvious deleterious effects of treatment with 50 ppm Tsunami® 100 or ECAS at 50 ppm and 85 ppm on plant leaf appearance, tap water-treated and untreated leaves showed some yellowing, bruising and sliming. Given its safety, efficacy and environmentally-friendly characteristics, ECAS could be a viable alternative to chemical-based sanitizers for post-harvest treatment of fresh produce.


Subject(s)
Electrolysis , Food Contamination/analysis , Plant Leaves/microbiology , Spinacia oleracea/microbiology , Water/chemistry , Bacteria/classification , Escherichia coli , Food Microbiology , Food Safety , Food Storage , Foodborne Diseases/microbiology , Hydrogen-Ion Concentration , Listeria , Oxidation-Reduction , Peracetic Acid , Salmonella enteritidis , Temperature
2.
Food Microbiol ; 68: 51-60, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28800825

ABSTRACT

The bacterial species and specific spoilage organisms associated with the Southern Australian King George Whiting (KGW) and Tasmanian Atlantic Salmon (TAS), and the efficacy of a HOCl-containing water-based sanitization product (Electro-Chemically Activated Solution, by ECAS4) in extending the shelf life of KGW and TAS fillets were evaluated. Fillets were washed with an ECAS4 solution containing either 45 ppm or 150 ppm of free chlorine and bacterial species enumerated on selective and non-selective media, followed by identification of pure isolates by 16 S rRNA gene sequencing. The dominant spoilage microbiota in KGW and TAS fillets stored at 4 ± 1 °C were Pseudomonas spp. and Shewanella spp. At either concentration, ECAS4 significantly reduced total bacterial load and specific spoilage organisms on KGW and TAS fillets (approx. 1-2 log colony-forming units) during storage and significantly extended the shelf life of the fillets by 2 and 4 days, respectively. The significant increase in shelf life and quality of fillets was corroborated by raw and cooked sensory evaluation. ECAS4 sanitization could have a significant impact on the overall food industry, translating into health and economic benefits through reduction of food spoilage bacteria and potentially, foodborne pathogens without many of the disadvantages of currently approved biocides.


Subject(s)
Bacteria/drug effects , Disinfectants/pharmacology , Fish Products/microbiology , Food Contamination/prevention & control , Food Preservation/methods , Food Preservatives/pharmacology , Salmo salar/microbiology , Animals , Bacteria/growth & development , Bacteria/isolation & purification , Food Preservation/instrumentation , Food Storage
SELECTION OF CITATIONS
SEARCH DETAIL