Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Cell ; 159(6): 1352-64, 2014 Dec 04.
Article in English | MEDLINE | ID: mdl-25480298

ABSTRACT

The global rise in obesity has revitalized a search for genetic and epigenetic factors underlying the disease. We present a Drosophila model of paternal-diet-induced intergenerational metabolic reprogramming (IGMR) and identify genes required for its encoding in offspring. Intriguingly, we find that as little as 2 days of dietary intervention in fathers elicits obesity in offspring. Paternal sugar acts as a physiological suppressor of variegation, desilencing chromatin-state-defined domains in both mature sperm and in offspring embryos. We identify requirements for H3K9/K27me3-dependent reprogramming of metabolic genes in two distinct germline and zygotic windows. Critically, we find evidence that a similar system may regulate obesity susceptibility and phenotype variation in mice and humans. The findings provide insight into the mechanisms underlying intergenerational metabolic reprogramming and carry profound implications for our understanding of phenotypic variation and evolution.


Subject(s)
Disease Models, Animal , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Epigenesis, Genetic , Obesity/genetics , Animals , Carbohydrate Metabolism , Diet , Embryo, Nonmammalian/metabolism , Eye Color , Female , Genetic Predisposition to Disease , Heterochromatin/metabolism , Humans , Male , Mice , Obesity/metabolism , Spermatozoa/metabolism
2.
Stem Cells ; 34(1): 233-45, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26299268

ABSTRACT

Growing evidence suggests that the lysine methyltransferase DOT1L/KMT4 has important roles in proliferation, survival, and differentiation of stem cells in development and in disease. We investigated the function of DOT1L in neural stem cells (NSCs) of the cerebral cortex. The pharmacological inhibition and shRNA-mediated knockdown of DOT1L impaired proliferation and survival of NSCs. DOT1L inhibition specifically induced genes that are activated during the unfolded protein response (UPR) in the endoplasmic reticulum (ER). Chromatin-immunoprecipitation analyses revealed that two genes encoding for central molecules involved in the ER stress response, Atf4 and Ddit3 (Chop), are marked with H3K79 methylation. Interference with DOT1L activity resulted in transcriptional activation of both genes accompanied by decreased levels of H3K79 dimethylation. Although downstream effectors of the UPR, such as Ppp1r15a/Gadd34, Atf3, and Tnfrsf10b/Dr5 were also transcriptionally activated, this most likely occurred in response to increased ATF4 expression rather than as a direct consequence of altered H3K79 methylation. While stem cells are particularly vulnerable to stress, the UPR and ER stress have not been extensively studied in these cells yet. Since activation of the ER stress program is also implicated in directing stem cells into differentiation or to maintain a proliferative status, the UPR must be tightly regulated. Our and published data suggest that histone modifications, including H3K4me3, H3K14ac, and H3K79me2, are implicated in the control of transcriptional activation of ER stress genes. In this context, the loss of H3K79me2 at the Atf4- and Ddit3-promoters appears to mark a point-of-no-return that activates the death program in NSCs.


Subject(s)
Activating Transcription Factor 4/metabolism , Cerebral Cortex/cytology , Endoplasmic Reticulum Stress , Methyltransferases/metabolism , Neural Stem Cells/cytology , Neuroprotection , Transcription Factor CHOP/metabolism , Animals , Benzimidazoles/pharmacology , Cell Differentiation , Cell Proliferation/drug effects , Cell Survival , Cells, Cultured , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/ultrastructure , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum Stress/genetics , Gene Expression Regulation/drug effects , Histone-Lysine N-Methyltransferase , Histones/metabolism , Lysine , Methylation/drug effects , Methyltransferases/antagonists & inhibitors , Mice , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Neuroprotection/drug effects , Transcription, Genetic/drug effects
3.
Cell Metab ; 27(6): 1294-1308.e7, 2018 Jun 05.
Article in English | MEDLINE | ID: mdl-29754954

ABSTRACT

To date, it remains largely unclear to what extent chromatin machinery contributes to the susceptibility and progression of complex diseases. Here, we combine deep epigenome mapping with single-cell transcriptomics to mine for evidence of chromatin dysregulation in type 2 diabetes. We find two chromatin-state signatures that track ß cell dysfunction in mice and humans: ectopic activation of bivalent Polycomb-silenced domains and loss of expression at an epigenomically unique class of lineage-defining genes. ß cell-specific Polycomb (Eed/PRC2) loss of function in mice triggers diabetes-mimicking transcriptional signatures and highly penetrant, hyperglycemia-independent dedifferentiation, indicating that PRC2 dysregulation contributes to disease. The work provides novel resources for exploring ß cell transcriptional regulation and identifies PRC2 as necessary for long-term maintenance of ß cell identity. Importantly, the data suggest a two-hit (chromatin and hyperglycemia) model for loss of ß cell identity in diabetes.


Subject(s)
Chromatin/metabolism , Diabetes Mellitus, Type 2/metabolism , Diet, High-Fat , Gene Silencing , Insulin-Secreting Cells/metabolism , Polycomb Repressive Complex 2/physiology , Animals , Cell Differentiation/genetics , Cells, Cultured , Chromosome Mapping , Diabetes Mellitus, Type 2/genetics , Epigenomics , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Humans , Hyperglycemia/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Polycomb Repressive Complex 2/genetics , Single-Cell Analysis
SELECTION OF CITATIONS
SEARCH DETAIL