Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 967
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 119(44): e2210258119, 2022 11.
Article in English | MEDLINE | ID: mdl-36279430

ABSTRACT

The paleomagnetic record is an archive of Earth's geophysical history, informing reconstructions of ancient plate motions and probing the core via the geodynamo. We report a robust 3.25-billion-year-old (Ga) paleomagnetic pole from the East Pilbara Craton, Western Australia. Together with previous results from the East Pilbara between 3.34 and 3.18 Ga, this pole enables the oldest reconstruction of time-resolved lithospheric motions, documenting 160 My of both latitudinal drift and rotation at rates of at least 0.55°/My. Motions of this style, rate, and duration are difficult to reconcile with true polar wander or stagnant-lid geodynamics, arguing strongly for mobile-lid geodynamics by 3.25 Ga. Additionally, this pole includes the oldest documented geomagnetic reversal, reflecting a stably dipolar, core-generated Archean dynamo.


Subject(s)
Geological Phenomena , Western Australia
2.
Am J Respir Cell Mol Biol ; 70(4): 283-294, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38207120

ABSTRACT

Bronchopulmonary dysplasia (BPD), the chronic lung disease of prematurity, is characterized by impaired lung development with sustained functional abnormalities due to alterations of airways and the distal lung. Although clinical studies have shown striking associations between antenatal stress and BPD, little is known about the underlying pathogenetic mechanisms. Whether dysanapsis, the concept of discordant growth of the airways and parenchyma, contributes to late respiratory disease as a result of antenatal stress is unknown. We hypothesized that antenatal endotoxin (ETX) impairs juvenile lung function as a result of altered central airway and distal lung structure, suggesting the presence of dysanapsis in this preclinical BPD model. Fetal rats were exposed to intraamniotic ETX (10 µg) or saline solution (control) 2 days before term. We performed extensive structural and functional evaluation of the proximal airways and distal lung in 2-week-old rats. Distal lung structure was quantified by stereology. Conducting airway diameters were measured using micro-computed tomography. Lung function was assessed during invasive ventilation to quantify baseline mechanics, response to methacholine challenge, and spirometry. ETX-exposed pups exhibited distal lung simplification, decreased alveolar surface area, and decreased parenchyma-airway attachments. ETX-exposed pups exhibited decreased tracheal and second- and third-generation airway diameters. ETX increased respiratory system resistance and decreased lung compliance at baseline. Only Newtonian resistance, specific to large airways, exhibited increased methacholine reactivity in ETX-exposed pups compared with controls. ETX-exposed pups had a decreased ratio of FEV in 0.1 second to FVC and a normal FEV in 0.1 second, paralleling the clinical definition of dysanapsis. Antenatal ETX causes abnormalities of the central airways and distal lung growth, suggesting that dysanapsis contributes to abnormal lung function in juvenile rats.


Subject(s)
Bronchopulmonary Dysplasia , Rats , Animals , Female , Pregnancy , Bronchopulmonary Dysplasia/pathology , Endotoxins , Methacholine Chloride/pharmacology , X-Ray Microtomography , Rats, Sprague-Dawley , Animals, Newborn , Lung/pathology
3.
Am J Physiol Lung Cell Mol Physiol ; 327(2): L218-L231, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38712433

ABSTRACT

Quantitative characterization of lung structures by morphometrical or stereological analysis of histological sections is a powerful means of elucidating pulmonary structure-function relations. The overwhelming majority of studies, however, fix lungs for histology at pressures outside the physiological/pathophysiological respiratory volume range. Thus, valuable information is being lost. In this perspective article, we argue that investigators performing pulmonary histological studies should consider whether the aims of their studies would benefit from fixation at functional transpulmonary pressures, particularly those of end-inspiration and end-expiration. We survey the pressures at which lungs are typically fixed in preclinical structure-function studies, provide examples of conditions that would benefit from histological evaluation at functional lung volumes, summarize available fixation methods, discuss alternative imaging modalities, and discuss challenges to implementing the suggested approach and means of addressing those challenges. We aim to persuade investigators that modifying or complementing the traditional histological approach by fixing lungs at minimal and maximal functional volumes could enable new understanding of pulmonary structure-function relations.


Subject(s)
Lung , Lung/physiology , Animals , Humans , Tissue Fixation/methods
4.
Am J Physiol Lung Cell Mol Physiol ; 327(1): L19-L39, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38712429

ABSTRACT

Mechanical ventilation can cause ventilation-induced lung injury (VILI). The concept of stress concentrations suggests that surfactant dysfunction-induced microatelectases might impose injurious stresses on adjacent, open alveoli and function as germinal centers for injury propagation. The aim of the present study was to quantify the histopathological pattern of VILI progression and to test the hypothesis that injury progresses at the interface between microatelectases and ventilated lung parenchyma during low-positive end-expiratory pressure (PEEP) ventilation. Bleomycin was used to induce lung injury with microatelectases in rats. Lungs were then mechanically ventilated for up to 6 h at PEEP = 1 cmH2O and compared with bleomycin-treated group ventilated protectively with PEEP = 5 cmH2O to minimize microatelectases. Lung mechanics were measured during ventilation. Afterward, lungs were fixed at end-inspiration or end-expiration for design-based stereology. Before VILI, bleomycin challenge reduced the number of open alveoli [N(alvair,par)] by 29%. No differences between end-inspiration and end-expiration were observed. Collapsed alveoli clustered in areas with a radius of up to 56 µm. After PEEP = 5 cmH2O ventilation for 6 h, N(alvair,par) remained stable while PEEP = 1 cmH2O ventilation led to an additional loss of aerated alveoli by 26%, mainly due to collapse, with a small fraction partly edema filled. Alveolar loss strongly correlated to worsening of tissue elastance, quasistatic compliance, and inspiratory capacity. The radius of areas of collapsed alveoli increased to 94 µm, suggesting growth of the microatelectases. These data provide evidence that alveoli become unstable in neighborhood of microatelectases, which most likely occurs due to stress concentration-induced local vascular leak and surfactant dysfunction.NEW & NOTEWORTHY Low-volume mechanical ventilation in the presence of high surface tension-induced microatelectases leads to the degradation of lung mechanical function via the progressive loss of alveoli. Microatelectases grow at the interfaces of collapsed and open alveoli. Here, stress concentrations might cause injury and alveolar instability. Accumulation of small amounts of alveolar edema can be found in a fraction of partly collapsed alveoli but, in this model, alveolar flooding is not a major driver for degradation of lung mechanics.


Subject(s)
Positive-Pressure Respiration , Pulmonary Alveoli , Ventilator-Induced Lung Injury , Animals , Pulmonary Alveoli/pathology , Pulmonary Alveoli/physiopathology , Rats , Male , Positive-Pressure Respiration/methods , Positive-Pressure Respiration/adverse effects , Ventilator-Induced Lung Injury/pathology , Ventilator-Induced Lung Injury/physiopathology , Bleomycin/toxicity , Bleomycin/adverse effects , Rats, Sprague-Dawley , Lung/pathology , Lung/physiopathology , Respiration, Artificial/adverse effects , Respiration, Artificial/methods , Respiratory Mechanics , Pulmonary Atelectasis/pathology , Pulmonary Atelectasis/physiopathology
5.
Radiology ; 311(2): e230750, 2024 05.
Article in English | MEDLINE | ID: mdl-38713024

ABSTRACT

Background Multiparametric MRI (mpMRI) improves prostate cancer (PCa) detection compared with systematic biopsy, but its interpretation is prone to interreader variation, which results in performance inconsistency. Artificial intelligence (AI) models can assist in mpMRI interpretation, but large training data sets and extensive model testing are required. Purpose To evaluate a biparametric MRI AI algorithm for intraprostatic lesion detection and segmentation and to compare its performance with radiologist readings and biopsy results. Materials and Methods This secondary analysis of a prospective registry included consecutive patients with suspected or known PCa who underwent mpMRI, US-guided systematic biopsy, or combined systematic and MRI/US fusion-guided biopsy between April 2019 and September 2022. All lesions were prospectively evaluated using Prostate Imaging Reporting and Data System version 2.1. The lesion- and participant-level performance of a previously developed cascaded deep learning algorithm was compared with histopathologic outcomes and radiologist readings using sensitivity, positive predictive value (PPV), and Dice similarity coefficient (DSC). Results A total of 658 male participants (median age, 67 years [IQR, 61-71 years]) with 1029 MRI-visible lesions were included. At histopathologic analysis, 45% (294 of 658) of participants had lesions of International Society of Urological Pathology (ISUP) grade group (GG) 2 or higher. The algorithm identified 96% (282 of 294; 95% CI: 94%, 98%) of all participants with clinically significant PCa, whereas the radiologist identified 98% (287 of 294; 95% CI: 96%, 99%; P = .23). The algorithm identified 84% (103 of 122), 96% (152 of 159), 96% (47 of 49), 95% (38 of 40), and 98% (45 of 46) of participants with ISUP GG 1, 2, 3, 4, and 5 lesions, respectively. In the lesion-level analysis using radiologist ground truth, the detection sensitivity was 55% (569 of 1029; 95% CI: 52%, 58%), and the PPV was 57% (535 of 934; 95% CI: 54%, 61%). The mean number of false-positive lesions per participant was 0.61 (range, 0-3). The lesion segmentation DSC was 0.29. Conclusion The AI algorithm detected cancer-suspicious lesions on biparametric MRI scans with a performance comparable to that of an experienced radiologist. Moreover, the algorithm reliably predicted clinically significant lesions at histopathologic examination. ClinicalTrials.gov Identifier: NCT03354416 © RSNA, 2024 Supplemental material is available for this article.


Subject(s)
Deep Learning , Multiparametric Magnetic Resonance Imaging , Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Aged , Prospective Studies , Multiparametric Magnetic Resonance Imaging/methods , Middle Aged , Algorithms , Prostate/diagnostic imaging , Prostate/pathology , Image-Guided Biopsy/methods , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods
6.
Haematologica ; 109(6): 1766-1778, 2024 06 01.
Article in English | MEDLINE | ID: mdl-38105738

ABSTRACT

Venetoclax with azacitidine (ven/aza) is a lower-intensity therapeutic regimen that has been shown to improve outcomes in elderly patients with acute myeloid leukemia (AML). Measurable residual disease (MRD) using flow cytometry is a valuable tool for the prediction of relapse in AML using conventional therapies and ven/aza; however, the prognostic value for broadscale molecular MRD after ven/aza treatment is less clear. We aimed to determine the utility of retrospective assessment using multi-gene molecular MRD by droplet digital polymerase chain reaction (ddPCR). We found this approach correlates with outcomes in a cohort of patients receiving frontline ven/aza for AML. The predictive value of ddPCR MRD persisted when NPM1 mutations were removed from analysis, as well as after adjustment for the impact of stem cell transplant on outcomes. Late achievement of MRD negativity, including after SCT, was still associated with superior outcomes compared to persistently detectable MRD. We further explored the impact of ven/aza on the burden of different classes of mutations, and identified the persistence of splicing factor mutations, commonly associated with MDS, as a consistent finding after ven/aza treatment. These data add to our understanding of the effects of ven/aza on AML disease biology and provide details on molecular depth of remission that can guide prospective trials in the future.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Azacitidine , Bridged Bicyclo Compounds, Heterocyclic , Leukemia, Myeloid, Acute , Mutation , Neoplasm, Residual , Nucleophosmin , Sulfonamides , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/diagnosis , Neoplasm, Residual/diagnosis , Sulfonamides/therapeutic use , Sulfonamides/administration & dosage , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/administration & dosage , Aged , Male , Female , Azacitidine/therapeutic use , Azacitidine/administration & dosage , Middle Aged , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Polymerase Chain Reaction/methods , Prognosis , Aged, 80 and over , Retrospective Studies , Adult , Treatment Outcome
7.
J Vasc Interv Radiol ; 35(3): 452-461.e3, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37852601

ABSTRACT

PURPOSE: To develop and evaluate a smartphone augmented reality (AR) system for a large 50-mm liver tumor ablation with treatment planning for composite overlapping ablation zones. MATERIALS AND METHODS: A smartphone AR application was developed to display tumor, probe, projected probe paths, ablated zones, and real-time percentage of the ablated target tumor volume. Fiducial markers were attached to phantoms and an ablation probe hub for tracking. The system was evaluated with tissue-mimicking thermochromic phantoms and gel phantoms. Four interventional radiologists performed 2 trials each of 3 probe insertions per trial using AR guidance versus computed tomography (CT) guidance approaches in 2 gel phantoms. Insertion points and optimal probe paths were predetermined. On Gel Phantom 2, serial ablated zones were saved and continuously displayed after each probe placement/adjustment, enabling feedback and iterative planning. The percentages of tumor ablated for AR guidance versus CT guidance, and with versus without display of recorded ablated zones, were compared among interventional radiologists with pairwise t-tests. RESULTS: The means of percentages of tumor ablated for CT freehand and AR guidance were 36% ± 7 and 47% ± 4 (P = .004), respectively. The mean composite percentages of tumor ablated for AR guidance were 43% ± 1 (without) and 50% ± 2 (with display of ablation zone) (P = .033). There was no strong correlation between AR-guided percentage of ablation and years of experience (r < 0.5), whereas there was a strong correlation between CT-guided percentage of ablation and years of experience (r > 0.9). CONCLUSIONS: A smartphone AR guidance system for dynamic iterative large liver tumor ablation was accurate, performed better than conventional CT guidance, especially for less experienced interventional radiologists, and enhanced more standardized performance across experience levels for ablation of a 50-mm tumor.


Subject(s)
Augmented Reality , Liver Neoplasms , Surgery, Computer-Assisted , Humans , Smartphone , Tomography, X-Ray Computed/methods , Phantoms, Imaging , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/surgery
8.
J Vasc Interv Radiol ; 35(7): 1022-1030.e4, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38599280

ABSTRACT

PURPOSE: To evaluate the performance of a prototype flexible transbronchial cryoprobe compared with that of percutaneous transthoracic cryoablation and to define cone-beam computed tomography (CT) imaging and pathology cryolesion features in an in vivo swine model. MATERIALS AND METHODS: Transbronchial cryoablation was performed with a prototype flexible cryoprobe (3 central and 3 peripheral lung ablations in 3 swine) and compared with transthoracic cryoablation performed with a commercially available rigid cryoprobe (2 peripheral lung ablations in 1 swine). Procedural time and cryoablation success rates for endobronchial navigation and cryoneedle deployment were measured. Intraoperative cone-beam CT imaging features of cryolesions were characterized and correlated with gross pathology and hematoxylin and eosin-stained sections of the explanted cryolesions. RESULTS: The flexible cryoprobe was successfully navigated and delivered to each target through a steerable guiding sheath (6/6). At 4 minutes after ablation, 5 of 6 transbronchial and 2 of 2 transthoracic cryolesions were visible on cone-beam CT. The volumes on cone-beam CT images were 55.5 cm3 (SE ± 8.0) for central transbronchial ablations (n = 2), 72.5 cm3 (SE ± 8.1) for peripheral transbronchial ablations (n = 3), and 79.5 cm3 (SE ±11.6) for peripheral transthoracic ablations (n = 2). Pneumothorax developed in 1 animal after transbronchial ablation and during ablation in the transthoracic cryoablation. Images of cryoablation zones on cone-beam CT correlated well with the matched gross pathology and histopathology sections of the cryolesions. CONCLUSIONS: Transbronchial cryoablation with a flexible cryoprobe, delivered through a steerable guiding sheath, is feasible. Transbronchial cryoablation zones are imageable with cone-beam CT, with gross pathology and histopathology similar to those of transthoracic cryoablation.


Subject(s)
Cone-Beam Computed Tomography , Cryosurgery , Equipment Design , Animals , Cryosurgery/instrumentation , Cone-Beam Computed Tomography/instrumentation , Swine , Radiography, Interventional/instrumentation , Lung/surgery , Lung/diagnostic imaging , Lung/pathology , Models, Animal , Bronchoscopy/instrumentation , Sus scrofa
9.
AJR Am J Roentgenol ; 222(1): e2329964, 2024 01.
Article in English | MEDLINE | ID: mdl-37729551

ABSTRACT

BACKGROUND. Precise risk stratification through MRI/ultrasound (US) fusion-guided targeted biopsy (TBx) can guide optimal prostate cancer (PCa) management. OBJECTIVE. The purpose of this study was to compare PI-RADS version 2.0 (v2.0) and PI-RADS version 2.1 (v2.1) in terms of the rates of International Society of Urological Pathology (ISUP) grade group (GG) upgrade and downgrade from TBx to radical prostatectomy (RP). METHODS. This study entailed a retrospective post hoc analysis of patients who underwent 3-T prostate MRI at a single institution from May 2015 to March 2023 as part of three prospective clinical trials. Trial participants who underwent MRI followed by MRI/US fusion-guided TBx and RP within a 1-year interval were identified. A single genitourinary radiologist performed clinical interpretations of the MRI examinations using PI-RADS v2.0 from May 2015 to March 2019 and PI-RADS v2.1 from April 2019 to March 2023. Upgrade and downgrade rates from TBx to RP were compared using chi-square tests. Clinically significant cancer was defined as ISUP GG2 or greater. RESULTS. The final analysis included 308 patients (median age, 65 years; median PSA density, 0.16 ng/mL2). The v2.0 group (n = 177) and v2.1 group (n = 131) showed no significant difference in terms of upgrade rate (29% vs 22%, respectively; p = .15), downgrade rate (19% vs 21%, p = .76), clinically significant upgrade rate (14% vs 10%, p = .27), or clinically significant downgrade rate (1% vs 1%, p > .99). The upgrade rate and downgrade rate were also not significantly different between the v2.0 and v2.1 groups when stratifying by index lesion PI-RADS category or index lesion zone, as well as when assessed only in patients without a prior PCa diagnosis (all p > .01). Among patients with GG2 or GG3 at RP (n = 121 for v2.0; n = 103 for v2.1), the concordance rate between TBx and RP was not significantly different between the v2.0 and v2.1 groups (53% vs 57%, p = .51). CONCLUSION. Upgrade and downgrade rates from TBx to RP were not significantly different between patients whose MRI examinations were clinically interpreted using v2.0 or v2.1. CLINICAL IMPACT. Implementation of the most recent PI-RADS update did not improve the incongruence in PCa grade assessment between TBx and surgery.


Subject(s)
Prostatic Neoplasms , Male , Humans , Aged , Prostatic Neoplasms/pathology , Magnetic Resonance Imaging/methods , Prostate/pathology , Retrospective Studies , Prospective Studies , Biopsy , Prostatectomy/methods , Image-Guided Biopsy/methods
10.
J Neuroeng Rehabil ; 21(1): 80, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755606

ABSTRACT

BACKGROUND: Individuals with a moderate-to-severe traumatic brain injury (m/sTBI), despite experiencing good locomotor recovery six months post-injury, face challenges in adapting their locomotion to the environment. They also present with altered cognitive functions, which may impact dual-task walking abilities. Whether they present collision avoidance strategies with moving pedestrians that are altered under dual-task conditions, however, remains unclear. This study aimed to compare between individuals with m/sTBI and age-matched control individuals: (1), the locomotor and cognitive costs associated with the concurrent performance of circumventing approaching virtual pedestrians (VRPs) while attending to an auditory-based cognitive task and; (2) gaze behaviour associated with the VRP circumvention task in single and dual-task conditions. METHODOLOGY: Twelve individuals with m/sTBI (age = 43.3 ± 9.5 yrs; >6 mo. post injury) and 12 healthy controls (CTLs) (age = 41.8 ± 8.3 yrs) were assessed while walking in a virtual subway station viewed in a head-mounted display. They performed a collision avoidance task with VRPs, as well as auditory-based cognitive tasks (pitch discrimination and auditory Stroop), both under single and dual-task conditions. Dual-task cost (DTC) for onset distance of trajectory deviation, minimum distance from the VRP, maximum lateral deviation, walking speed, gaze fixations and cognitive task accuracy were contrasted between groups using generalized estimating equations. RESULTS: In contrast to CTLs who showed locomotor DTCs only, individuals with m/sTBI displayed both locomotor and cognitive DTCs. While both groups walked slower under dual-task conditions, only individuals with m/sTBI failed to modify their onset distance of trajectory deviation and maintained smaller minimum distances and smaller maximum lateral deviation compared to single-task walking. Both groups showed shorter gaze fixations on the approaching VRP under dual-task conditions, but this reduction was less pronounced in the individuals with m/sTBI. A reduction in cognitive task accuracy under dual-task conditions was found in the m/sTBI group only. CONCLUSION: Individuals with m/sTBI present altered locomotor and gaze behaviours, as well as altered cognitive performances, when executing a collision avoidance task involving moving pedestrians in dual-task conditions. Potential mechanisms explaining those alterations are discussed. Present findings highlight the compromised complex walking abilities in individuals with m/sTBI who otherwise present a good locomotor recovery.


Subject(s)
Brain Injuries, Traumatic , Pedestrians , Virtual Reality , Humans , Male , Adult , Female , Brain Injuries, Traumatic/rehabilitation , Brain Injuries, Traumatic/psychology , Brain Injuries, Traumatic/physiopathology , Middle Aged , Psychomotor Performance/physiology , Walking/physiology , Cognition/physiology , Avoidance Learning , Attention/physiology
11.
Ann Plast Surg ; 92(6): 667-676, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38725110

ABSTRACT

INTRODUCTION: A common consideration for replantation success is the ischemia time following injury and the preservation temperature. A classic principle within the hand surgery community describes 12 hours of warm ischemia and 24 hours of cold ischemia as the upper limits for digit replantation; however, these limits are largely anecdotal and based on older studies. We aimed to compare survival data from the large body of literature to aid surgeons and all those involved in the replantation process in hopes of optimizing success rates. METHODS: The PubMed database was queried on April 4th, 2023, for articles that included data on digit replantation survival in terms of temperature of preservation and ischemia time. All primary outcomes were analyzed with the Mantel-Haenszel method within a random effects model. Secondary outcomes were pooled and analyzed using the chi-square statistic. Statistical analysis and forest plot generation were completed with RevMan 5.4 software with odds ratios calculated within a 95% confidence interval. RESULTS: Our meta-analysis identified that digits preserved in cold ischemia for over 12 hours had significantly higher odds of replantation success than the amputated digits replanted with 0-12 hours of warm ischemia time ( P ≤ 0.05). The odds of survival in the early (0-6 hours) replantation group were around 40% greater than the later (6-12 hours) replantation group ( P ≤ 0.05). Secondary outcomes that were associated with higher survival rates included a clean-cut amputation, increased venous and arterial anastomosis, a repair that did not require a vein graft, and replants performed in nonsmokers ( P ≤ 0.05). DISCUSSION: Overall, these findings suggest that when predicting digit replantation success, time is of the essence when the digit has yet to be preserved in a cold environment. This benefit, however, is almost completely diminished when the amputated digit is appropriately maintained in a cold environment soon after injury. In conclusion, our results suggest that there is potential for broadening the ischemia time limits for digit replant survival outlined in the literature, particularly for digits that have been stored correctly in cold ischemia.


Subject(s)
Amputation, Traumatic , Finger Injuries , Replantation , Humans , Replantation/methods , Amputation, Traumatic/surgery , Finger Injuries/surgery , Time Factors , Fingers/blood supply , Fingers/surgery , Warm Ischemia , Cold Ischemia , Ischemia/surgery , Temperature
12.
J Infect Dis ; 228(Suppl 4): S322-S336, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37788501

ABSTRACT

The mass production of the graphics processing unit and the coronavirus disease 2019 (COVID-19) pandemic have provided the means and the motivation, respectively, for rapid developments in artificial intelligence (AI) and medical imaging techniques. This has led to new opportunities to improve patient care but also new challenges that must be overcome before these techniques are put into practice. In particular, early AI models reported high performances but failed to perform as well on new data. However, these mistakes motivated further innovation focused on developing models that were not only accurate but also stable and generalizable to new data. The recent developments in AI in response to the COVID-19 pandemic will reap future dividends by facilitating, expediting, and informing other medical AI applications and educating the broad academic audience on the topic. Furthermore, AI research on imaging animal models of infectious diseases offers a unique problem space that can fill in evidence gaps that exist in clinical infectious disease research. Here, we aim to provide a focused assessment of the AI techniques leveraged in the infectious disease imaging research space, highlight the unique challenges, and discuss burgeoning solutions.


Subject(s)
COVID-19 , Communicable Diseases , Humans , Artificial Intelligence , Pandemics , Diagnostic Imaging/methods , Communicable Diseases/diagnostic imaging
13.
Prostate ; 83(16): 1519-1528, 2023 12.
Article in English | MEDLINE | ID: mdl-37622756

ABSTRACT

BACKGROUND: Cribriform (CBFM) pattern on prostate biopsy has been implicated as a predictor for high-risk features, potentially leading to adverse outcomes after definitive treatment. This study aims to investigate whether the CBFM pattern containing prostate cancers (PCa) were associated with false negative magnetic resonance imaging (MRI) and determine the association between MRI and histopathological disease burden. METHODS: Patients who underwent multiparametric magnetic resonance imaging (mpMRI), combined 12-core transrectal ultrasound (TRUS) guided systematic (SB) and MRI/US fusion-guided biopsy were retrospectively queried for the presence of CBFM pattern at biopsy. Biopsy cores and lesions were categorized as follows: C0 = benign, C1 = PCa with no CBFM pattern, C2 = PCa with CBFM pattern. Correlation between cancer core length (CCL) and measured MRI lesion dimension were assessed using a modified Pearson correlation test for clustered data. Differences between the biopsy core groups were assessed with the Wilcoxon-signed rank test with clustering. RESULTS: Between 2015 and 2022, a total of 131 consecutive patients with CBFM pattern on prostate biopsy and pre-biopsy mpMRI were included. Clinical feature analysis included 1572 systematic biopsy cores (1149 C0, 272 C1, 151 C2) and 736 MRI-targeted biopsy cores (253 C0, 272 C1, 211 C2). Of the 131 patients with confirmed CBFM pathology, targeted biopsy (TBx) alone identified CBFM in 76.3% (100/131) of patients and detected PCa in 97.7% (128/131) patients. SBx biopsy alone detected CBFM in 61.1% (80/131) of patients and PCa in 90.8% (119/131) patients. TBx and SBx had equivalent detection in patients with smaller prostates (p = 0.045). For both PCa lesion groups there was a positive and significant correlation between maximum MRI lesion dimension and CCL (C1 lesions: p < 0.01, C2 lesions: p < 0.001). There was a significant difference in CCL between C1 and C2 lesions for T2 scores of 3 and 5 (p ≤ 0.01, p ≤ 0.01, respectively) and PI-RADS 5 lesions (p ≤ 0.01), with C2 lesions having larger CCL, despite no significant difference in MRI lesion dimension. CONCLUSIONS: The extent of disease for CBFM-containing tumors is difficult to capture on mpMRI. When comparing MRI lesions of similar dimensions and PIRADS scores, CBFM-containing tumors appear to have larger cancer yield on biopsy. Proper staging and planning of therapeutic interventions is reliant on accurate mpMRI estimation. Special considerations should be taken for patients with CBFM pattern on prostate biopsy.


Subject(s)
Adenocarcinoma , Prostatic Neoplasms , Male , Humans , Prostate/diagnostic imaging , Prostate/pathology , Prostatic Neoplasms/pathology , Magnetic Resonance Imaging/methods , Retrospective Studies , Image-Guided Biopsy/methods , Adenocarcinoma/diagnostic imaging , Adenocarcinoma/pathology
14.
N Engl J Med ; 382(10): 917-928, 2020 03 05.
Article in English | MEDLINE | ID: mdl-32130814

ABSTRACT

BACKGROUND: The use of 12-core systematic prostate biopsy is associated with diagnostic inaccuracy that contributes to both overdiagnosis and underdiagnosis of prostate cancer. Biopsies performed with magnetic resonance imaging (MRI) targeting may reduce the misclassification of prostate cancer in men with MRI-visible lesions. METHODS: Men with MRI-visible prostate lesions underwent both MRI-targeted and systematic biopsy. The primary outcome was cancer detection according to grade group (i.e., a clustering of Gleason grades). Grade group 1 refers to clinically insignificant disease; grade group 2 or higher, cancer with favorable intermediate risk or worse; and grade group 3 or higher, cancer with unfavorable intermediate risk or worse. Among the men who underwent subsequent radical prostatectomy, upgrading and downgrading of grade group from biopsy to whole-mount histopathological analysis of surgical specimens were recorded. Secondary outcomes were the detection of cancers of grade group 2 or higher and grade group 3 or higher, cancer detection stratified by previous biopsy status, and grade reclassification between biopsy and radical prostatectomy. RESULTS: A total of 2103 men underwent both biopsy methods; cancer was diagnosed in 1312 (62.4%) by a combination of the two methods (combined biopsy), and 404 (19.2%) underwent radical prostatectomy. Cancer detection rates on MRI-targeted biopsy were significantly lower than on systematic biopsy for grade group 1 cancers and significantly higher for grade groups 3 through 5 (P<0.01 for all comparisons). Combined biopsy led to cancer diagnoses in 208 more men (9.9%) than with either method alone and to upgrading to a higher grade group in 458 men (21.8%). However, if only MRI-target biopsies had been performed, 8.8% of clinically significant cancers (grade group ≥3) would have been misclassified. Among the 404 men who underwent subsequent radical prostatectomy, combined biopsy was associated with the fewest upgrades to grade group 3 or higher on histopathological analysis of surgical specimens (3.5%), as compared with MRI-targeted biopsy (8.7%) and systematic biopsy (16.8%). CONCLUSIONS: Among patients with MRI-visible lesions, combined biopsy led to more detection of all prostate cancers. However, MRI-targeted biopsy alone underestimated the histologic grade of some tumors. After radical prostatectomy, upgrades to grade group 3 or higher on histopathological analysis were substantially lower after combined biopsy. (Funded by the National Institutes of Health and others; Trio Study ClinicalTrials.gov number, NCT00102544.).


Subject(s)
Biopsy/methods , Magnetic Resonance Imaging , Prostate/pathology , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/pathology , Adult , Aged , Humans , Male , Middle Aged , Neoplasm Grading , Prostate-Specific Antigen/blood , Prostatectomy , Prostatic Neoplasms/surgery
15.
Radiology ; 307(4): e221309, 2023 05.
Article in English | MEDLINE | ID: mdl-37129493

ABSTRACT

Background Data regarding the prospective performance of Prostate Imaging Reporting and Data System (PI-RADS) version 2.1 alone and in combination with quantitative MRI features for prostate cancer detection is limited. Purpose To assess lesion-based clinically significant prostate cancer (csPCa) rates in different PI-RADS version 2.1 categories and to identify MRI features that could improve csPCa detection. Materials and Methods This single-center prospective study included men with suspected or known prostate cancer who underwent multiparametric MRI and MRI/US-guided biopsy from April 2019 to December 2021. MRI scans were prospectively evaluated using PI-RADS version 2.1. Atypical transition zone (TZ) nodules were upgraded to category 3 if marked diffusion restriction was present. Lesions with an International Society of Urological Pathology (ISUP) grade of 2 or higher (range, 1-5) were considered csPCa. MRI features, including three-dimensional diameter, relative lesion volume (lesion volume divided by prostate volume), sphericity, and surface to volume ratio (SVR), were obtained from lesion contours delineated by the radiologist. Univariable and multivariable analyses were conducted at the lesion and participant levels to determine features associated with csPCa. Results In total, 454 men (median age, 67 years [IQR, 62-73 years]) with 838 lesions were included. The csPCa rates for lesions categorized as PI-RADS 1 (n = 3), 2 (n = 170), 3 (n = 197), 4 (n = 319), and 5 (n = 149) were 0%, 9%, 14%, 37%, and 77%, respectively. csPCa rates of PI-RADS 4 lesions were lower than PI-RADS 5 lesions (P < .001) but higher than PI-RADS 3 lesions (P < .001). Upgraded PI-RADS 3 TZ lesions were less likely to harbor csPCa compared with their nonupgraded counterparts (4% [one of 26] vs 20% [20 of 99], P = .02). Predictors of csPCa included relative lesion volume (odds ratio [OR], 1.6; P < .001), SVR (OR, 6.2; P = .02), and extraprostatic extension (EPE) scores of 2 (OR, 9.3; P < .001) and 3 (OR, 4.1; P = .02). Conclusion The rates of csPCa differed between consecutive PI-RADS categories of 3 and higher. MRI features, including lesion volume, shape, and EPE scores of 2 and 3, predicted csPCa. Upgrading of PI-RADS category 3 TZ lesions may result in unnecessary biopsies. ClinicalTrials.gov registration no. NCT03354416 © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Goh in this issue.


Subject(s)
Multiparametric Magnetic Resonance Imaging , Prostatic Neoplasms , Male , Humans , Aged , Prostatic Neoplasms/pathology , Prostate/pathology , Magnetic Resonance Imaging/methods , Prospective Studies , Image-Guided Biopsy/methods , Retrospective Studies
16.
J Magn Reson Imaging ; 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37811666

ABSTRACT

BACKGROUND: Image quality evaluation of prostate MRI is important for successful implementation of MRI into localized prostate cancer diagnosis. PURPOSE: To examine the impact of image quality on prostate cancer detection using an in-house previously developed artificial intelligence (AI) algorithm. STUDY TYPE: Retrospective. SUBJECTS: 615 consecutive patients (median age 67 [interquartile range [IQR]: 61-71] years) with elevated serum PSA (median PSA 6.6 [IQR: 4.6-9.8] ng/mL) prior to prostate biopsy. FIELD STRENGTH/SEQUENCE: 3.0T/T2-weighted turbo-spin-echo MRI, high b-value echo-planar diffusion-weighted imaging, and gradient recalled echo dynamic contrast-enhanced. ASSESSMENTS: Scans were prospectively evaluated during clinical readout using PI-RADSv2.1 by one genitourinary radiologist with 17 years of experience. For each patient, T2-weighted images (T2WIs) were classified as high-quality or low-quality based on evaluation of both general distortions (eg, motion, distortion, noise, and aliasing) and perceptual distortions (eg, obscured delineation of prostatic capsule, prostatic zones, and excess rectal gas) by a previously developed in-house AI algorithm. Patients with PI-RADS category 1 underwent 12-core ultrasound-guided systematic biopsy while those with PI-RADS category 2-5 underwent combined systematic and targeted biopsies. Patient-level cancer detection rates (CDRs) were calculated for clinically significant prostate cancer (csPCa, International Society of Urological Pathology Grade Group ≥2) by each biopsy method and compared between high- and low-quality images in each PI-RADS category. STATISTICAL TESTS: Fisher's exact test. Bootstrap 95% confidence intervals (CI). A P value <0.05 was considered statistically significant. RESULTS: 385 (63%) T2WIs were classified as high-quality and 230 (37%) as low-quality by AI. Targeted biopsy with high-quality T2WIs resulted in significantly higher clinically significant CDR than low-quality images for PI-RADS category 4 lesions (52% [95% CI: 43-61] vs. 32% [95% CI: 22-42]). For combined biopsy, there was no significant difference in patient-level CDRs for PI-RADS 4 between high- and low-quality T2WIs (56% [95% CI: 47-64] vs. 44% [95% CI: 34-55]; P = 0.09). DATA CONCLUSION: Higher quality T2WIs were associated with better targeted biopsy clinically significant cancer detection performance for PI-RADS 4 lesions. Combined biopsy might be needed when T2WI is lower quality. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 1.

17.
J Surg Oncol ; 127(8): 1247-1251, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37222697

ABSTRACT

The incidence of colorectal cancer in young adults (CRCYAs) is increasing globally, and it is now the third leading cause of cancer death among young adults under 50 years old. The rising incidence is attributed to various emerging risk factors such as genetics, lifestyle factors, and microbiome profiles. Delayed diagnosis and more advanced disease presentation contribute to worse outcomes. A multidisciplinary approach to care is crucial to ensure comprehensive and personalized treatment plans for CRCYA.


Subject(s)
Colorectal Neoplasms , Humans , Young Adult , Middle Aged , Risk Factors , Colorectal Neoplasms/epidemiology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/therapy
18.
CA Cancer J Clin ; 66(4): 326-36, 2016 07.
Article in English | MEDLINE | ID: mdl-26594835

ABSTRACT

Imaging has traditionally played a minor role in the diagnosis and staging of prostate cancer. However, recent controversies generated by the use of prostate-specific antigen (PSA) screening followed by random biopsy have encouraged the development of new imaging methods for prostate cancer. Multiparametric magnetic resonance imaging (mpMRI) has emerged as the imaging method best able to detect clinically significant prostate cancers and to guide biopsies. Here, the authors explain what mpMRI is and how it is used clinically, especially with regard to high-risk populations, and we discuss the impact of mpMRI on treatment decisions for men with prostate cancer. CA Cancer J Clin 2016;66:326-336. © 2015 American Cancer Society.


Subject(s)
Magnetic Resonance Imaging/methods , Prostatic Neoplasms/diagnosis , Evidence-Based Medicine , Guidelines as Topic , Humans , Male , Population Surveillance , Predictive Value of Tests , Sensitivity and Specificity
19.
AJR Am J Roentgenol ; 221(6): 773-787, 2023 12.
Article in English | MEDLINE | ID: mdl-37404084

ABSTRACT

BACKGROUND. Currently most clinical models for predicting biochemical recurrence (BCR) of prostate cancer (PCa) after radical prostatectomy (RP) incorporate staging information from RP specimens, creating a gap in preoperative risk assessment. OBJECTIVE. The purpose of our study was to compare the utility of presurgical staging information from MRI and postsurgical staging information from RP pathology in predicting BCR in patients with PCa. METHODS. This retrospective study included 604 patients (median age, 60 years) with PCa who underwent prostate MRI before RP from June 2007 to December 2018. A single genitourinary radiologist assessed MRI examinations for extraprostatic extension (EPE) and seminal vesicle invasion (SVI) during clinical interpretations. The utility of EPE and SVI on MRI and RP pathology for BCR prediction was assessed through Kaplan-Meier and Cox proportional hazards analyses. Established clinical BCR prediction models, including the University of California San Francisco Cancer of the Prostate Risk Assessment (UCSF-CAPRA) model and the Cancer of the Prostate Risk Assessment Postsurgical (CAPRA-S) model, were evaluated in a subset of 374 patients with available Gleason grade groups from biopsy and RP pathology; two CAPRA-MRI models (CAPRA-S model with modifications to replace RP pathologic staging features with MRI staging features) were also assessed. RESULTS. Univariable predictors of BCR included EPE on MRI (HR = 3.6), SVI on MRI (HR = 4.4), EPE on RP pathology (HR = 5.0), and SVI on RP pathology (HR = 4.6) (all p < .001). Three-year BCR-free survival (RFS) rates for patients without versus with EPE were 84% versus 59% for MRI and 89% versus 58% for RP pathology, and 3-year RFS rates for patients without versus with SVI were 82% versus 50% for MRI and 83% versus 54% for RP histology (all p < .001). For patients with T3 disease on RP pathology, 3-year RFS rates were 67% and 41% for patients without and with T3 disease on MRI. AUCs of CAPRA models, including CAPRA-MRI models, ranged from 0.743 to 0.778. AUCs were not significantly different between CAPRA-S and CAPRA-MRI models (p > .05). RFS rates were significantly different between low- and intermediate-risk groups for only CAPRA-MRI models (80% vs 51% and 74% vs 44%; both p < .001). CONCLUSION. Presurgical MRI-based staging features perform comparably to postsurgical pathologic staging features for predicting BCR. CLINICAL IMPACT. MRI staging can preoperatively identify patients at high BCR risk, helping to inform early clinical decision-making. TRIAL REGISTRATION. ClinicalTrials.gov NCT00026884 and NCT02594202.


Subject(s)
Prostate , Prostatic Neoplasms , Male , Humans , Middle Aged , Prostate/pathology , Seminal Vesicles/pathology , Retrospective Studies , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/surgery , Prostatectomy/methods , Prostate-Specific Antigen , Magnetic Resonance Imaging , Neoplasm Recurrence, Local/pathology , Neoplasm Staging
20.
J Biomed Inform ; 137: 104275, 2023 01.
Article in English | MEDLINE | ID: mdl-36572279

ABSTRACT

Mechanical ventilation is an essential tool in the management of Acute Respiratory Distress Syndrome (ARDS), but it exposes patients to the risk of ventilator-induced lung injury (VILI). The human lung-ventilator system (LVS) involves the interaction of complex anatomy with a mechanical apparatus, which limits the ability of process-based models to provide individualized clinical support. This work proposes a hypothesis-driven strategy for LVS modeling in which robust personalization is achieved using a pre-defined parameter basis in a non-physiological model. Model inversion, here via windowed data assimilation, forges observed waveforms into interpretable parameter values that characterize the data rather than quantifying physiological processes. Accurate, model-based inference on human-ventilator data indicates model flexibility and utility over a variety of breath types, including those from dyssynchronous LVSs. Estimated parameters generate static characterizations of the data that are 50%-70% more accurate than breath-wise single-compartment model estimates. They also retain sufficient information to distinguish between the types of breath they represent. However, the fidelity and interpretability of model characterizations are tied to parameter definitions and model resolution. These additional factors must be considered in conjunction with the objectives of specific applications, such as identifying and tracking the development of human VILI.


Subject(s)
Respiratory Distress Syndrome , Ventilator-Induced Lung Injury , Humans , Respiration, Artificial/adverse effects , Respiratory Distress Syndrome/etiology , Ventilators, Mechanical , Ventilator-Induced Lung Injury/etiology , Lung
SELECTION OF CITATIONS
SEARCH DETAIL