Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Genes Dev ; 34(9-10): 715-729, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32217665

ABSTRACT

Covalent chemical modifications of cellular RNAs directly impact all biological processes. However, our mechanistic understanding of the enzymes catalyzing these modifications, their substrates and biological functions, remains vague. Amongst RNA modifications N6-methyladenosine (m6A) is widespread and found in messenger (mRNA), ribosomal (rRNA), and noncoding RNAs. Here, we undertook a systematic screen to uncover new RNA methyltransferases. We demonstrate that the methyltransferase-like 5 (METTL5) protein catalyzes m6A in 18S rRNA at position A1832 We report that absence of Mettl5 in mouse embryonic stem cells (mESCs) results in a decrease in global translation rate, spontaneous loss of pluripotency, and compromised differentiation potential. METTL5-deficient mice are born at non-Mendelian rates and develop morphological and behavioral abnormalities. Importantly, mice lacking METTL5 recapitulate symptoms of patients with DNA variants in METTL5, thereby providing a new mouse disease model. Overall, our biochemical, molecular, and in vivo characterization highlights the importance of m6A in rRNA in stemness, differentiation, development, and diseases.


Subject(s)
Cell Differentiation/genetics , Gene Expression Regulation, Developmental/genetics , Adenosine/analogs & derivatives , Adenosine/metabolism , Animals , Mice , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/enzymology , Mutation , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Protein Biosynthesis/genetics , RNA, Ribosomal, 18S/metabolism
2.
Mol Cell ; 72(4): 739-752.e9, 2018 11 15.
Article in English | MEDLINE | ID: mdl-30392929

ABSTRACT

The RING E3 ubiquitin ligase UHRF1 controls DNA methylation through its ability to target the maintenance DNA methyltransferase DNMT1 to newly replicated chromatin. DNMT1 recruitment relies on ubiquitylation of histone H3 by UHRF1; however, how UHRF1 deposits ubiquitin onto the histone is unknown. Here, we demonstrate that the ubiquitin-like domain (UBL) of UHRF1 is essential for RING-mediated H3 ubiquitylation. Using chemical crosslinking and mass spectrometry, biochemical assays, and recombinant chromatin substrates, we show that the UBL participates in structural rearrangements of UHRF1 upon binding to chromatin and the E2 ubiquitin conjugating enzyme UbcH5a/UBE2D1. Similar to ubiquitin, the UBL exerts its effects through a hydrophobic patch that contacts a regulatory surface on the "backside" of the E2 to stabilize the E2-E3-chromatin complex. Our analysis of the enzymatic mechanism of UHRF1 uncovers an unexpected function of the UBL domain and defines a new role for this domain in DNMT1-dependent inheritance of DNA methylation.


Subject(s)
CCAAT-Enhancer-Binding Proteins/metabolism , Chromatin/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation , HEK293 Cells , Histones/metabolism , Humans , Male , Mice , Mouse Embryonic Stem Cells , Nuclear Proteins/metabolism , Protein Binding , Ubiquitin/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitination
3.
Nucleic Acids Res ; 51(6): 2671-2690, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36806742

ABSTRACT

The establishment of cellular identity is driven by transcriptional and epigenetic regulators of the chromatin proteome - the chromatome. Comprehensive analyses of the chromatome composition and dynamics can therefore greatly improve our understanding of gene regulatory mechanisms. Here, we developed an accurate mass spectrometry (MS)-based proteomic method called Chromatin Aggregation Capture (ChAC) followed by Data-Independent Acquisition (DIA) and analyzed chromatome reorganizations during major phases of pluripotency. This enabled us to generate a comprehensive atlas of proteomes, chromatomes, and chromatin affinities for the ground, formative and primed pluripotency states, and to pinpoint the specific binding and rearrangement of regulatory components. These comprehensive datasets combined with extensive analyses identified phase-specific factors like QSER1 and JADE1/2/3 and provide a detailed foundation for an in-depth understanding of mechanisms that govern the phased progression of pluripotency. The technical advances reported here can be readily applied to other models in development and disease.


Subject(s)
Chromatin , Embryonic Stem Cells , Pluripotent Stem Cells , Proteomics , Chromatin/genetics , Mass Spectrometry/methods , Proteome/genetics , Proteome/metabolism , Proteomics/methods , Humans , Animals , Mice , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism
4.
Nucleic Acids Res ; 50(15): 8491-8511, 2022 08 26.
Article in English | MEDLINE | ID: mdl-35904814

ABSTRACT

DNA methylation (5-methylcytosine (5mC)) is critical for genome stability and transcriptional regulation in mammals. The discovery that ten-eleven translocation (TET) proteins catalyze the oxidation of 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) revolutionized our perspective on the complexity and regulation of DNA modifications. However, to what extent the regulatory functions of TET1 can be attributed to its catalytic activity remains unclear. Here, we use genome engineering and quantitative multi-omics approaches to dissect the precise catalytic vs. non-catalytic functions of TET1 in murine embryonic stem cells (mESCs). Our study identifies TET1 as an essential interaction hub for multiple chromatin modifying complexes and a global regulator of histone modifications. Strikingly, we find that the majority of transcriptional regulation depends on non-catalytic functions of TET1. In particular, we show that TET1 is critical for the establishment of H3K9me3 and H4K20me3 at endogenous retroviral elements (ERVs) and their silencing that is independent of its canonical role in DNA demethylation. Furthermore, we provide evidence that this repression of ERVs depends on the interaction between TET1 and SIN3A. In summary, we demonstrate that the non-catalytic functions of TET1 are critical for regulation of gene expression and the silencing of endogenous retroviruses in mESCs.


Subject(s)
DNA-Binding Proteins/metabolism , Endogenous Retroviruses , Proto-Oncogene Proteins/metabolism , 5-Methylcytosine/metabolism , Animals , Cytosine/metabolism , DNA Demethylation , DNA Methylation , DNA-Binding Proteins/genetics , Endogenous Retroviruses/genetics , Endogenous Retroviruses/metabolism , Gene Expression , Mammals/genetics , Mice , Proto-Oncogene Proteins/genetics
5.
Nucleic Acids Res ; 49(6): 3020-3032, 2021 04 06.
Article in English | MEDLINE | ID: mdl-33300031

ABSTRACT

DNA methylation is essential to development and cellular physiology in mammals. Faulty DNA methylation is frequently observed in human diseases like cancer and neurological disorders. Molecularly, this epigenetic mark is linked to other chromatin modifications and it regulates key genomic processes, including transcription and splicing. Each round of DNA replication generates two hemi-methylated copies of the genome. These must be converted back to symmetrically methylated DNA before the next S-phase, or the mark will fade away; therefore the maintenance of DNA methylation is essential. Mechanistically, the maintenance of this epigenetic modification takes place during and after DNA replication, and occurs within the very dynamic context of chromatin re-assembly. Here, we review recent discoveries and unresolved questions regarding the mechanisms, dynamics and fidelity of DNA methylation maintenance in mammals. We also discuss how it could be regulated in normal development and misregulated in disease.


Subject(s)
DNA Methylation , Mammals/genetics , Animals , Chromatin Assembly and Disassembly , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA Replication , Epigenesis, Genetic , Humans , Neoplasms/genetics , Nervous System Diseases/genetics , Ubiquitin-Protein Ligases/metabolism
6.
Nucleic Acids Res ; 49(11): e62, 2021 06 21.
Article in English | MEDLINE | ID: mdl-33684219

ABSTRACT

The genetic code of mammalian cells can be expanded to allow the incorporation of non-canonical amino acids (ncAAs) by suppressing in-frame amber stop codons (UAG) with an orthogonal pyrrolysyl-tRNA synthetase (PylRS)/tRNAPylCUA (PylT) pair. However, the feasibility of this approach is substantially hampered by unpredictable variations in incorporation efficiencies at different stop codon positions within target proteins. Here, we apply a proteomics-based approach to quantify ncAA incorporation rates at hundreds of endogenous amber stop codons in mammalian cells. With these data, we compute iPASS (Identification of Permissive Amber Sites for Suppression; available at www.bultmannlab.eu/tools/iPASS), a linear regression model to predict relative ncAA incorporation efficiencies depending on the surrounding sequence context. To verify iPASS, we develop a dual-fluorescence reporter for high-throughput flow-cytometry analysis that reproducibly yields context-specific ncAA incorporation efficiencies. We show that nucleotides up- and downstream of UAG synergistically influence ncAA incorporation efficiency independent of cell line and ncAA identity. Additionally, we demonstrate iPASS-guided optimization of ncAA incorporation rates by synonymous exchange of codons flanking the amber stop codon. This combination of in silico analysis followed by validation in living mammalian cells substantially simplifies identification as well as adaptation of sites within a target protein to confer high ncAA incorporation rates.


Subject(s)
Amino Acids/metabolism , Genetic Code , Animals , Cell Line , Codon , Codon, Terminator , Computer Simulation , Embryonic Stem Cells/metabolism , Flow Cytometry , Genes, Reporter , HEK293 Cells , Humans , Linear Models , Mice , Mutation , Proteomics
7.
Nucleic Acids Res ; 49(13): 7406-7423, 2021 07 21.
Article in English | MEDLINE | ID: mdl-34214177

ABSTRACT

Heterochromatin binding protein HP1ß plays an important role in chromatin organization and cell differentiation, however the underlying mechanisms remain unclear. Here, we generated HP1ß-/- embryonic stem cells and observed reduced heterochromatin clustering and impaired differentiation. We found that during stem cell differentiation, HP1ß is phosphorylated at serine 89 by CK2, which creates a binding site for the pluripotency regulator KAP1. This phosphorylation dependent sequestration of KAP1 in heterochromatin compartments causes a downregulation of pluripotency factors and triggers pluripotency exit. Accordingly, HP1ß-/- and phospho-mutant cells exhibited impaired differentiation, while ubiquitination-deficient KAP1-/- cells had the opposite phenotype with enhanced differentiation. These results suggest that KAP1 regulates pluripotency via its ubiquitination activity. We propose that the formation of subnuclear membraneless heterochromatin compartments may serve as a dynamic reservoir to trap or release cellular factors. The sequestration of essential regulators defines a novel and active role of heterochromatin in gene regulation and represents a dynamic mode of remote control to regulate cellular processes like cell fate decisions.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , Embryonic Stem Cells/metabolism , Heterochromatin/metabolism , Tripartite Motif-Containing Protein 28/metabolism , Animals , Casein Kinase II/metabolism , Cell Differentiation , Cell Line , Cells, Cultured , Chromobox Protein Homolog 5 , Chromosomal Proteins, Non-Histone/chemistry , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/physiology , Cricetinae , Embryonic Stem Cells/cytology , Gene Knockout Techniques , Humans , Mice , Phosphorylation , Serine/metabolism , Tripartite Motif-Containing Protein 28/genetics , Tripartite Motif-Containing Protein 28/physiology
8.
EMBO Rep ; 18(7): 1186-1198, 2017 07.
Article in English | MEDLINE | ID: mdl-28483841

ABSTRACT

Sequence variations in the triggering receptor expressed on myeloid cells 2 (TREM2) have been linked to an increased risk for neurodegenerative disorders such as Alzheimer's disease and frontotemporal lobar degeneration. In the brain, TREM2 is predominantly expressed in microglia. Several disease-associated TREM2 variants result in a loss of function by reducing microglial phagocytosis, impairing lipid sensing, preventing binding of lipoproteins and affecting shielding of amyloid plaques. We here investigate the consequences of TREM2 loss of function on the microglia transcriptome. Among the differentially expressed messenger RNAs in wild-type and Trem2-/- microglia, gene clusters are identified which represent gene functions in chemotaxis, migration and mobility. Functional analyses confirm that loss of TREM2 impairs appropriate microglial responses to injury and signals that normally evoke chemotaxis on multiple levels. In an ex vivo organotypic brain slice assay, absence of TREM2 reduces the distance migrated by microglia. Moreover, migration towards defined chemo-attractants is reduced upon ablation of TREM2 and can be rescued by TREM2 re-expression. In vivo, microglia lacking TREM2 migrate less towards injected apoptotic neurons, and outgrowth of microglial processes towards sites of laser-induced focal CNS damage in the somatosensory cortex is slowed. The apparent lack of chemotactic stimulation upon depletion of TREM2 is consistent with a stable expression profile of genes characterizing the homoeostatic signature of microglia.


Subject(s)
Chemotaxis , Membrane Glycoproteins/deficiency , Membrane Glycoproteins/genetics , Microglia/physiology , Neurons/pathology , Receptors, Immunologic/deficiency , Receptors, Immunologic/genetics , Alzheimer Disease/genetics , Alzheimer Disease/physiopathology , Cells, Cultured , Frontotemporal Dementia , Gene Expression Profiling , Humans , Loss of Function Mutation , Myeloid Cells , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/physiopathology , Phagocytosis
9.
Nucleic Acids Res ; 43(17): e112, 2015 Sep 30.
Article in English | MEDLINE | ID: mdl-26007658

ABSTRACT

Any profound comprehension of gene function requires detailed information about the subcellular localization, molecular interactions and spatio-temporal dynamics of gene products. We developed a multifunctional integrase (MIN) tag for rapid and versatile genome engineering that serves not only as a genetic entry site for the Bxb1 integrase but also as a novel epitope tag for standardized detection and precipitation. For the systematic study of epigenetic factors, including Dnmt1, Dnmt3a, Dnmt3b, Tet1, Tet2, Tet3 and Uhrf1, we generated MIN-tagged embryonic stem cell lines and created a toolbox of prefabricated modules that can be integrated via Bxb1-mediated recombination. We used these functional modules to study protein interactions and their spatio-temporal dynamics as well as gene expression and specific mutations during cellular differentiation and in response to external stimuli. Our genome engineering strategy provides a versatile open platform for efficient generation of multiple isogenic cell lines to study gene function under physiological conditions.


Subject(s)
Cell Engineering/methods , Animals , Antibodies, Monoclonal , CRISPR-Cas Systems , Cell Differentiation/genetics , Cell Line , Embryonic Stem Cells/metabolism , Gene Expression , Genetic Loci , Genomics/methods , Integrases/genetics , Integrases/immunology , Integrases/metabolism , Mutation , Rats , Recombination, Genetic
10.
Nucleic Acids Res ; 42(6): e38, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24371265

ABSTRACT

Epigenetic regulation of gene expression involves, besides DNA and histone modifications, the relative positioning of DNA sequences within the nucleus. To trace specific DNA sequences in living cells, we used programmable sequence-specific DNA binding of designer transcription activator-like effectors (dTALEs). We designed a recombinant dTALE (msTALE) with variable repeat domains to specifically bind a 19-bp target sequence of major satellite DNA. The msTALE was fused with green fluorescent protein (GFP) and stably expressed in mouse embryonic stem cells. Hybridization with a major satellite probe (3D-fluorescent in situ hybridization) and co-staining for known cellular structures confirmed in vivo binding of the GFP-msTALE to major satellite DNA present at nuclear chromocenters. Dual tracing of major satellite DNA and the replication machinery throughout S-phase showed co-localization during mid to late S-phase, directly demonstrating the late replication timing of major satellite DNA. Fluorescence bleaching experiments indicated a relatively stable but still dynamic binding, with mean residence times in the range of minutes. Fluorescently labeled dTALEs open new perspectives to target and trace DNA sequences and to monitor dynamic changes in subnuclear positioning as well as interactions with functional nuclear structures during cell cycle progression and cellular differentiation.


Subject(s)
DNA, Satellite/analysis , DNA-Binding Proteins , Animals , Cell Cycle/genetics , Cell Line , DNA-Binding Proteins/analysis , DNA-Binding Proteins/genetics , Embryonic Stem Cells/chemistry , Fluorescent Dyes , Green Fluorescent Proteins/analysis , Green Fluorescent Proteins/genetics , HEK293 Cells , Humans , Mice , Recombinant Fusion Proteins/analysis
11.
Nucleic Acids Res ; 40(12): 5368-77, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22387464

ABSTRACT

Specific control of gene activity is a valuable tool to study and engineer cellular functions. Recent studies uncovered the potential of transcription activator-like effector (TALE) proteins that can be tailored to activate user-defined target genes. It remains however unclear whether and how epigenetic modifications interfere with TALE-mediated transcriptional activation. We studied the activity of five designer TALEs (dTALEs) targeting the oct4 pluripotency gene. In vitro assays showed that the five dTALEs that target distinct sites in the oct4 promoter had the expected DNA specificity and comparable affinities to their corresponding DNA targets. In contrast to their similar in vitro properties, transcriptional activation of oct4 by these distinct dTALEs varied up to 25-fold. While dTALEs efficiently upregulated transcription of the active oct4 promoter in embryonic stem cells (ESCs) they failed to activate the silenced oct4 promoter in ESC-derived neural stem cells (NSCs), indicating that as for endogenous transcription factors also dTALE activity is limited by repressive epigenetic mechanisms. We therefore targeted the activity of epigenetic modulators and found that chemical inhibition of histone deacetylases by valproic acid or DNA methyltransferases by 5-aza-2'-deoxycytidine facilitated dTALE-mediated activation of the epigenetically silenced oct4 promoter in NSCs. Notably, demethylation of the oct4 promoter occurred only if chemical inhibitors and dTALEs were applied together but not upon treatment with inhibitors or dTALEs only. These results show that dTALEs in combination with chemical manipulation of epigenetic modifiers facilitate targeted transcriptional activation of epigenetically silenced target genes.


Subject(s)
Epigenesis, Genetic , Octamer Transcription Factor-3/genetics , Trans-Activators/metabolism , Transcriptional Activation , Animals , Azacitidine/analogs & derivatives , Azacitidine/pharmacology , Cells, Cultured , DNA Methylation , Decitabine , Embryonic Stem Cells/metabolism , Enzyme Inhibitors/pharmacology , HEK293 Cells , Humans , Mice , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Octamer Transcription Factor-3/metabolism , Plasmids/genetics , Promoter Regions, Genetic , Trans-Activators/chemistry , Valproic Acid/pharmacology
12.
Nucleic Acids Res ; 39(12): 5149-56, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21378122

ABSTRACT

In mammalian genomes a sixth base, 5-hydroxymethylcytosine ((hm)C), is generated by enzymatic oxidation of 5-methylcytosine ((m)C). This discovery has raised fundamental questions about the functional relevance of (hm)C in mammalian genomes. Due to their very similar chemical structure, discrimination of the rare (hm)C against the far more abundant (m)C is technically challenging and to date no methods for direct sequencing of (hm)C have been reported. Here, we report on a purified recombinant endonuclease, PvuRts1I, which selectively cleaves (hm)C-containing sequences. We determined the consensus cleavage site of PvuRts1I as (hm)CN(11-12)/N(9-10)G and show first data on its potential to interrogate (hm)C patterns in mammalian genomes.


Subject(s)
Cytosine/analogs & derivatives , DNA Restriction Enzymes/metabolism , 5-Methylcytosine/analogs & derivatives , Animals , Cytosine/analysis , DNA/chemistry , DNA/metabolism , DNA Cleavage , Genome , Mice
13.
Nucleic Acids Res ; 38(19): e181, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20685817

ABSTRACT

The recent discovery of genomic 5-hydroxymethylcytosine (hmC) and mutations affecting the respective Tet hydroxylases in leukemia raises fundamental questions about this epigenetic modification. We present a sensitive method for fast quantification of genomic hmC based on specific transfer of radiolabeled glucose to hmC by a purified glucosyltransferase. We determined hmC levels in various adult tissues and differentiating embryonic stem cells and show a correlation with differential expression of tet genes.


Subject(s)
Cytosine/analogs & derivatives , DNA/chemistry , 5-Methylcytosine/analogs & derivatives , Animals , Cells, Cultured , Cytosine/analysis , Cytosine/metabolism , Embryonic Stem Cells/chemistry , Embryonic Stem Cells/metabolism , Genetic Techniques , Genome , Glucosyltransferases/metabolism , Mice
14.
Nat Cell Biol ; 24(3): 327-339, 2022 03.
Article in English | MEDLINE | ID: mdl-35177821

ABSTRACT

Despite the well-established role of nuclear organization in the regulation of gene expression, little is known about the reverse: how transcription shapes the spatial organization of the genome. Owing to the small sizes of most previously studied genes and the limited resolution of microscopy, the structure and spatial arrangement of a single transcribed gene are still poorly understood. Here we study several long highly expressed genes and demonstrate that they form open-ended transcription loops with polymerases moving along the loops and carrying nascent RNAs. Transcription loops can span across micrometres, resembling lampbrush loops and polytene puffs. The extension and shape of transcription loops suggest their intrinsic stiffness, which we attribute to decoration with multiple voluminous nascent ribonucleoproteins. Our data contradict the model of transcription factories and suggest that although microscopically resolvable transcription loops are specific for long highly expressed genes, the mechanisms underlying their formation could represent a general aspect of eukaryotic transcription.


Subject(s)
Chromosomes , Transcription, Genetic , Chromosomes/metabolism , Eukaryota/genetics , Eukaryota/metabolism , RNA , Ribonucleoproteins/genetics
15.
EMBO Rep ; 10(11): 1259-64, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19798101

ABSTRACT

Recent studies have indicated that nuclear protein of 95 kDa (Np95) is essential for maintaining genomic methylation by recruiting DNA methyltransferase (Dnmt) 1 to hemi-methylated sites. Here, we show that Np95 interacts more strongly with regulatory domains of the de novo methyltransferases Dnmt3a and Dnmt3b. To investigate possible functions, we developed an epigenetic silencing assay using fluorescent reporters in embryonic stem cells (ESCs). Interestingly, silencing of the cytomegalovirus promoter in ESCs preceded DNA methylation and was strictly dependent on the presence of either Np95, histone H3 methyltransferase G9a or Dnmt3a and Dnmt3b. Our results indicate a regulatory role for Np95, Dnmt3a and Dnmt3b in mediating epigenetic silencing through histone modification followed by DNA methylation.


Subject(s)
Cytomegalovirus/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , Embryonic Stem Cells/cytology , Epigenesis, Genetic , Nuclear Proteins/chemistry , Promoter Regions, Genetic , Animals , CCAAT-Enhancer-Binding Proteins/metabolism , Cricetinae , Cricetulus , DNA Methylation , DNA Methyltransferase 3A , Gene Silencing , Humans , Methyltransferases/chemistry , Mice , Protein Structure, Tertiary , Ubiquitin-Protein Ligases , DNA Methyltransferase 3B
16.
RSC Chem Biol ; 2(4): 1291-1295, 2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34458843

ABSTRACT

Templated chemistry offers the prospect of addressing specificity challenges occurring in bioconjugation reactions. Here, we show two peptide-templated amide-bond forming reactions that enable the concurrent labelling of two different membrane proteins with two different peptide nucleic acid (PNA) barcodes. The reaction system is based on the mutually selective coiled coil interaction between two thioester-linked PNA-peptide conjugates and two cysteine peptides serving as genetically encoded peptide tags. Orthogonal coiled coil templated covalent labelling is highly specific, quantitative and proceeds within a minute. To demonstrate the usefulness, we evaluated receptor internalisation of two membranous receptors EGFR (epidermal growth factor) and ErbB2 (epidermal growth factor receptor 2) by first staining PNA-tagged proteins with fluorophore-DNA conjugates and then erasing signals from non-internalized receptors via toehold-mediated strand displacement.

17.
Nat Chem ; 13(1): 15-23, 2021 01.
Article in English | MEDLINE | ID: mdl-33288896

ABSTRACT

DNA nanotechnology is an emerging field that promises fascinating opportunities for the manipulation and imaging of proteins on a cell surface. The key to progress is the ability to create a nucleic acid-protein junction in the context of living cells. Here we report a covalent labelling reaction that installs a biostable peptide nucleic acid (PNA) tag. The reaction proceeds within minutes and is specific for proteins carrying a 2 kDa coiled-coil peptide tag. Once installed, the PNA label serves as a generic landing platform that enables the recruitment of fluorescent dyes via nucleic acid hybridization. We demonstrate the versatility of this approach by recruiting different fluorophores, assembling multiple fluorophores for increased brightness and achieving reversible labelling by way of toehold-mediated strand displacement. Additionally, we show that labelling can be carried out using two different coiled-coil systems, with epidermal growth factor receptor and endothelin receptor type B, on both HEK293 and CHO cells. Finally, we apply the method to monitor internalization of epidermal growth factor receptor on CHO cells.


Subject(s)
ErbB Receptors/metabolism , Microscopy, Fluorescence , Peptide Nucleic Acids/chemistry , Receptor, Endothelin B/metabolism , Amino Acid Sequence , Animals , CHO Cells , Cricetinae , Cricetulus , ErbB Receptors/chemistry , ErbB Receptors/genetics , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Nucleic Acid Hybridization , Peptide Nucleic Acids/chemical synthesis , Peptide Nucleic Acids/metabolism , Peptides/chemical synthesis , Peptides/chemistry , Peptides/metabolism , Protein Binding , Receptor, Endothelin B/chemistry , Receptor, Endothelin B/genetics , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/isolation & purification
18.
Sci Rep ; 11(1): 5838, 2021 03 12.
Article in English | MEDLINE | ID: mdl-33712646

ABSTRACT

Chemotherapy resistance is the main impediment in the treatment of acute myeloid leukaemia (AML). Despite rapid advances, the various mechanisms inducing resistance development remain to be defined in detail. Here we report that loss-of-function mutations (LOF) in the histone methyltransferase EZH2 have the potential to confer resistance against the chemotherapeutic agent cytarabine. We identify seven distinct EZH2 mutations leading to loss of H3K27 trimethylation via multiple mechanisms. Analysis of matched diagnosis and relapse samples reveal a heterogenous regulation of EZH2 and a loss of EZH2 in 50% of patients. We confirm that loss of EZH2 induces resistance against cytarabine in the cell lines HEK293T and K562 as well as in a patient-derived xenograft model. Proteomics and transcriptomics analysis reveal that resistance is conferred by upregulation of multiple direct and indirect EZH2 target genes that are involved in apoptosis evasion, augmentation of proliferation and alteration of transmembrane transporter function. Our data indicate that loss of EZH2 results in upregulation of its target genes, providing the cell with a selective growth advantage, which mediates chemotherapy resistance.


Subject(s)
Drug Resistance, Neoplasm/genetics , Enhancer of Zeste Homolog 2 Protein/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Loss of Function Mutation/genetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Enhancer of Zeste Homolog 2 Protein/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Humans , Leukemia, Myeloid, Acute/diagnosis , Neoplasm Recurrence, Local/pathology , Up-Regulation/drug effects , Up-Regulation/genetics , Xenograft Model Antitumor Assays
19.
Sci Rep ; 10(1): 12066, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32694513

ABSTRACT

Cytosine DNA bases can be methylated by DNA methyltransferases and subsequently oxidized by TET proteins. The resulting 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) are considered demethylation intermediates as well as stable epigenetic marks. To dissect the contributions of these cytosine modifying enzymes, we generated combinations of Tet knockout (KO) embryonic stem cells (ESCs) and systematically measured protein and DNA modification levels at the transition from naive to primed pluripotency. Whereas the increase of genomic 5-methylcytosine (5mC) levels during exit from pluripotency correlated with an upregulation of the de novo DNA methyltransferases DNMT3A and DNMT3B, the subsequent oxidation steps turned out to be far more complex. The strong increase of oxidized cytosine bases (5hmC, 5fC, and 5caC) was accompanied by a drop in TET2 levels, yet the analysis of KO cells suggested that TET2 is responsible for most 5fC formation. The comparison of modified cytosine and enzyme levels in Tet KO cells revealed distinct and differentiation-dependent contributions of TET1 and TET2 to 5hmC and 5fC formation arguing against a processive mechanism of 5mC oxidation. The apparent independent steps of 5hmC and 5fC formation suggest yet to be identified mechanisms regulating TET activity that may constitute another layer of epigenetic regulation.


Subject(s)
Cell Differentiation , Cytosine/metabolism , DNA-Binding Proteins/genetics , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Oxidation-Reduction , Proto-Oncogene Proteins/genetics , Animals , CRISPR-Cas Systems , Chromatography, High Pressure Liquid , DNA Methylation , DNA-Binding Proteins/metabolism , Dioxygenases , Epigenesis, Genetic , Mice , Mice, Knockout , Proteome , Proteomics , Proto-Oncogene Proteins/metabolism , Tandem Mass Spectrometry
20.
Nat Commun ; 11(1): 1222, 2020 03 06.
Article in English | MEDLINE | ID: mdl-32144273

ABSTRACT

Stable inheritance of DNA methylation is critical for maintaining differentiated phenotypes in multicellular organisms. We have recently identified dual mono-ubiquitylation of histone H3 (H3Ub2) by UHRF1 as an essential mechanism to recruit DNMT1 to chromatin. Here, we show that PCNA-associated factor 15 (PAF15) undergoes UHRF1-dependent dual mono-ubiquitylation (PAF15Ub2) on chromatin in a DNA replication-coupled manner. This event will, in turn, recruit DNMT1. During early S-phase, UHRF1 preferentially ubiquitylates PAF15, whereas H3Ub2 predominates during late S-phase. H3Ub2 is enhanced under PAF15 compromised conditions, suggesting that H3Ub2 serves as a backup for PAF15Ub2. In mouse ES cells, loss of PAF15Ub2 results in DNA hypomethylation at early replicating domains. Together, our results suggest that there are two distinct mechanisms underlying replication timing-dependent recruitment of DNMT1 through PAF15Ub2 and H3Ub2, both of which are prerequisite for high fidelity DNA methylation inheritance.


Subject(s)
DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA Methylation/genetics , Ubiquitination , Animals , CCAAT-Enhancer-Binding Proteins/metabolism , Chromatin/metabolism , Humans , Male , Mice , Mouse Embryonic Stem Cells/metabolism , Protein Binding , Spermatozoa/metabolism , Ubiquitin-Protein Ligases/metabolism , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL