Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Mol Cell ; 69(3): 465-479.e7, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29358076

ABSTRACT

hnRNPA2, a component of RNA-processing membraneless organelles, forms inclusions when mutated in a syndrome characterized by the degeneration of neurons (bearing features of amyotrophic lateral sclerosis [ALS] and frontotemporal dementia), muscle, and bone. Here we provide a unified structural view of hnRNPA2 self-assembly, aggregation, and interaction and the distinct effects of small chemical changes-disease mutations and arginine methylation-on these assemblies. The hnRNPA2 low-complexity (LC) domain is compact and intrinsically disordered as a monomer, retaining predominant disorder in a liquid-liquid phase-separated form. Disease mutations D290V and P298L induce aggregation by enhancing and extending, respectively, the aggregation-prone region. Co-aggregating in disease inclusions, hnRNPA2 LC directly interacts with and induces phase separation of TDP-43. Conversely, arginine methylation reduces hnRNPA2 phase separation, disrupting arginine-mediated contacts. These results highlight the mechanistic role of specific LC domain interactions and modifications conserved across many hnRNP family members but altered by aggregation-causing pathological mutations.


Subject(s)
Heterogeneous-Nuclear Ribonucleoprotein Group A-B/chemistry , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/metabolism , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Arginine/genetics , Arginine/metabolism , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/pathology , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/genetics , Humans , Inclusion Bodies/genetics , Inclusion Bodies/metabolism , Magnetic Resonance Imaging/methods , Methylation , Mutation , Neurons/metabolism , Neurons/pathology , Protein Processing, Post-Translational
2.
Curr Opin Hematol ; 25(5): 382-388, 2018 09.
Article in English | MEDLINE | ID: mdl-30015643

ABSTRACT

PURPOSE OF REVIEW: Since the selection of the first thrombin-binding aptamer in 1992, the use of nucleic acid aptamers to target specific coagulation factors has emerged as a valuable approach for generating novel anticoagulant and procoagulant therapeutics. Herein, we highlight the most recent discoveries involving application of aptamers for those purposes. RECENT FINDINGS: Learning from the successes and pitfalls of the FIXa-targeting aptamer pegnivacogin in preclinical and clinical studies, the latest efforts to develop antidote-controllable anticoagulation strategies for cardiopulmonary bypass that avoid unfractionated heparin involve potentiation of the exosite-binding factor X (FX)a aptamer 11F7t by combination with either a small molecule FXa catalytic site inhibitor or a thrombin aptamer. Recent work has also focused on identifying aptamer inhibitors of contact pathway factors such as FXIa and kallikrein, which may prove to be well tolerated and effective antithrombotic agents in certain clinical settings. Finally, new approaches to develop procoagulant aptamers to control bleeding associated with hemophilia and other coagulopathies involve targeting activated protein C and tissue plasminogen activator. SUMMARY: Overall, these recent findings exemplify the versatility of aptamers to modulate a variety of procoagulant and anticoagulant factors, along with their capacity to be used complementarily with other aptamers or drugs for wide-ranging applications.


Subject(s)
Aptamers, Nucleotide/therapeutic use , Factor IXa , Factor Xa Inhibitors/therapeutic use , Hemostasis , Animals , Antidotes/pharmacokinetics , Antidotes/therapeutic use , Aptamers, Nucleotide/adverse effects , Aptamers, Nucleotide/pharmacokinetics , Cardiopulmonary Bypass , Catalytic Domain , Factor IXa/antagonists & inhibitors , Factor IXa/metabolism , Factor Xa Inhibitors/adverse effects , Factor Xa Inhibitors/pharmacokinetics , Hemophilia A/blood , Hemophilia A/drug therapy , Humans , Kallikreins/metabolism
3.
bioRxiv ; 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39314402

ABSTRACT

Background: Andexanet alfa (andexanet) is the only FDA-approved antidote for direct factor Xa (FXa) inhibitors but has been reported to cause resistance to unfractionated heparin (UFH). This has delayed anticoagulation for procedures requiring cardiopulmonary bypass (CPB). The mechanism, andexanet and UFH dose dependence, and thrombotic risk of andexanet-associated heparin resistance are unknown. Methods: The effect of andexanet in vitro was determined using activated clotting times (ACT) and thromboelastography (TEG). Ex vivo CPB circuits were used to determine whether andexanet impaired anticoagulation for extracorporeal circulation. Kinetics of antithrombin (AT) inhibition of FXa and thrombin were measured in the presence of andexanet. Equilibrium modeling and thrombin generation assay (TGA) validation were used to predict the role of andexanet, AT, and UFH concentrations in andexanet-associated heparin resistance. Results: Andexanet prevented UFH-mediated prolongation of ACT and TEG times. At lower concentrations of andexanet, heparin resistance could be overcome with suprapharmacologic doses of UFH, but not at higher andexanet concentrations. Andexanet rendered standard doses of UFH inadequate to prevent circuit thrombosis, and suprapharmacologic UFH doses were only partially able to overcome this. Scanning electron microscopy demonstrated coagulation activation in circuits. Andexanet prevented UFH enhancement of AT-mediated inhibition of FXa and thrombin. Equilibrium modeling and TGA validation demonstrated that andexanet creates a triphasic equilibrium with UFH and AT: initial UFH unresponsiveness, normal UFH responsiveness when andexanet is depleted, and finally AT depletion. Sufficient CPB heparinization can only occur at low therapeutic andexanet doses and normal AT levels. Higher andexanet doses or AT deficiency may require both AT supplementation and very high UFH doses. Conclusions: Andexanet causes heparin resistance due to redistribution of UFH-bound AT. If andexanet cannot be avoided prior to heparinization and direct thrombin inhibitors are undesirable, our in vitro study suggests excess UFH should be considered as a potential strategy prior to AT supplementation. Highlights: Andexanet alfa causes heparin resistance not by depleting antithrombin, but rather by sequestering heparin-bound antithrombin such that it cannot act as an anticoagulant.Heparin responsiveness in the presence of Andexanet alfa is triphasic such that the effect of a dose of heparin can now be predicted in vitro based on the relative concentrations of andexanet, heparin, and antithrombin.The in vitro insights provided by this work provide a rational starting point for further clinical elucidation of the problem and management of andexanet-associated heparin resistance.

4.
Nucleic Acid Ther ; 32(3): 139-150, 2022 06.
Article in English | MEDLINE | ID: mdl-35021888

ABSTRACT

Known limitations of unfractionated heparin (UFH) have encouraged the evaluation of anticoagulant aptamers as alternatives to UFH in highly procoagulant settings such as cardiopulmonary bypass (CPB). Despite progress, these efforts have not been totally successful. We take a different approach and explore whether properties of an anticoagulant aptamer can complement UFH, rather than replace it, to address shortcomings with UFH use. Combining RNA aptamer 11F7t, which targets factor X/Xa, with UFH (or low molecular weight heparin) yields a significantly enhanced anticoagulant cocktail effective in normal and COVID-19 patient blood. This aptamer-UFH combination (1) supports continuous circulation of human blood through an ex vivo membrane oxygenation circuit, as is required for patients undergoing CPB and COVID-19 patients requiring extracorporeal membrane oxygenation, (2) allows for a reduced level of UFH to be employed, (3) more effectively limits thrombin generation compared to UFH alone, and (4) is rapidly reversed by the administration of protamine sulfate, the standard treatment for reversing UFH clinically following CPB. Thus, the combination of factor X/Xa aptamer and UFH has significantly improved anticoagulant properties compared to UFH alone and underscores the potential of RNA aptamers to improve medical management of acute care patients requiring potent yet rapidly reversible anticoagulation.


Subject(s)
Aptamers, Nucleotide , COVID-19 , Anticoagulants/pharmacology , Anticoagulants/therapeutic use , Aptamers, Nucleotide/genetics , Aptamers, Nucleotide/pharmacology , Aptamers, Nucleotide/therapeutic use , Cardiopulmonary Bypass/adverse effects , Factor X , Heparin , Humans , Thrombin
5.
Nat Biotechnol ; 36(7): 606-613, 2018 08.
Article in English | MEDLINE | ID: mdl-29863725

ABSTRACT

Unfractionated heparin (UFH), the standard anticoagulant for cardiopulmonary bypass (CPB) surgery, carries a risk of post-operative bleeding and is potentially harmful in patients with heparin-induced thrombocytopenia-associated antibodies. To improve the activity of an alternative anticoagulant, the RNA aptamer 11F7t, we solved X-ray crystal structures of the aptamer bound to factor Xa (FXa). The finding that 11F7t did not bind the catalytic site suggested that it could complement small-molecule FXa inhibitors. We demonstrate that combinations of 11F7t and catalytic-site FXa inhibitors enhance anticoagulation in purified reaction mixtures and plasma. Aptamer-drug combinations prevented clot formation as effectively as UFH in human blood circulated in an extracorporeal oxygenator circuit that mimicked CPB, while avoiding side effects of UFH. An antidote could promptly neutralize the anticoagulant effects of both FXa inhibitors. Our results suggest that drugs and aptamers with shared targets can be combined to exert more specific and potent effects than either agent alone.


Subject(s)
Anticoagulants/administration & dosage , Factor Xa Inhibitors/administration & dosage , Factor Xa/chemistry , Postoperative Hemorrhage/drug therapy , Anticoagulants/chemistry , Aptamers, Nucleotide/administration & dosage , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/genetics , Cardiopulmonary Bypass/adverse effects , Crystallography, X-Ray , Drug Combinations , Factor Xa/genetics , Factor Xa Inhibitors/chemistry , Heparin/adverse effects , Humans , Postoperative Hemorrhage/genetics , Postoperative Hemorrhage/pathology , Protein Conformation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL