Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Proc Natl Acad Sci U S A ; 121(28): e2400737121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38968127

ABSTRACT

In recent years, the exploration of genome three-dimensional (3D) conformation has yielded profound insights into the regulation of gene expression and cellular functions in both animals and plants. While animals exhibit a characteristic genome topology defined by topologically associating domains (TADs), plants display similar features with a more diverse conformation across species. Employing advanced high-throughput sequencing and microscopy techniques, we investigated the landscape of 26 histone modifications and RNA polymerase II distribution in tomato (Solanum lycopersicum). Our study unveiled a rich and nuanced epigenetic landscape, shedding light on distinct chromatin states associated with heterochromatin formation and gene silencing. Moreover, we elucidated the intricate interplay between these chromatin states and the overall topology of the genome. Employing a genetic approach, we delved into the role of the histone modification H3K9ac in genome topology. Notably, our investigation revealed that the ectopic deposition of this chromatin mark triggered a reorganization of the 3D chromatin structure, defining different TAD-like borders. Our work emphasizes the critical role of H3K9ac in shaping the topology of the tomato genome, providing valuable insights into the epigenetic landscape of this agriculturally significant crop species.


Subject(s)
Epigenome , Histones , Solanum lycopersicum , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Histones/metabolism , Histones/genetics , Epigenesis, Genetic , Genome, Plant , Chromatin/metabolism , Chromatin/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Heterochromatin/metabolism , Heterochromatin/genetics , Histone Code/genetics
2.
New Phytol ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39061112

ABSTRACT

Heat stress transcription factors (HSFs) are the core regulators of the heat stress (HS) response in plants. HSFs are considered as a molecular rheostat: their activities define the response intensity, incorporating information about the environmental temperature through a network of partner proteins. A prompted activation of HSFs is required for survival, for example the de novo synthesis of heat shock proteins. Furthermore, a timely attenuation of the stress response is necessary for the restoration of cellular functions and recovery from stress. In an ever-changing environment, the balance between thermotolerance and developmental processes such as reproductive fitness highlights the importance of a tightly tuned response. In many cases, the response is described as an ON/OFF mode, while in reality, it is very dynamic. This review compiles recent findings to update existing models about the HSF-regulated HS response and address two timely questions: How do plants adjust the intensity of cellular HS response corresponding to the temperature they experience? How does this adjustment contribute to the fine-tuning of the HS and developmental networks? Understanding these processes is crucial not only for enhancing our basic understanding of plant biology but also for developing strategies to improve crop resilience and productivity under stressful conditions.

3.
New Phytol ; 225(3): 1297-1310, 2020 02.
Article in English | MEDLINE | ID: mdl-31556121

ABSTRACT

Wild relatives of crops thrive in habitats where environmental conditions can be restrictive for productivity and survival of cultivated species. The genetic basis of this variability, particularly for tolerance to high temperatures, is not well understood. We examined the capacity of wild and cultivated accessions to acclimate to rapid temperature elevations that cause heat stress (HS). We investigated genotypic variation in thermotolerance of seedlings of wild and cultivated accessions. The contribution of polymorphisms associated with thermotolerance variation was examined regarding alterations in function of the identified gene. We show that tomato germplasm underwent a progressive loss of acclimation to strong temperature elevations. Sensitivity is associated with intronic polymorphisms in the HS transcription factor HsfA2 which affect the splicing efficiency of its pre-mRNA. Intron splicing in wild species results in increased synthesis of isoform HsfA2-II, implicated in the early stress response, at the expense of HsfA2-I which is involved in establishing short-term acclimation and thermotolerance. We propose that the selection for modern HsfA2 haplotypes reduced the ability of cultivated tomatoes to rapidly acclimate to temperature elevations, but enhanced their short-term acclimation capacity. Hence, we provide evidence that alternative splicing has a central role in the definition of plant fitness plasticity to stressful conditions.


Subject(s)
Alternative Splicing/genetics , Domestication , Genetic Variation , RNA Precursors/genetics , Solanum lycopersicum/genetics , Solanum lycopersicum/physiology , Thermotolerance/genetics , Acclimatization , Alleles , Base Sequence , Genome-Wide Association Study , Haplotypes/genetics , Heat-Shock Response , Introns/genetics , Polymorphism, Genetic , Protein Isoforms/metabolism , Protein Stability , Protein Transport , RNA Precursors/metabolism , Seedlings/physiology , Temperature
4.
Plant Cell Environ ; 42(3): 874-890, 2019 03.
Article in English | MEDLINE | ID: mdl-30187931

ABSTRACT

Plants code for a multitude of heat stress transcription factors (Hsfs). Three of them act as central regulators of heat stress (HS) response in tomato (Solanum lycopersicum). HsfA1a regulates the initial response, and HsfA2 controls acquired thermotolerance. HsfB1 is a transcriptional repressor but can also act as co-activator of HsfA1a. Currently, the mode of action and the relevance of the dual function of HsfB1 remain elusive. We examined this in HsfB1 overexpression or suppression transgenic tomato lines. Proteome analysis revealed that HsfB1 overexpression stimulates the co-activator function of HsfB1 and consequently the accumulation of HS-related proteins under non-stress conditions. Plants with enhanced levels of HsfB1 show aberrant growth and development but enhanced thermotolerance. HsfB1 suppression has no significant effect prior to stress. Upon HS, HsfB1 suppression strongly enhances the induction of heat shock proteins due to the higher activity of other HS-induced Hsfs, resulting in increased thermotolerance compared with wild-type. Thereby, HsfB1 acts as co-activator of HsfA1a for several Hsps, but as a transcriptional repressor on other Hsfs, including HsfA1b and HsfA2. The dual function explains the activation of chaperones to enhance protection and regulate the balance between growth and stress response upon deviations from the homeostatic levels of HsfB1.


Subject(s)
Heat-Shock Response/physiology , Plant Proteins/physiology , Repressor Proteins/physiology , Solanum lycopersicum/metabolism , Transcription Factors/physiology , Electrophoresis, Gel, Two-Dimensional , Solanum lycopersicum/growth & development , Solanum lycopersicum/physiology , Plants, Genetically Modified , Real-Time Polymerase Chain Reaction
5.
Plant Physiol ; 170(4): 2461-77, 2016 04.
Article in English | MEDLINE | ID: mdl-26917685

ABSTRACT

Male reproductive tissues are more sensitive to heat stress (HS) compared to vegetative tissues, but the basis of this phenomenon is poorly understood. Heat stress transcription factors (Hsfs) regulate the transcriptional changes required for protection from HS In tomato (Solanum lycopersicum), HsfA2 acts as coactivator of HsfA1a and is one of the major Hsfs accumulating in response to elevated temperatures. The contribution of HsfA2 in heat stress response (HSR) and thermotolerance was investigated in different tissues of transgenic tomato plants with suppressed HsfA2 levels (A2AS). Global transcriptome analysis and immunodetection of two major Hsps in vegetative and reproductive tissues showed that HsfA2 regulates subsets of HS-induced genes in a tissue-specific manner. Accumulation of HsfA2 by a moderate HS treatment enhances the capacity of seedlings to cope with a subsequent severe HS, suggesting an important role for HsfA2 in regulating acquired thermotolerance. In pollen, HsfA2 is an important coactivator of HsfA1a during HSR HsfA2 suppression reduces the viability and germination rate of pollen that received the stress during the stages of meiosis and microspore formation but had no effect on more advanced stages. In general, pollen meiocytes and microspores are characterized by increased susceptibility to HS due to their lower capacity to induce a strong HSR This sensitivity is partially mitigated by the developmentally regulated expression of HsfA2 and several HS-responsive genes mediated by HsfA1a under nonstress conditions. Thereby, HsfA2 is an important factor for the priming process that sustains pollen thermotolerance during microsporogenesis.


Subject(s)
DNA-Binding Proteins/metabolism , Gene Expression Regulation, Plant , Heat-Shock Proteins/metabolism , Heat-Shock Response , Plant Proteins/metabolism , Solanum lycopersicum/physiology , Transcription Factors/metabolism , DNA-Binding Proteins/genetics , Flowers/genetics , Flowers/growth & development , Flowers/physiology , Gametogenesis, Plant , Gene Expression Profiling , Gene Expression Regulation, Developmental , Heat Shock Transcription Factors , Heat-Shock Proteins/genetics , Hot Temperature , Solanum lycopersicum/genetics , Solanum lycopersicum/growth & development , Organ Specificity , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/physiology , Plant Proteins/genetics , Plants, Genetically Modified , Pollen/genetics , Pollen/growth & development , Pollen/physiology , Seedlings/genetics , Seedlings/growth & development , Seedlings/physiology , Thermotolerance , Transcription Factors/genetics
6.
BMC Genomics ; 16: 714, 2015 Sep 18.
Article in English | MEDLINE | ID: mdl-26385469

ABSTRACT

BACKGROUND: The unprecedented role of sncRNAs in the regulation of pollen biogenesis on both transcriptional and epigenetic levels has been experimentally proven. However, little is known about their global regulation, especially under stress conditions. We used tomato pollen in order to identify pollen stage-specific sncRNAs and their target mRNAs. We further deployed elevated temperatures to discern stress responsive sncRNAs. For this purpose high throughput sncRNA-sequencing as well as Massive Analysis of cDNA Ends (MACE) were performed for three-replicated sncRNAs libraries derived from tomato tetrad, post-meiotic, and mature pollen under control and heat stress conditions. RESULTS: Using the omiRas analysis pipeline we identified known and predicted novel miRNAs as well as sncRNAs from other classes, responsive or not to heat. Differential expression analysis revealed that post-meiotic and mature pollen react most strongly by regulation of the expression of coding and non-coding genomic regions in response to heat. To gain insight to the function of these miRNAs, we predicted targets and annotated them to Gene Ontology terms. This approach revealed that most of them belong to protein binding, transcription, and Serine/Threonine kinase activity GO categories. Beside miRNAs, we observed differential expression of both tRNAs and snoRNAs in tetrad, post-meiotic, and mature pollen when comparing normal and heat stress conditions. CONCLUSIONS: Thus, we describe a global spectrum of sncRNAs expressed in pollen as well as unveiled those which are regulated at specific time-points during pollen biogenesis. We integrated the small RNAs into the regulatory network of tomato heat stress response in pollen.


Subject(s)
Pollen/genetics , RNA, Small Untranslated/genetics , Solanum lycopersicum/genetics
7.
Plant Cell Environ ; 38(9): 1881-95, 2015 Sep.
Article in English | MEDLINE | ID: mdl-24995670

ABSTRACT

Cell survival under high temperature conditions involves the activation of heat stress response (HSR), which in principle is highly conserved among different organisms, but shows remarkable complexity and unique features in plant systems. The transcriptional reprogramming at higher temperatures is controlled by the activity of the heat stress transcription factors (Hsfs). Hsfs allow the transcriptional activation of HSR genes, among which heat shock proteins (Hsps) are best characterized. Hsps belong to multigene families encoding for molecular chaperones involved in various processes including maintenance of protein homeostasis as a requisite for optimal development and survival under stress conditions. Hsfs form complex networks to activate downstream responses, but are concomitantly subjected to cell-type-dependent feedback regulation through factor-specific physical and functional interactions with chaperones belonging to Hsp90, Hsp70 and small Hsp families. There is increasing evidence that the originally assumed specialized function of Hsf/chaperone networks in the HSR turns out to be a complex central stress response system that is involved in the regulation of a broad variety of other stress responses and may also have substantial impact on various developmental processes. Understanding in detail the function of such regulatory networks is prerequisite for sustained improvement of thermotolerance in important agricultural crops.


Subject(s)
Crops, Agricultural/physiology , DNA-Binding Proteins/genetics , Genetic Engineering/methods , Heat-Shock Proteins/genetics , Plant Proteins/genetics , Transcription Factors/genetics , Crops, Agricultural/chemistry , Crops, Agricultural/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Plant , Gene Regulatory Networks , Heat Shock Transcription Factors , Heat-Shock Proteins/metabolism , Heat-Shock Response , Hot Temperature , Multigene Family , Plant Proteins/metabolism , Transcription Factors/metabolism
8.
Plant Cell Environ ; 38(4): 693-709, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25124075

ABSTRACT

Heat shock proteins (Hsps) are molecular chaperones primarily involved in maintenance of protein homeostasis. Their function has been best characterized in heat stress (HS) response during which Hsps are transcriptionally controlled by HS transcription factors (Hsfs). The role of Hsfs and Hsps in HS response in tomato was initially examined by transcriptome analysis using the massive analysis of cDNA ends (MACE) method. Approximately 9.6% of all genes expressed in leaves are enhanced in response to HS, including a subset of Hsfs and Hsps. The underlying Hsp-Hsf networks with potential functions in stress responses or developmental processes were further explored by meta-analysis of existing microarray datasets. We identified clusters with differential transcript profiles with respect to abiotic stresses, plant organs and developmental stages. The composition of two clusters points towards two major chaperone networks. One cluster consisted of constitutively expressed plastidial chaperones and other genes involved in chloroplast protein homeostasis. The second cluster represents genes strongly induced by heat, drought and salinity stress, including HsfA2 and many stress-inducible chaperones, but also potential targets of HsfA2 not related to protein homeostasis. This observation attributes a central regulatory role to HsfA2 in controlling different aspects of abiotic stress response and tolerance in tomato.


Subject(s)
DNA-Binding Proteins/genetics , Gene Expression Regulation, Plant , Heat-Shock Proteins/genetics , Heat-Shock Response , Plant Proteins/genetics , Solanum lycopersicum/genetics , Transcription Factors/genetics , Droughts , Gene Expression Profiling , Heat Shock Transcription Factors , Hot Temperature , Solanum lycopersicum/physiology , Oligonucleotide Array Sequence Analysis
9.
Plant Mol Biol ; 85(4-5): 459-71, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24803411

ABSTRACT

Proline hydroxylation is a major posttranslational modification of hydroxyproline-rich glycoproteins (HRGPs) that is catalyzed by prolyl 4-hydroxylases (P4Hs). HRGPs such as arabinogalactan proteins (AGPs) and extensios play significant roles on cell wall structure and function and their implication in cell division and expansion has been reported. We used tobacco rattle virus (TRV)-based virus induced gene silencing to investigate the role of three tomato P4Hs, out of ten present in the tomato genome, in growth and development. Eight-days old tomato seedlings were infected with the appropriate TRV vectors and plants were allowed to grow under standard conditions for 6 weeks. Lower P4H mRNA levels were associated with lower hydroxyproline content in root and shoot tissues indicating successful gene silencing. P4H-silenced plants had longer roots and shoots and larger leaves. The increased leaf area can be attributed to increased cell division as indicated by the higher leaf epidermal cell number in SlP4H1- and SlP4H9-silenced plants. In contrast, SlP4H7-silenced plants had larger leaves due to enhanced cell expansion. Western blot analysis revealed that silencing of SlP4H7 and SlP4H9 was associated with reduced levels of JIM8-bound AGP and JIM11-bound extensin epitopes, while silencing of SlP4H1 reduced only the levels of AGP proteins. Collectively these results show that P4Hs have significant and distinct roles in cell division and expansion of tomato leaves.


Subject(s)
Gene Expression Regulation, Plant/physiology , Gene Silencing , Mixed Function Oxygenases/classification , Mixed Function Oxygenases/metabolism , Plant Proteins/metabolism , Solanum lycopersicum/enzymology , Amino Acid Sequence , Gene Expression Regulation, Enzymologic/physiology , Genetic Vectors , Solanum lycopersicum/genetics , Solanum lycopersicum/growth & development , Solanum lycopersicum/virology , Mixed Function Oxygenases/genetics , Molecular Sequence Data , Plant Leaves/ultrastructure , Plant Proteins/genetics , Protein Subunits , RNA Viruses/physiology
10.
Cell Stress Chaperones ; 29(1): 143-157, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38311120

ABSTRACT

Preserving and regulating cellular homeostasis in the light of changing environmental conditions or developmental processes is of pivotal importance for single cellular and multicellular organisms alike. To counteract an imbalance in cellular homeostasis transcriptional programs evolved, called the heat shock response, unfolded protein response, and integrated stress response, that act cell-autonomously in most cells but in multicellular organisms are subjected to cell-nonautonomous regulation. These transcriptional programs downregulate the expression of most genes but increase the expression of heat shock genes, including genes encoding molecular chaperones and proteases, proteins involved in the repair of stress-induced damage to macromolecules and cellular structures. Sixty-one years after the discovery of the heat shock response by Ferruccio Ritossa, many aspects of stress biology are still enigmatic. Recent progress in the understanding of stress responses and molecular chaperones was reported at the 12th International Symposium on Heat Shock Proteins in Biology, Medicine and the Environment in the Old Town Alexandria, VA, USA from 28th to 31st of October 2023.


Subject(s)
Heat-Shock Proteins , Medicine , Heat-Shock Proteins/metabolism , Molecular Chaperones/metabolism , Heat-Shock Response/genetics , Biology
11.
BMC Genomics ; 14: 189, 2013 Mar 18.
Article in English | MEDLINE | ID: mdl-23506162

ABSTRACT

BACKGROUND: Protein translocation across membranes is a central process in all cells. In the past decades the molecular composition of the translocation systems in the membranes of the endoplasmic reticulum, peroxisomes, mitochondria and chloroplasts have been established based on the analysis of model organisms. Today, these results have to be transferred to other plant species. We bioinformatically determined the inventory of putative translocation factors in tomato (Solanum lycopersicum) by orthologue search and domain architecture analyses. In addition, we investigated the diversity of such systems by comparing our findings to the model organisms Saccharomyces cerevisiae, Arabidopsis thaliana and 12 other plant species. RESULTS: The literature search end up in a total of 130 translocation components in yeast and A. thaliana, which are either experimentally confirmed or homologous to experimentally confirmed factors. From our bioinformatic analysis (PGAP and OrthoMCL), we identified (co-)orthologues in plants, which in combination yielded 148 and 143 orthologues in A. thaliana and S. lycopersicum, respectively. Interestingly, we traced 82% overlap in findings from both approaches though we did not find any orthologues for 27% of the factors by either procedure. In turn, 29% of the factors displayed the presence of more than one (co-)orthologue in tomato. Moreover, our analysis revealed that the genomic composition of the translocation machineries in the bryophyte Physcomitrella patens resemble more to higher plants than to single celled green algae. The monocots (Z. mays and O. sativa) follow more or less a similar conservation pattern for encoding the translocon components. In contrast, a diverse pattern was observed in different eudicots. CONCLUSIONS: The orthologue search shows in most cases a clear conservation of components of the translocation pathways/machineries. Only the Get-dependent integration of tail-anchored proteins seems to be distinct. Further, the complexity of the translocation pathway in terms of existing orthologues seems to vary among plant species. This might be the consequence of palaeoploidisation during evolution in plants; lineage specific whole genome duplications in Arabidopsis thaliana and triplications in Solanum lycopersicum.


Subject(s)
Evolution, Molecular , Phylogeny , Protein Transport/genetics , Solanum lycopersicum/genetics , Arabidopsis/genetics , Computational Biology , Conserved Sequence/genetics , Gene Expression Regulation, Plant , Genome, Plant , Solanum lycopersicum/physiology , Metabolic Networks and Pathways/genetics , Species Specificity
12.
Cell Stress Chaperones ; 28(5): 511-528, 2023 09.
Article in English | MEDLINE | ID: mdl-36449150

ABSTRACT

Conditions that cause proteotoxicity like high temperature trigger the activation of unfolded protein response (UPR). The cytosolic (CPR) and endoplasmic reticulum (ER) UPR rely on heat stress transcription factor (HSF) and two members of the basic leucine zipper (bZIP) gene family, respectively. In tomato, HsfA1a is the master regulator of CPR. Here, we identified the core players of tomato ER-UPR including the two central transcriptional regulators, namely bZIP28 and bZIP60. Interestingly, the induction of ER-UPR genes and the activation of bZIP60 are altered in transgenic plants where HsfA1a is either overexpressed (A1aOE) or suppressed (A1CS), indicating an interplay between CPR and ER-UPR systems. Several ER-UPR genes are differentially expressed in the HsfA1a transgenic lines either exposed to heat stress or to the ER stress elicitor tunicamycin (TUN). The ectopic expression of HsfA1a is associated with higher tolerance against TUN. On the example of the ER-resident Hsp70 chaperone BIP3, we show that the presence of cis-elements required for HSF and bZIP regulation serves as a putative platform for the co-regulation of these genes by both CPR and ER-UPR mechanisms, in the case of BIP3 in a stimulatory manner under high temperatures. In addition, we show that the accumulation of HsfA1a results in higher levels of three ATG genes and a more sensitized induction of autophagy in response to ER stress which also supports the increased tolerance to ER stress of the A1aOE line. These findings provide a basis for the coordination of protein homeostasis in different cellular compartments under stress conditions.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Solanum lycopersicum , Solanum lycopersicum/genetics , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Unfolded Protein Response , Endoplasmic Reticulum/metabolism
13.
Nat Commun ; 14(1): 469, 2023 01 28.
Article in English | MEDLINE | ID: mdl-36709329

ABSTRACT

The complex and dynamic three-dimensional organization of chromatin within the nucleus makes understanding the control of gene expression challenging, but also opens up possible ways to epigenetically modulate gene expression. Because plants are sessile, they evolved sophisticated ways to rapidly modulate gene expression in response to environmental stress, that are thought to be coordinated by changes in chromatin conformation to mediate specific cellular and physiological responses. However, to what extent and how stress induces dynamic changes in chromatin reorganization remains poorly understood. Here, we comprehensively investigated genome-wide chromatin changes associated with transcriptional reprogramming response to heat stress in tomato. Our data show that heat stress induces rapid changes in chromatin architecture, leading to the transient formation of promoter-enhancer contacts, likely driving the expression of heat-stress responsive genes. Furthermore, we demonstrate that chromatin spatial reorganization requires HSFA1a, a transcription factor (TF) essential for heat stress tolerance in tomato. In light of our findings, we propose that TFs play a key role in controlling dynamic transcriptional responses through 3D reconfiguration of promoter-enhancer contacts.


Subject(s)
Heat-Shock Response , Solanum lycopersicum , Heat-Shock Response/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Stress, Physiological/genetics , Gene Expression Regulation , Chromatin/genetics , Solanum lycopersicum/genetics
14.
Front Plant Sci ; 13: 911277, 2022.
Article in English | MEDLINE | ID: mdl-35812973

ABSTRACT

Alternative splicing (AS) is a major mechanism for gene expression in eukaryotes, increasing proteome diversity but also regulating transcriptome abundance. High temperatures have a strong impact on the splicing profile of many genes and therefore AS is considered as an integral part of heat stress response. While many studies have established a detailed description of the diversity of the RNAome under heat stress in different plant species and stress regimes, little is known on the underlying mechanisms that control this temperature-sensitive process. AS is mainly regulated by the activity of splicing regulators. Changes in the abundance of these proteins through transcription and AS, post-translational modifications and interactions with exonic and intronic cis-elements and core elements of the spliceosomes modulate the outcome of pre-mRNA splicing. As a major part of pre-mRNAs are spliced co-transcriptionally, the chromatin environment along with the RNA polymerase II elongation play a major role in the regulation of pre-mRNA splicing under heat stress conditions. Despite its importance, our understanding on the regulation of heat stress sensitive AS in plants is scarce. In this review, we summarize the current status of knowledge on the regulation of AS in plants under heat stress conditions. We discuss possible implications of different pathways based on results from non-plant systems to provide a perspective for researchers who aim to elucidate the molecular basis of AS under high temperatures.

15.
Cell Rep ; 38(2): 110224, 2022 01 11.
Article in English | MEDLINE | ID: mdl-35021091

ABSTRACT

Plants respond to higher temperatures by the action of heat stress (HS) transcription factors (Hsfs), which control the onset, early response, and long-term acclimation to HS. Members of the HsfA1 subfamily, such as tomato HsfA1a, are the central regulators of HS response, and their activity is fine-tuned by other Hsfs. We identify tomato HsfA7 as capacitor of HsfA1a during the early HS response. Upon a mild temperature increase, HsfA7 is induced in an HsfA1a-dependent manner. The subsequent interaction of the two Hsfs prevents the stabilization of HsfA1a resulting in a negative feedback mechanism. Under prolonged or severe HS, HsfA1a and HsfA7 complexes stimulate the induction of genes required for thermotolerance. Therefore, HsfA7 exhibits a co-repressor mode at mild HS by regulating HsfA1a abundance to moderate the upregulation of HS-responsive genes. HsfA7 undergoes a temperature-dependent transition toward a co-activator of HsfA1a to enhance the acquired thermotolerance capacity of tomato plants.


Subject(s)
Heat Shock Transcription Factors/genetics , Solanum lycopersicum/genetics , Trans-Activators/genetics , Acclimatization , Arabidopsis , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , DNA-Binding Proteins/metabolism , Gene Expression/genetics , Gene Expression Regulation, Plant/genetics , Heat Shock Transcription Factors/metabolism , Heat-Shock Proteins/metabolism , Heat-Shock Response/genetics , Hot Temperature , Solanum lycopersicum/metabolism , Plant Proteins/genetics , Plants, Genetically Modified/metabolism , Thermotolerance/genetics , Trans-Activators/metabolism , Transcription Factors/metabolism
16.
Front Genet ; 13: 818727, 2022.
Article in English | MEDLINE | ID: mdl-35251130

ABSTRACT

Crop adaptation to climate change is in a part attributed to epigenetic mechanisms which are related to response to abiotic and biotic stresses. Although recent studies increased our knowledge on the nature of these mechanisms, epigenetics remains under-investigated and still poorly understood in many, especially non-model, plants, Epigenetic modifications are traditionally divided into two main groups, DNA methylation and histone modifications that lead to chromatin remodeling and the regulation of genome functioning. In this review, we outline the most recent and interesting findings on crop epigenetic responses to the environmental cues that are most relevant to climate change. In addition, we discuss a speculative point of view, in which we try to decipher the "epigenetic alphabet" that underlies crop adaptation mechanisms to climate change. The understanding of these mechanisms will pave the way to new strategies to design and implement the next generation of cultivars with a broad range of tolerance/resistance to stresses as well as balanced agronomic traits, with a limited loss of (epi)genetic variability.

17.
Front Plant Sci ; 12: 645689, 2021.
Article in English | MEDLINE | ID: mdl-33854522

ABSTRACT

Alternative splicing is an important mechanism for the regulation of gene expression in eukaryotes during development, cell differentiation or stress response. Alterations in the splicing profiles of genes under high temperatures that cause heat stress (HS) can impact the maintenance of cellular homeostasis and thermotolerance. Consequently, information on factors involved in HS-sensitive alternative splicing is required to formulate the principles of HS response. Serine/arginine-rich (SR) proteins have a central role in alternative splicing. We aimed for the identification and characterization of SR-coding genes in tomato (Solanum lycopersicum), a plant extensively used in HS studies. We identified 17 canonical SR and two SR-like genes. Several SR-coding genes show differential expression and altered splicing profiles in different organs as well as in response to HS. The transcriptional induction of five SR and one SR-like genes is partially dependent on the master regulator of HS response, HS transcription factor HsfA1a. Cis-elements in the promoters of these SR genes were predicted, which can be putatively recognized by HS-induced transcription factors. Further, transiently expressed SRs show reduced or steady-state protein levels in response to HS. Thus, the levels of SRs under HS are regulated by changes in transcription, alternative splicing and protein stability. We propose that the accumulation or reduction of SRs under HS can impact temperature-sensitive alternative splicing.

18.
Genes (Basel) ; 11(6)2020 06 16.
Article in English | MEDLINE | ID: mdl-32560080

ABSTRACT

Transcriptional reprograming after the exposure of plants to elevated temperatures is a hallmark of stress response which is required for the manifestation of thermotolerance. Central transcription factors regulate the stress survival and recovery mechanisms and many of the core responses controlled by these factors are well described. In turn, pathways and specific genes contributing to variations in the thermotolerance capacity even among closely related plant genotypes are not well defined. A seedling-based assay was developed to directly compare the growth and transcriptome response to heat stress in four tomato genotypes with contrasting thermotolerance. The conserved and the genotype-specific alterations of mRNA abundance in response to heat stress were monitored after exposure to three different temperatures. The transcripts of the majority of genes behave similarly in all genotypes, including the majority of heat stress transcription factors and heat shock proteins, but also genes involved in photosynthesis and mitochondrial ATP production. In turn, genes involved in hormone and RNA-based regulation, such as auxin- and ethylene-related genes, or transcription factors like HsfA6b, show a differential regulation that associates with the thermotolerance pattern. Our results provide an inventory of genes likely involved in core and genotype-dependent heat stress response mechanisms with putative role in thermotolerance in tomato seedlings.


Subject(s)
Seedlings/genetics , Solanum lycopersicum/genetics , Thermotolerance/genetics , Transcription, Genetic/genetics , Gene Expression Regulation, Plant/genetics , Genotype , Heat-Shock Proteins/genetics , Heat-Shock Response/genetics , Solanum lycopersicum/growth & development , Photosynthesis/genetics , Transcription Factors/genetics
19.
Front Plant Sci ; 11: 610599, 2020.
Article in English | MEDLINE | ID: mdl-33424907

ABSTRACT

Plants respond to high temperatures with global changes of the transcriptome, proteome, and metabolome. Heat stress transcription factors (Hsfs) are the core regulators of transcriptome responses as they control the reprogramming of expression of hundreds of genes. The thermotolerance-related function of Hsfs is mainly based on the regulation of many heat shock proteins (HSPs). Instead, the Hsf-dependent reprogramming of metabolic pathways and their contribution to thermotolerance are not well described. In tomato (Solanum lycopersicum), manipulation of HsfB1, either by suppression or overexpression (OE) leads to enhanced thermotolerance and coincides with distinct profile of metabolic routes based on a metabolome profiling of wild-type (WT) and HsfB1 transgenic plants. Leaves of HsfB1 knock-down plants show an accumulation of metabolites with a positive effect on thermotolerance such as the sugars sucrose and glucose and the polyamine putrescine. OE of HsfB1 leads to the accumulation of products of the phenylpropanoid and flavonoid pathways, including several caffeoyl quinic acid isomers. The latter is due to the enhanced transcription of genes coding key enzymes in both pathways, in some cases in both non-stressed and stressed plants. Our results show that beyond the control of the expression of Hsfs and HSPs, HsfB1 has a wider activity range by regulating important metabolic pathways providing an important link between stress response and physiological tomato development.

SELECTION OF CITATIONS
SEARCH DETAIL