Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Naunyn Schmiedebergs Arch Pharmacol ; 397(1): 189-205, 2024 01.
Article in English | MEDLINE | ID: mdl-37401968

ABSTRACT

This work is aimed at studying the drug delivery applications of iron oxide (Fe3O4) nanoparticles with strontium (Sr) doping with varying molar ratios prepared by the co-precipitation route. The impact of increased strontium content on the particle size and magnetic properties was investigated. The impending of these nanoparticles for drug loading, drug release, and their respective cytotoxicity was also inspected.First, iron oxide nanoparticles were doped with various amounts of strontium, from 0.25, 0.50, and 0.75, to 1 mol using co-precipitation method. These synthesized nanoparticles were characterized by XRD, SEM, EDX, VSM, and FTIR for evaluating crystal structure, phase purity, morphology, composition, magnetic properties, and functional groups, respectively. Drug loading and drug release properties were determined using UV-vis spectroscopy, whereas MTT assay evaluated cytotoxicity. Colloidal stability was assessed using zeta potential in PBS solution.The findings confirmed the successful doping of iron oxide with strontium via XRD and EDX. SEM results confirmed spherical morphology for all and needle-like structure for 1 mol strontium doped sample. For VSM results, a single domain structure was established. It was also observed that the drug encapsulation efficiency increases with increased strontium content. Cytotoxicity results by MTT assay revealed increased cytotoxicity with increasing nanoparticle concentration, and ibuprofen-loaded nanoparticles showed higher cytotoxicity than un-loaded nanoparticles at the same concentration. Zeta potential results showed colloidal stability of iron oxide nanoparticles increased by the addition of strontium.This study provided predominantly comparison of the cytotoxicity of ibuprofen-loaded and non-loaded nanoparticles on Hep-2 cancer cells at similar concentrations for the first time for both Fe3O4 particles and Sr-doped Fe3O4 nanoparticles and enclosed the impact of increasing Sr doping content on Fe3O4 nanoparticles.


Subject(s)
Magnetite Nanoparticles , Nanoparticles , Ibuprofen , Magnetite Nanoparticles/chemistry , Drug Delivery Systems , Ferric Compounds/chemistry , Nanoparticles/chemistry
2.
Materials (Basel) ; 16(23)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38068154

ABSTRACT

In many electronic applications, the dielectric and structural properties of reinforced composites are vital. In this research work, the influence of fiber proportion on the properties of a silica fiber/epoxy (SFE) composite was investigated. The structure, morphology, dielectric constant and loss factor, mechanical properties, and thermal stability were determined. The increase of wt.% of silica fiber (SiO2 (f)) x = 30 to 90, reduced the dielectric constant (εr) and dielectric loss (δ) of the SFE composite from their original values to 18.9% and 48.5%, lowering local charge displacement towards the applied electric field. The SFE composite showed higher mechanical properties with the increase in SiO2 (f), x = 30 to 80, the tensile strength (UTS) was raised from 91.6 MPa to 155.7 MPa, the compression strength (UCS) was increased from 261.1 MPa to 409.6 MPa and the flexural strength was enhanced from 192.3 MPa to 311.9 MPa. Upon further addition of SiO2 (f) to the composite, i.e., x = 90, the mechanical properties were reduced a little, but the dielectric properties were not changed. Increasing SiO2 (f) improved the thermal stability as weight loss was found to be 69% (x = 30) and 24% (x = 90), and average moisture absorption was found to be 1.1 to 1.8%. A silica fiber/epoxy composite, for microelectronics, can be made from a low-cost fiber, and its dielectric properties as well as its mechanical and thermal stability can be tuned or improved by varying fiber fractions.

3.
Materials (Basel) ; 16(5)2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36902904

ABSTRACT

For curing of fiber-reinforced epoxy composites, an alternative to thermal heating is the use of microwave energy, which cures quickly and consumes less energy. Employing thermal curing (TC) and microwave (MC) curing methods, we present a comparative study on the functional characteristics of fiber-reinforced composite for microelectronics. The composite prepregs, prepared from commercial silica fiber fabric/epoxy resin, were separately cured via thermal and microwave energy under curing conditions (temperature/time). The dielectric, structural, morphological, thermal, and mechanical properties of composite materials were investigated. Microwave cured composite showed a 1% lower dielectric constant, 21.5% lower dielectric loss factor, and 2.6% lower weight loss, than thermally cured one. Furthermore, the dynamic mechanical analysis (DMA) revealed a 20% increase in the storage and loss modulus along with a 15.5% increase in the glass transition temperature (Tg) of microwave-cured compared to thermally cured composite. The fourier transformation infrared spectroscopy (FTIR) showed similar spectra of both the composites; however, the microwave-cured composite exhibited higher tensile (15.4%), and compression strength (4.3%) than the thermally cured composite. These results illustrate that microwave-cured silica-fiber-reinforced composite exhibit superior electrical performance, thermal stability, and mechanical properties compared to thermally cured silica fiber/epoxy composite in a shorter time and the expense of less energy.

4.
ACS Omega ; 8(38): 34760-34767, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37779992

ABSTRACT

In the present work, Mg1-xZnxFe2O4 (MZFO) nanoparticles with x = 0.0, 0.2, 0.35, and 0.5 were synthesized via a chemical coprecipitation method. The study aimed to explore the effect of substituting Mg with Zn in MZFO on its structural, dielectric, and gas-sensing properties. The spinel phase formation was confirmed using X-ray diffraction, and the morphology of the prepared nanoparticles was revealed using scanning electron microscopy. Fourier transform infrared spectroscopy (FTIR) analysis confirmed the band ranges of 500-600 cm-1 for tetrahedral and 390-450 cm-1 for octahedral lattice sites. The dielectric data showed that Zn substitution in MZFO decreased both the dielectric constant and loss with increasing frequencies and attained a stagnant value at higher frequencies. Furthermore, the gas-sensing characteristics of Zn-substituted spinel ferrites at room temperature for CO2, O2, and N2 were studied. The nanostructured MZFO exhibited high sensitivity in the order of CO2 > O2 ≫ N2 and showed a good response time of (∼1 min) for CO2, demonstrating that MZFO can be a good potential candidate for gas-sensing applications.

5.
Polymers (Basel) ; 15(20)2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37896377

ABSTRACT

Polymer matrix wave transparent composites are used in a variety of high-speed communication applications. One of the applications of these involves making protective enclosures for antennas of microwave towers, air vehicles, weather radars, and underwater communication devices. Material performance, structural, thermal, and mechanical degradation are matters of concern as advanced wireless communication needs robust materials for radomes that can withstand mechanical and thermal stresses. These polymer composite radomes are installed externally on antennas and are exposed directly to ambient as well as severe conditions. In this research, epoxy resin was reinforced with a small amount of quartz fibers to yield an improved composite radome material compared to a pure epoxy composite with better thermal and mechanical properties. FTIR spectra, SEM morphology, dielectric constant (Ɛr) and dielectric loss (δ), thermal degradation (weight loss), and mechanical properties were determined. Compared to pure epoxy, the lowest values of Ɛr and δ were 3.26 and 0.021 with 30 wt.% quartz fibers in the composite, while 40% less weight loss was observed which shows its better thermal stability. The mechanical characteristics encompassing tensile and bending strength were improved by 42.8% and 48.3%. In high-speed communication applications, compared to a pure epoxy composite, adding only a small quantity of quartz fiber can improve the composite material's dielectric performance, durability, and thermal and mechanical strength.

6.
ACS Omega ; 8(4): 3755-3761, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36743044

ABSTRACT

Novel materials for biomedical applications are in critical need of time. In the present work, the antibacterial properties of Co1-x Ni x Mg x Fe2O4 nanoparticles (NPs) are assessed by the disc diffusion method for the common pathogen, that is, Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus) bacteria. Overnight grown bacterial cultures were individually lawn-cultured on nutrient agar plates. All samples of NP concentrations (2 mg/mL) were prepared in sterile water and dispensed by sonication. Sterile filter paper discs (1.0 mm) were saturated by the (doped CoFe2O4) NP solution and incubated at 37 ± 0.1 °C for 24 h. The NPs with a fine size of 30-70 nm of Co1-x Ni x Mg x Fe2O4 were achieved using the sol-gel method by doping CoFe2O4 initially with Ni and codoping with Mg, and their properties were studied by X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier transform infrared techniques. According to the results, Co0.5Ni0.25Mg0.25Fe2O4 NPs exhibited potent antibacterial activities against s. aureus having an inhibition zone of 6.5 mm and P. aeruginosa having an inhibition zone of 6 mm as that were examined. The result shows that the bacteriostatic properties of NPs are used for numerous applications such as hyperthermia, antibacterial treatments, and targeted drug delivery.

7.
ACS Omega ; 7(48): 43432-43439, 2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36506130

ABSTRACT

In this work, the sol-gel route was employed to synthesize a series of Co2+-substituted strontium hexaferrite nanoparticles (Sr1-x Co x Fe12O19, x = 0.0-0.50) to study the effect of cobalt ions doping on the magnetic, electrical, and structural properties of the nanoparticles. The structural analysis of the synthesized nanoparticles, performed by X-ray diffraction, showed the formation of a hexagonal structure having no secondary phases. The morphological analysis, performed through scanning electron microscopy, revealed spherical shaped nanoparticles with uniform distribution. Fourier transform infrared spectra demonstrated two consistent absorption bands indicating the intrinsic stretching vibrations around 600 and 400 cm-1 for tetrahedral and octahedral sites, respectively. It was observed through VSM that with cobalt addition, the saturation magnetization increased and the coercivity decreased. Also, a typical decreasing trend of DC electrical resistivity with increasing temperature measured by a two-probe method confirmed the semiconducting behavior of the synthesized samples. An impedance analyzer was used for the dielectric measurements at room temperature against the alternating frequency range of 250 Hz to 5 MHz, and it was found that the dielectric constant decreased with the increase in cobalt content, suggesting that the doped nanomaterials can be used for microwave absorption, electronics, telecommunication, and other high-frequency applications.

8.
Polymers (Basel) ; 14(17)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36080650

ABSTRACT

Polystyrene (PS)/sepiolite clay nanocomposites were prepared via the melt extrusion technique using vinyl tri-ethoxy silane (VTES) as the compatibilizer and cross-linking agent. Mechanical, thermal, and flame-retardant properties of the newly developed polystyrene-based nanocomposites were determined. Surface morphology was investigated using scanning electron microscopy (SEM), examining the distribution of the filler in various compositions of fabricated composites. Structural analysis of the samples was carried out using the Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) techniques. Thermal stability was determined by thermal gravimetric analysis (TGA), showing a maximum 30.2 wt.% increase in residue by adding sepiolite clay. The results obtained from the dynamic mechanical analyzer (DMA) in terms of the storage modulus, loss modulus and damping factor exhibited better stress transfer rate and effective interfacial adhesion between the filler and the matrix. The higher filler loaded sample showed greater flame retardancy by decreasing the burning rate up to 48%.

9.
PLoS One ; 11(6): e0153544, 2016.
Article in English | MEDLINE | ID: mdl-27270944

ABSTRACT

The magnetic nanoparticle composite NiFe2O4 has traditionally been studied for high-frequency microwave absorption with marginal performance towards low-frequency radar bands (particularly L and S bands). Here, NiFe2O4 nanoparticles and nanohybrids using large-diameter graphene oxide (GO) sheets are prepared via solvothermal synthesis for low-frequency wide bandwidth shielding (L and S radar bands). The synthesized materials were characterized using XRD, SEM, FTIR and microwave magneto dielectric spectroscopy. The dimension of these solvothermally synthesized pristine particles and hybrids lies within 30-58 nm. Microwave magneto-dielectric spectroscopy was performed in the low-frequency region in the 1 MHz-3 GHz spectrum. The as-synthesized pristine nanoparticles and hybrids were found to be highly absorbing for microwaves throughout the L and S radar bands (< -10 dB from 1 MHz to 3 GHz). This excellent microwave absorbing property induced by graphene sheet coupling shows application of these materials with absorption bandwidth which is tailored such that these could be used for low frequency. Previously, these were used for high frequency absorptions (typically > 4 GHz) with limited selective bandwidth.


Subject(s)
Ferric Compounds/chemistry , Graphite/chemistry , Magnetic Fields , Nanoparticles/chemistry , Nickel/chemistry , Oxidation-Reduction , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL