Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Sensors (Basel) ; 22(11)2022 May 31.
Article in English | MEDLINE | ID: mdl-35684810

ABSTRACT

A seismograph was designed based on Raspberry Pi. Although comprising 8 channels, the seismograph can be expanded to 16, 24, or 32 channels by using a USB interfacing with a microcontroller. In addition, by clustering more than one Raspberry Pi, the number of possible channels can be extended beyond 32. In this study, we also explored the computational intelligence of Raspberry Pi for running real-time systems and multithreaded algorithms to process raw seismic data. Also integrated into the seismograph is a Huawei MH5000-31 5G module, which provided high-speed internet real-time operations. Other hardware peripherals included a 24 bit ADS1251 analog-to-digital converter (ADC) and a STM32F407 microcontroller. Real-time data were acquired in the field for ambient noise tomography. An analysis tool called spatial autocorrelation (SPAC) was used to analyze the data, followed by inversion, which revealed the subsurface velocity of the site location. The proposed seismograph is prospective for small, medium, or commercial data acquisition. In accordance with the processing power and stability of Raspberry Pi, which were confirmed in this study, the proposed seismograph is also recommended as a template for developing high-performance computing applications, such as artificial intelligence (AI) in seismology and other related disciplines.

2.
bioRxiv ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38798494

ABSTRACT

Minimally invasive, high-bandwidth brain-computer-interface (BCI) devices can revolutionize human applications. With orders-of-magnitude improvements in volumetric efficiency over other BCI technologies, we developed a 50-µm-thick, mechanically flexible micro-electrocorticography (µECoG) BCI, integrating 256×256 electrodes, signal processing, data telemetry, and wireless powering on a single complementary metal-oxide-semiconductor (CMOS) substrate containing 65,536 recording and 16,384 stimulation channels, from which we can simultaneously record up to 1024 channels at a given time. Fully implanted below the dura, our chip is wirelessly powered, communicating bi-directionally with an external relay station outside the body. We demonstrated chronic, reliable recordings for up to two weeks in pigs and up to two months in behaving non-human primates from somatosensory, motor, and visual cortices, decoding brain signals at high spatiotemporal resolution.

SELECTION OF CITATIONS
SEARCH DETAIL