Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Nat Chem Biol ; 20(3): 291-301, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37770698

ABSTRACT

Diverse mechanisms have been described for selective enrichment of biomolecules in membrane-bound organelles, but less is known about mechanisms by which molecules are selectively incorporated into biomolecular assemblies such as condensates that lack surrounding membranes. The chemical environments within condensates may differ from those outside these bodies, and if these differed among various types of condensate, then the different solvation environments would provide a mechanism for selective distribution among these intracellular bodies. Here we use small molecule probes to show that different condensates have distinct chemical solvating properties and that selective partitioning of probes in condensates can be predicted with deep learning approaches. Our results demonstrate that different condensates harbor distinct chemical environments that influence the distribution of molecules, show that clues to condensate chemical grammar can be ascertained by machine learning and suggest approaches to facilitate development of small molecule therapeutics with optimal subcellular distribution and therapeutic benefit.


Subject(s)
Biomolecular Condensates , Machine Learning
2.
Nat Chem Biol ; 18(12): 1298-1306, 2022 12.
Article in English | MEDLINE | ID: mdl-35761089

ABSTRACT

Biomolecular condensates compartmentalize and regulate assemblies of biomolecules engaged in vital physiological processes in cells. Specific proteins and nucleic acids engaged in shared functions occur in any one kind of condensate, suggesting that these compartments have distinct chemical specificities. Indeed, some small-molecule drugs concentrate in specific condensates due to chemical properties engendered by particular amino acids in the proteins in those condensates. Here we argue that the chemical properties that govern molecular interactions between a small molecule and biomolecules within a condensate can be ascertained for both the small molecule and the biomolecules. We propose that learning this 'chemical grammar', the rules describing the chemical features of small molecules that engender attraction or repulsion by the physicochemical environment of a specific condensate, should enable design of drugs with improved efficacy and reduced toxicity.


Subject(s)
Biomolecular Condensates , Proteins , Proteins/chemistry
3.
Biochemistry ; 59(34): 3148-3156, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32544330

ABSTRACT

Glycosylation is a common modification that can endow proteins with altered physical and biological properties. Ribonuclease 1 (RNase 1), which is the human homologue of the archetypal enzyme RNase A, undergoes N-linked glycosylation at asparagine residues 34, 76, and 88. We have produced the three individual glycoforms that display the core heptasaccharide, Man5GlcNAc2, and analyzed the structure of each glycoform by using small-angle X-ray scattering along with molecular dynamics simulations. The glycan on Asn34 is relatively compact and rigid, donates hydrogen bonds that "cap" the carbonyl groups at the C-terminus of an α-helix, and enhances protein thermostability. In contrast, the glycan on Asn88 is flexible and can even enter the enzymic active site, hindering catalysis. The N-glycosylation of Asn76 has less pronounced consequences. These data highlight the diverse behaviors of Man5GlcNAc2 pendants and provide a structural underpinning to the functional consequences of protein glycosylation.


Subject(s)
Nitrogen/metabolism , Ribonucleases/chemistry , Ribonucleases/metabolism , Catalytic Domain , Glycosylation , Humans , Models, Molecular
4.
J Am Chem Soc ; 142(35): 15107-15115, 2020 09 02.
Article in English | MEDLINE | ID: mdl-32701272

ABSTRACT

Epithiodiketopiperazines (ETPs) are a structurally complex class of fungal natural products with potent anticancer activity. In ETPs, the diketopiperazine ring is spanned by a disulfide bond that is constrained in a high-energy eclipsed conformation. We employed computational, synthetic, and spectroscopic methods to investigate the physicochemical attributes of this atypical disulfide bond. We find that the disulfide bond is stabilized by two n→π* interactions, each with large energies (3-5 kcal/mol). The n→π* interactions in ETPs make disulfide reduction much more difficult, endowing stability in physiological environments in a manner that could impact their biological activity. These data reveal a previously unappreciated means to stabilize a disulfide bond and highlight the utility of the n→π* interaction in molecular design.


Subject(s)
Density Functional Theory , Disulfides/chemistry , Piperazines/chemistry , Crystallography, X-Ray , Models, Molecular , Molecular Structure , Oxidation-Reduction , Thermodynamics
5.
J Am Chem Soc ; 142(44): 18826-18835, 2020 11 04.
Article in English | MEDLINE | ID: mdl-33085477

ABSTRACT

Interest in mutually exclusive pairs of bioorthogonal labeling reagents continues to drive the design of new compounds that are capable of fast and predictable reactions. The ability to easily modify S-, N-, and O-containing cyclooctynes (SNO-OCTs) enables electronic tuning of various SNO-OCTs to influence their cycloaddition rates with Type I-III dipoles. As opposed to optimizations based on just one specific dipole class, the electrophilicity of the alkynes in SNO-OCTs can be manipulated to achieve divergent reactivities and furnish mutually orthogonal dual ligation systems. Significant reaction rate enhancements of a difluorinated SNO-OCT derivative, as compared to the parent scaffold, were noted, with the second-order rate constant in cycloadditions with diazoacetamides exceeding 5.13 M-1 s-1. Computational and experimental studies were employed to inform the design of triple ligation systems that encompass three orthogonal reactivities. Finally, polar SNO-OCTs are rapidly internalized by mammalian cells and remain functional in the cytosol for live-cell labeling, highlighting their potential for diverse in vitro and in vivo applications.


Subject(s)
Cycloparaffins/chemistry , Sulfonic Acids/chemistry , Animals , CHO Cells , Cricetinae , Cricetulus , Cycloaddition Reaction , Fluorescent Dyes/chemistry , Microscopy, Fluorescence , Molecular Conformation , Nitrogen/chemistry , Oxygen/chemistry , Sulfur/chemistry , Thermodynamics
7.
J Am Chem Soc ; 140(50): 17606-17611, 2018 12 19.
Article in English | MEDLINE | ID: mdl-30403347

ABSTRACT

Noncovalent interactions are ubiquitous in biology, taking on roles that include stabilizing the conformation of and assembling biomolecules, and providing an optimal environment for enzymatic catalysis. Here, we describe a noncovalent interaction that engages the sulfur atoms of cysteine residues and disulfide bonds in proteins-their donation of electron density into an antibonding orbital of proximal amide carbonyl groups. This n→ π* interaction tunes the reactivity of the CXXC motif, which is the critical feature of thioredoxin and other enzymes involved in redox homeostasis. In particular, an n→ π* interaction lowers the p Ka value of the N-terminal cysteine residue of the motif, which is the nucleophile that initiates catalysis. In addition, the interplay between disulfide n→ π* interactions and C5 hydrogen bonds leads to hyperstable ß-strands. Finally, n→ π* interactions stabilize vicinal disulfide bonds, which are naturally diverse in function. These previously unappreciated n→ π* interactions are strong and underlie the ability of cysteine residues and disulfide bonds to engage in the structure and function of proteins.


Subject(s)
Cysteine/chemistry , Disulfides/chemistry , Proteins/chemistry , Amino Acid Motifs , Animals , Aspergillus/enzymology , Bacteria/enzymology , Bacterial Proteins/chemistry , Catalytic Domain , Computational Biology , Computer Simulation , Drosophila melanogaster/chemistry , Enzymes/chemistry , Fungal Proteins/chemistry , Humans , Hydrogen Bonding , Models, Chemical , Protein Conformation , Static Electricity
8.
Bioconjug Chem ; 29(6): 1942-1949, 2018 06 20.
Article in English | MEDLINE | ID: mdl-29649361

ABSTRACT

Dextrans are a versatile class of polysaccharides with applications that span medicine, cell biology, food science, and consumer goods. Here, we report on a new type of large monofunctionalized dextran that exhibits unusual properties: efficient cytosolic and nuclear uptake. This dextran permeates various human cell types without the use of transfection agents, electroporation, or membrane perturbation. Cellular uptake occurs primarily through active transport via receptor-mediated processes. These monofunctionalized dextrans could serve as intracellular delivery platforms for drugs or other cargos.


Subject(s)
Cytosol/metabolism , Dextrans/chemistry , Dextrans/pharmacokinetics , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Biological Transport , Cell Line , Cell Nucleus/metabolism , HeLa Cells , Humans , Models, Molecular
9.
J Org Chem ; 82(8): 4297-4304, 2017 04 21.
Article in English | MEDLINE | ID: mdl-28345343

ABSTRACT

Fluorogenic probes are invaluable tools for spatiotemporal investigations within live cells. In common fluorogenic probes, the intrinsic fluorescence of a small-molecule fluorophore is masked by esterification until entry into a cell, where endogenous esterases catalyze the hydrolysis of the masking groups, generating fluorescence. The susceptibility of masking groups to spontaneous hydrolysis is a major limitation of these probes. Previous attempts to address this problem have incorporated auto-immolative linkers at the cost of atom economy and synthetic adversity. Here, we report on a linker-free strategy that employs adventitious electronic and steric interactions in easy-to-synthesize probes. We find that X···C═O n→π* interactions and acyl group size are optimized in 2',7'-dichlorofluorescein diisobutyrate. This probe is relatively stable to spontaneous hydrolysis but is a highly reactive substrate for esterases both in vitro and in cellulo, yielding a bright, photostable fluorophore with utility in biomolecular imaging.


Subject(s)
Fluorescent Dyes/chemistry , Spectrometry, Fluorescence/methods , Animals , Catalysis , Cell Culture Techniques , Culture Media
10.
bioRxiv ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38659952

ABSTRACT

Cells have evolved mechanisms to distribute ~10 billion protein molecules to subcellular compartments where diverse proteins involved in shared functions must efficiently assemble. Here, we demonstrate that proteins with shared functions share amino acid sequence codes that guide them to compartment destinations. A protein language model, ProtGPS, was developed that predicts with high performance the compartment localization of human proteins excluded from the training set. ProtGPS successfully guided generation of novel protein sequences that selectively assemble in targeted subcellular compartments. ProtGPS also identified pathological mutations that change this code and lead to altered subcellular localization of proteins. Our results indicate that protein sequences contain not only a folding code, but also a previously unrecognized code governing their distribution in specific cellular compartments.

11.
Nat Commun ; 13(1): 7522, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36473871

ABSTRACT

Insulin receptor (IR) signaling is central to normal metabolic control and is dysregulated in metabolic diseases such as type 2 diabetes. We report here that IR is incorporated into dynamic clusters at the plasma membrane, in the cytoplasm and in the nucleus of human hepatocytes and adipocytes. Insulin stimulation promotes further incorporation of IR into these dynamic clusters in insulin-sensitive cells but not in insulin-resistant cells, where both IR accumulation and dynamic behavior are reduced. Treatment of insulin-resistant cells with metformin, a first-line drug used to treat type 2 diabetes, can rescue IR accumulation and the dynamic behavior of these clusters. This rescue is associated with metformin's role in reducing reactive oxygen species that interfere with normal dynamics. These results indicate that changes in the physico-mechanical features of IR clusters contribute to insulin resistance and have implications for improved therapeutic approaches.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Humans , Receptor, Insulin , Diabetes Mellitus, Type 2/drug therapy , Insulin
12.
J Phys Chem B ; 124(19): 3931-3935, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32293886

ABSTRACT

Bonds between sulfur atoms are prevalent in natural products, peptides, and proteins. Disulfide bonds have a distinct chromophore. The wavelength of their maximal absorbance varies widely, from 250 to 500 nm. Here, we demonstrate that this wavelength derives from stereoelectronic effects and is predictable using quantum chemistry. We also provide a sinusoidal equation, analogous to the Karplus equation, that relates the absorbance maximum and the C-S-S-C dihedral angle. These insights provide a facile means to characterize important attributes of disulfide bonds and to design disulfides with specified photophysical properties.


Subject(s)
Disulfides , Proteins , Peptides , Protein Domains
SELECTION OF CITATIONS
SEARCH DETAIL