Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Cell ; 187(8): 1889-1906.e24, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38503281

ABSTRACT

Nucleoli are multicomponent condensates defined by coexisting sub-phases. We identified distinct intrinsically disordered regions (IDRs), including acidic (D/E) tracts and K-blocks interspersed by E-rich regions, as defining features of nucleolar proteins. We show that the localization preferences of nucleolar proteins are determined by their IDRs and the types of RNA or DNA binding domains they encompass. In vitro reconstitutions and studies in cells showed how condensation, which combines binding and complex coacervation of nucleolar components, contributes to nucleolar organization. D/E tracts of nucleolar proteins contribute to lowering the pH of co-condensates formed with nucleolar RNAs in vitro. In cells, this sets up a pH gradient between nucleoli and the nucleoplasm. By contrast, juxta-nucleolar bodies, which have different macromolecular compositions, featuring protein IDRs with very different charge profiles, have pH values that are equivalent to or higher than the nucleoplasm. Our findings show that distinct compositional specificities generate distinct physicochemical properties for condensates.


Subject(s)
Cell Nucleolus , Nuclear Proteins , Proton-Motive Force , Cell Nucleolus/chemistry , Cell Nucleus/chemistry , Nuclear Proteins/chemistry , RNA/metabolism , Phase Separation , Intrinsically Disordered Proteins/chemistry , Animals , Xenopus laevis , Oocytes/chemistry , Oocytes/cytology
2.
Nat Methods ; 21(10): 1873-1883, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39375574

ABSTRACT

Current methods for single-molecule orientation localization microscopy (SMOLM) require optical setups and algorithms that can be prohibitively slow and complex, limiting widespread adoption for biological applications. We present POLCAM, a simplified SMOLM method based on polarized detection using a polarization camera, which can be easily implemented on any wide-field fluorescence microscope. To make polarization cameras compatible with single-molecule detection, we developed theory to minimize field-of-view errors, used simulations to optimize experimental design and developed a fast algorithm based on Stokes parameter estimation that can operate over 1,000-fold faster than the state of the art, enabling near-instant determination of molecular anisotropy. To aid in the adoption of POLCAM, we developed open-source image analysis software and a website detailing hardware installation and software use. To illustrate the potential of POLCAM in the life sciences, we applied our method to study α-synuclein fibrils, the actin cytoskeleton of mammalian cells, fibroblast-like cells and the plasma membrane of live human T cells.


Subject(s)
Algorithms , Single Molecule Imaging , Software , Humans , Single Molecule Imaging/methods , Microscopy, Fluorescence/methods , Image Processing, Computer-Assisted/methods , Animals , alpha-Synuclein/metabolism , alpha-Synuclein/chemistry , Actin Cytoskeleton/metabolism , Cell Membrane/metabolism , Biological Science Disciplines/methods
3.
Nano Lett ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38828968

ABSTRACT

Amyloid-beta (Aß42) aggregates are characteristic Alzheimer's disease signatures, but probing how their nanoscale architectures influence their growth and decay remains challenging using current technologies. Here, we apply time-lapse single-molecule orientation-localization microscopy (SMOLM) to measure the orientations and rotational "wobble" of Nile blue (NB) molecules transiently binding to Aß42 fibrils. We correlate fibril architectures measured by SMOLM with their growth and decay over the course of 5 to 20 min visualized by single-molecule localization microscopy (SMLM). We discover that stable Aß42 fibrils tend to be well-ordered and signified by well-aligned NB orientations and small wobble. SMOLM also shows that increasing order and disorder are signatures of growing and decaying fibrils, respectively. We also observe SMLM-invisible fibril remodeling, including steady growth and decay patterns that conserve ß-sheet organization. SMOLM reveals that increased fibril architectural heterogeneity is correlated with dynamic remodeling and that large-scale fibril remodeling tends to originate from strongly heterogeneous local regions.

4.
J Phys Chem A ; 128(28): 5808-5815, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38978460

ABSTRACT

Many biophysical techniques, such as single-molecule fluorescence correlation spectroscopy, Förster resonance energy transfer, and fluorescence anisotropy, measure the translation and rotation of biomolecules to quantify molecular processes at the nanoscale. These methods often simplify data analysis by assuming isotropic rotational diffusion, e.g., that molecules wobble within a circular cone. This simplification ignores the anisotropy present in many biological contexts that may cause molecules to exhibit different degrees of diffusion in different directions. Here, we loosen this assumption and establish a theoretical framework for describing and measuring anisotropic rotational diffusion using fluorescence imaging. We show that anisotropic wobble is directly quantified by the eigenvalues of a 3-by-3 positive-semidefinite Hermitian matrix M consisting of the second-order moments of a molecule's transition dipole µ. This formalism enables us to model the influence of unavoidable shot noise using a Hermitian perturbation matrix E; the eigenvalues of E directly bound errors in measurements of wobble via Weyl's inequality. Quantifying various perturbations E reveals that anisotropic wobble measurements are generally more sensitive to errors compared to quantifying isotropic wobble. Moreover, severe shot noise can induce negative eigenvalues in estimates of M, thereby causing the anisotropic wobble measurement to fail. Our analysis, using Fisher information, shows that techniques with worse orientation measurement sensitivity experience stronger perturbations E and require larger signal to background ratios to measure anisotropic rotational diffusion accurately. Our work provides deep insights for improving the state of the art in imaging the orientations and anisotropic rotational diffusion of single molecules.

5.
Nano Lett ; 22(3): 1024-1031, 2022 02 09.
Article in English | MEDLINE | ID: mdl-35073487

ABSTRACT

We report a radially and azimuthally polarized (raPol) microscope for high detection and estimation performance in single-molecule orientation-localization microscopy (SMOLM). With 5000 photons detected from Nile red (NR) transiently bound within supported lipid bilayers (SLBs), raPol SMOLM achieves 2.9 nm localization precision, 1.5° orientation precision, and 0.17 sr precision in estimating rotational wobble. Within DPPC SLBs, SMOLM imaging reveals the existence of randomly oriented binding pockets that prevent NR from freely exploring all orientations. Treating the SLBs with cholesterol-loaded methyl-ß-cyclodextrin (MßCD-chol) causes NR's orientational diffusion to be dramatically reduced, but curiously NR's median lateral displacements drastically increase from 20.8 to 75.5 nm (200 ms time lag). These jump diffusion events overwhelmingly originate from cholesterol-rich nanodomains within the SLB. These detailed measurements of single-molecule rotational and translational dynamics are made possible by raPol's high measurement precision and are not detectable in standard SMLM.


Subject(s)
Lipid Bilayers , Nanotechnology , Cholesterol/chemistry , Diffusion , Lipid Bilayers/chemistry , Single Molecule Imaging
6.
Nano Lett ; 22(12): 4694-4701, 2022 06 22.
Article in English | MEDLINE | ID: mdl-35674669

ABSTRACT

Semiconductor nanocrystals are promising candidates for generating chemical feedstocks through photocatalysis. Understanding the role of ligands used to prepare colloidal nanocrystals in catalysis is challenging due to the complexity and heterogeneity of nanocrystal surfaces. We use in situ single-molecule fluorescence imaging to map the spatial distribution of active regions along individual tungsten oxide nanowires before and after functionalizing them with ascorbic acid. Rather than blocking active sites, we observed a significant enhancement in activity for photocatalytic water oxidation after treatment with ascorbic acid. While the initial nanowires contain inactive regions dispersed along their length, the functionalized nanowires show high uniformity in their photocatalytic activity. Spatial colocalization of the active regions with their surface chemical properties shows that oxidation of ascorbic acid during photocatalysis generates new oxygen vacancies along the nanowire surface. We demonstrate that controlling surface-ligand redox chemistry during photocatalysis can enhance the active site concentration on nanocrystal catalysts.


Subject(s)
Nanowires , Ascorbic Acid , Catalysis , Ligands , Nanowires/chemistry , Oxidation-Reduction , Oxides , Tungsten
7.
Opt Express ; 30(20): 37154-37174, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36258632

ABSTRACT

The past decade has brought many innovations in optical design for 3D super-resolution imaging of point-like emitters, but these methods often focus on single-emitter localization precision as a performance metric. Here, we propose a simple heuristic for designing a point spread function (PSF) that allows for precise measurement of the distance between two emitters. We discover that there are two types of PSFs that achieve high performance for resolving emitters in 3D, as quantified by the Cramér-Rao bounds for estimating the separation between two closely spaced emitters. One PSF is very similar to the existing Tetrapod PSFs; the other is a rotating single-spot PSF, which we call the crescent PSF. The latter exhibits excellent performance for localizing single emitters throughout a 1-µm focal volume (localization precisions of 7.3 nm in x, 7.7 nm in y, and 18.3 nm in z using 1000 detected photons), and it distinguishes between one and two closely spaced emitters with superior accuracy (25-53% lower error rates than the best-performing Tetrapod PSF, averaged throughout a 1-µm focal volume). Our study provides additional insights into optimal strategies for encoding 3D spatial information into optical PSFs.

8.
Opt Express ; 30(20): 36761-36773, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36258598

ABSTRACT

Dipole-spread function (DSF) engineering reshapes the images of a microscope to maximize the sensitivity of measuring the 3D orientations of dipole-like emitters. However, severe Poisson shot noise, overlapping images, and simultaneously fitting high-dimensional information-both orientation and position-greatly complicates image analysis in single-molecule orientation-localization microscopy (SMOLM). Here, we report a deep-learning based estimator, termed Deep-SMOLM, that achieves superior 3D orientation and 2D position measurement precision within 3% of the theoretical limit (3.8° orientation, 0.32 sr wobble angle, and 8.5 nm lateral position using 1000 detected photons). Deep-SMOLM also demonstrates state-of-art estimation performance on overlapping images of emitters, e.g., a 0.95 Jaccard index for emitters separated by 139 nm, corresponding to a 43% image overlap. Deep-SMOLM accurately and precisely reconstructs 5D information of both simulated biological fibers and experimental amyloid fibrils from images containing highly overlapped DSFs at a speed ~10 times faster than iterative estimators.


Subject(s)
Deep Learning , Amyloid , Nanotechnology/methods , Image Processing, Computer-Assisted , Microscopy/methods
9.
J Am Chem Soc ; 143(30): 11393-11403, 2021 08 04.
Article in English | MEDLINE | ID: mdl-34284584

ABSTRACT

The surface structure of semiconductor photocatalysts controls the efficiency of charge-carrier extraction during photocatalytic reactions. However, understanding the connection between surface heterogeneity and the locations where photogenerated charge carriers are preferentially extracted is challenging. Herein we use single-molecule fluorescence imaging to map the spatial distribution of active regions and quantify the activity for both photocatalytic oxidation and reduction reactions on individual bismuth oxybromide (BiOBr) nanoplates. Through a coordinate-based colocalization analysis, we quantify the spatial correlation between the locations where fluorogenic probe molecules are oxidized and reduced on the surface of individual nanoplates. Surprisingly, we observed two distinct photochemical behaviors for BiOBr particles prepared within the same batch, which exhibit either predominantly uncorrelated activity where electrons and holes are extracted from different sites or colocalized activity in which oxidation and reduction take place within the same nanoscale regions. By analyzing the emissive properties of the fluorogenic probes, we propose that electrons and holes colocalize at defect-deficient regions, while defects promote the selective extraction of one carrier type by trapping either electrons or holes. Although previous work has used defect engineering to enhance the activity of bismuth oxyhalides and other semiconductor photocatalysts for useful reductive half-reactions (e.g., CO2 or N2 reduction), our results show that defect-free regions are needed to promote both oxidation and reduction in fuel-generating photocatalysts that do not rely on sacrificial reagents.

10.
J Opt Soc Am A Opt Image Sci Vis ; 38(2): 277-287, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33690541

ABSTRACT

Precisely measuring the three-dimensional position and orientation of individual fluorophores is challenging due to the substantial photon shot noise in single-molecule experiments. Facing this limited photon budget, numerous techniques have been developed to encode 2D and 3D position and 2D and 3D orientation information into fluorescence images. In this work, we adapt classical and quantum estimation theory and propose a mathematical framework to derive the best possible precision for measuring the position and orientation of dipole-like emitters for any fixed imaging system. We find that it is impossible to design an instrument that achieves the maximum sensitivity limit for measuring all possible rotational motions. Further, our vectorial dipole imaging model shows that the best quantum-limited localization precision is 4%-8% worse than that suggested by a scalar monopole model. Overall, we conclude that no single instrument can be optimized for maximum precision across all possible 2D and 3D localization and orientation measurement tasks.

11.
J Opt Soc Am A Opt Image Sci Vis ; 38(2): 288-297, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33690542

ABSTRACT

Various techniques have been developed to measure the 2D and 3D positions and 2D and 3D orientations of fluorescent molecules with improved precision over standard epifluorescence microscopes. Due to the challenging signal-to-background ratio in typical single-molecule experiments, it is essential to choose an imaging system optimized for the specific target sample. In this work, we compare the performance of multiple state-of-the-art and commonly used methods for orientation localization microscopy against the fundamental limits of measurement precision. Our analysis reveals optimal imaging methods for various experiment conditions and sample geometries. Interestingly, simple modifications to the standard fluorescence microscope exhibit superior performance in many imaging scenarios.

12.
Angew Chem Int Ed Engl ; 59(40): 17572-17579, 2020 09 28.
Article in English | MEDLINE | ID: mdl-32648275

ABSTRACT

In soft matter, thermal energy causes molecules to continuously translate and rotate, even in crowded environments, thereby impacting the spatial organization and function of most molecular assemblies, such as lipid membranes. Directly measuring the orientation and spatial organization of large collections (>3000 molecules µm-2 ) of single molecules with nanoscale resolution remains elusive. In this paper, we utilize SMOLM, single-molecule orientation localization microscopy, to directly measure the orientation spectra (3D orientation plus "wobble") of lipophilic probes transiently bound to lipid membranes, revealing that Nile red's (NR) orientation spectra are extremely sensitive to membrane chemical composition. SMOLM images resolve nanodomains and enzyme-induced compositional heterogeneity within membranes, where NR within liquid-ordered vs. liquid-disordered domains shows a ≈4° difference in polar angle and a ≈0.3π sr difference in wobble angle. As a new type of imaging spectroscopy, SMOLM exposes the organizational and functional dynamics of lipid-lipid, lipid-protein, and lipid-dye interactions with single-molecule, nanoscale resolution.


Subject(s)
Lipid Bilayers/chemistry , Membrane Lipids/chemistry , Single Molecule Imaging , Fluorescent Dyes/chemistry , Lipid Bilayers/metabolism , Membrane Lipids/metabolism , Nanotechnology , Oxazines/chemistry , Sphingomyelin Phosphodiesterase/metabolism
13.
Phys Rev Lett ; 122(19): 198301, 2019 May 17.
Article in English | MEDLINE | ID: mdl-31144939

ABSTRACT

Optical fluorescence imaging is capable of measuring both the translational and rotational dynamics of single molecules. However, unavoidable measurement noise will result in inaccurate estimates of rotational dynamics, causing a molecule to appear to be more rotationally constrained than it actually is. We report a mathematical framework to compute the fundamental limit of accuracy in measuring the rotational mobility of dipolelike emitters. By applying our framework to both in-plane and three-dimensional methods, we provide a means to choose the optimal orientation-measurement technique based on experimental conditions.

14.
Chembiochem ; 19(18): 1944-1948, 2018 09 17.
Article in English | MEDLINE | ID: mdl-29953718

ABSTRACT

Oligomeric amyloid structures are crucial therapeutic targets in Alzheimer's and other amyloid diseases. However, these oligomers are too small to be resolved by standard light microscopy. We have developed a simple and versatile tool to image amyloid structures by using thioflavin T without the need for covalent labeling or immunostaining. The dynamic binding of single dye molecules generates photon bursts that are used for fluorophore localization on a nanometer scale. Thus, photobleaching cannot degrade image quality, allowing for extended observation times. Super-resolution transient amyloid binding microscopy promises to directly image native amyloid by using standard probes and record amyloid dynamics over minutes to days. We imaged amyloid fibrils from multiple polypeptides, oligomeric, and fibrillar structures formed during different stages of amyloid-ß aggregation, as well as the structural remodeling of amyloid-ß fibrils by the compound epi-gallocatechin gallate.


Subject(s)
Amyloid beta-Peptides/analysis , Amyloid/analysis , Benzothiazoles/analysis , Fluorescent Dyes/analysis , Optical Imaging/methods , Protein Aggregation, Pathological/diagnostic imaging , Amyloid/ultrastructure , Amyloid beta-Peptides/ultrastructure , Equipment Design , Humans , Microscopy, Fluorescence/instrumentation , Microscopy, Fluorescence/methods , Optical Imaging/instrumentation , Protein Aggregates , Protein Aggregation, Pathological/pathology
15.
Proc Natl Acad Sci U S A ; 109(47): 19087-92, 2012 Nov 20.
Article in English | MEDLINE | ID: mdl-23129640

ABSTRACT

Recently, single molecule-based superresolution fluorescence microscopy has surpassed the diffraction limit to improve resolution to the order of 20 nm or better. These methods typically use image fitting that assumes an isotropic emission pattern from the single emitters as well as control of the emitter concentration. However, anisotropic single-molecule emission patterns arise from the transition dipole when it is rotationally immobile, depending highly on the molecule's 3D orientation and z position. Failure to account for this fact can lead to significant lateral (x, y) mislocalizations (up to ∼50-200 nm). This systematic error can cause distortions in the reconstructed images, which can translate into degraded resolution. Using parameters uniquely inherent in the double-lobed nature of the Double-Helix Point Spread Function, we account for such mislocalizations and simultaneously measure 3D molecular orientation and 3D position. Mislocalizations during an axial scan of a single molecule manifest themselves as an apparent lateral shift in its position, which causes the standard deviation (SD) of its lateral position to appear larger than the SD expected from photon shot noise. By correcting each localization based on an estimated orientation, we are able to improve SDs in lateral localization from ∼2× worse than photon-limited precision (48 vs. 25 nm) to within 5 nm of photon-limited precision. Furthermore, by averaging many estimations of orientation over different depths, we are able to improve from a lateral SD of 116 (∼4× worse than the photon-limited precision; 28 nm) to 34 nm (within 6 nm of the photon limit).

16.
Nano Lett ; 14(11): 6407-13, 2014 Nov 12.
Article in English | MEDLINE | ID: mdl-25272093

ABSTRACT

Many single nanoemitters such as fluorescent molecules produce dipole radiation that leads to systematic position errors in both particle tracking and super-resolution microscopy. Via vectorial diffraction equations and simulations, we show that imaging only azimuthally polarized light in the microscope naturally avoids emission from the z-component of the transition dipole moment, resulting in negligible localization errors for all emitter orientations and degrees of objective lens misfocus. Furthermore, localization accuracy is maintained even in the presence of aberrations resulting from imaging in mismatched media.


Subject(s)
Microscopy, Fluorescence/instrumentation , Optical Imaging/instrumentation , Algorithms , Equipment Design , Filtration/instrumentation , Filtration/methods , Light , Microscopy, Fluorescence/methods , Optical Imaging/methods , Refractometry
17.
Chemphyschem ; 15(4): 587-99, 2014 Mar 17.
Article in English | MEDLINE | ID: mdl-24382708

ABSTRACT

Numerous methods for determining the orientation of single-molecule transition dipole moments from microscopic images of the molecular fluorescence have been developed in recent years. At the same time, techniques that rely on nanometer-level accuracy in the determination of molecular position, such as single-molecule super-resolution imaging, have proven immensely successful in their ability to access unprecedented levels of detail and resolution previously hidden by the optical diffraction limit. However, the level of accuracy in the determination of position is threatened by insufficient treatment of molecular orientation. Here we review a number of methods for measuring molecular orientation using fluorescence microscopy, focusing on approaches that are most compatible with position estimation and single-molecule super-resolution imaging. We highlight recent methods based on quadrated pupil imaging and on double-helix point spread function microscopy and apply them to the study of fluorophore mobility on immunolabeled microtubules.


Subject(s)
Microtubules/chemistry , Microscopy, Fluorescence
18.
Proc Natl Acad Sci U S A ; 108(46): E1102-10, 2011 Nov 15.
Article in English | MEDLINE | ID: mdl-22031697

ABSTRACT

Recently, single-molecule imaging and photocontrol have enabled superresolution optical microscopy of cellular structures beyond Abbe's diffraction limit, extending the frontier of noninvasive imaging of structures within living cells. However, live-cell superresolution imaging has been challenged by the need to image three-dimensional (3D) structures relative to their biological context, such as the cellular membrane. We have developed a technique, termed superresolution by power-dependent active intermittency and points accumulation for imaging in nanoscale topography (SPRAIPAINT) that combines imaging of intracellular enhanced YFP (eYFP) fusions (SPRAI) with stochastic localization of the cell surface (PAINT) to image two different fluorophores sequentially with only one laser. Simple light-induced blinking of eYFP and collisional flux onto the cell surface by Nile red are used to achieve single-molecule localizations, without any antibody labeling, cell membrane permeabilization, or thiol-oxygen scavenger systems required. Here we demonstrate live-cell 3D superresolution imaging of Crescentin-eYFP, a cytoskeletal fluorescent protein fusion, colocalized with the surface of the bacterium Caulobacter crescentus using a double-helix point spread function microscope. Three-dimensional colocalization of intracellular protein structures and the cell surface with superresolution optical microscopy opens the door for the analysis of protein interactions in living cells with excellent precision (20-40 nm in 3D) over a large field of view (12 12 µm).


Subject(s)
Cell Membrane/metabolism , Proteins/chemistry , Animals , Bacterial Proteins/chemistry , Caulobacter crescentus , Fluorescent Dyes/pharmacology , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Light , Luminescent Proteins/chemistry , Microscopy, Fluorescence/methods , Nanotechnology/methods , Oxazines/pharmacology , Oxygen/chemistry , Protein Conformation
19.
Nano Lett ; 13(9): 3967-72, 2013 Sep 11.
Article in English | MEDLINE | ID: mdl-23360306

ABSTRACT

The asymmetric nature of single-molecule (SM) dipole emission patterns limits the accuracy of position determination in localization-based super-resolution fluorescence microscopy. The degree of mislocalization depends highly on the rotational mobility of SMs; only for SMs rotating within a cone half angle α > 60° can mislocalization errors be bounded to ≤10 nm. Simulations demonstrate how low or high rotational mobility can cause resolution degradation or distortion in super-resolution reconstructions.


Subject(s)
Microscopy, Fluorescence , Nanotechnology , Diffusion , Humans , Rotation
20.
Chem Sci ; 15(6): 2037-2046, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38332827

ABSTRACT

We report reversible switching of oxazine, cyanine, and rhodamine dyes by a nanoporous antimony-doped tin oxide electrode that enables single-molecule (SM) imaging of electrochemical activity. Since the emissive state of each fluorophore is modulated by electrochemical potential, the number of emitting single molecules follows a sigmoid function during a potential scan, and we thus optically determine the formal redox potential of each dye. We find that the presence of redox mediators (phenazine methosulfate and riboflavin) functions as an electrochemical switch on each dye's emissive state and observe significantly altered electrochemical potential and kinetics. We are therefore able to measure optically how redox mediators and the solid-state electrode modulate the redox state of fluorescent molecules, which follows an electrocatalytic (EC') mechanism, with SM sensitivity over a 900 µm2 field of view. Our observations indicate that redox mediator-assisted SM electrochemical imaging (SMEC) could be potentially used to sense any electroactive species. Combined with SM blinking and localization microscopy, SMEC imaging promises to resolve the nanoscale spatial distributions of redox species and their redox states, as well as the electron transfer kinetics of electroactive species in various bioelectrochemical processes.

SELECTION OF CITATIONS
SEARCH DETAIL