Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
PLoS Biol ; 22(5): e3002617, 2024 May.
Article in English | MEDLINE | ID: mdl-38696533

ABSTRACT

BAK and BAX execute intrinsic apoptosis by permeabilising the mitochondrial outer membrane. Their activity is regulated through interactions with pro-survival BCL-2 family proteins and with non-BCL-2 proteins including the mitochondrial channel protein VDAC2. VDAC2 is important for bringing both BAK and BAX to mitochondria where they execute their apoptotic function. Despite this important function in apoptosis, while interactions with pro-survival family members are well characterised and have culminated in the development of drugs that target these interfaces to induce cancer cell apoptosis, the interaction between BAK and VDAC2 remains largely undefined. Deep scanning mutagenesis coupled with cysteine linkage identified key residues in the interaction between BAK and VDAC2. Obstructive labelling of specific residues in the BH3 domain or hydrophobic groove of BAK disrupted this interaction. Conversely, mutating specific residues in a cytosol-exposed region of VDAC2 stabilised the interaction with BAK and inhibited BAK apoptotic activity. Thus, this VDAC2-BAK interaction site can potentially be targeted to either inhibit BAK-mediated apoptosis in scenarios where excessive apoptosis contributes to disease or to promote BAK-mediated apoptosis for cancer therapy.


Subject(s)
Apoptosis , Voltage-Dependent Anion Channel 2 , bcl-2 Homologous Antagonist-Killer Protein , Voltage-Dependent Anion Channel 2/metabolism , Voltage-Dependent Anion Channel 2/genetics , bcl-2 Homologous Antagonist-Killer Protein/metabolism , bcl-2 Homologous Antagonist-Killer Protein/genetics , Humans , Protein Binding , Mitochondria/metabolism , Animals , HEK293 Cells
2.
Proc Natl Acad Sci U S A ; 114(29): 7629-7634, 2017 07 18.
Article in English | MEDLINE | ID: mdl-28673969

ABSTRACT

BAK and BAX are the essential effectors of apoptosis because without them a cell is resistant to most apoptotic stimuli. BAK and BAX undergo conformation changes to homooligomerize then permeabilize the mitochondrial outer membrane during apoptosis. How BCL-2 homology 3 (BH3)-only proteins bind to activate BAK and BAX is unclear. We report that BH3-only proteins bind inactive full-length BAK at mitochondria and then dissociate following exposure of the BAK BH3 and BH4 domains before BAK homodimerization. Using a functional obstructive labeling approach, we show that activation of BAK involves important interactions of BH3-only proteins with both the canonical hydrophobic binding groove (α2-5) and α6 at the rear of BAK, with interaction at α6 promoting an open groove to receive a BH3-only protein. Once activated, how BAK homodimers multimerize to form the putative apoptotic pore is unknown. Obstructive labeling of BAK beyond the BH3 domain and hydrophobic groove did not inhibit multimerization and mitochondrial damage, indicating that critical protein-protein interfaces in BAK self-association are limited to the α2-5 homodimerization domain.


Subject(s)
BH3 Interacting Domain Death Agonist Protein/metabolism , bcl-2 Homologous Antagonist-Killer Protein/chemistry , bcl-2 Homologous Antagonist-Killer Protein/genetics , Animals , Apoptosis , Binding Sites , Cell Line , Cytochromes c/metabolism , Disulfides/chemistry , Epitopes/chemistry , Fibroblasts/metabolism , Hydrophobic and Hydrophilic Interactions , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Protein Binding , Protein Domains , Protein Interaction Mapping , Protein Multimerization , bcl-2-Associated X Protein/metabolism
3.
F1000Prime Rep ; 7: 42, 2015.
Article in English | MEDLINE | ID: mdl-26097715

ABSTRACT

As mitochondria are the powerhouses of the cell, their damage during the cell suicide process of apoptosis is essentially responsible for cellular demise in most cells. A key family of proteins, the B-cell lymphoma-2 (BCL-2) family, determines the integrity of mitochondria in the face of apoptotic insult. A comprehensive understanding of the molecular details of how apoptosis is initiated and how it culminates is essential if apoptosis is to fulfil its undoubted potential as a therapeutic target to treat diseases ranging from cancer to neurodegenerative conditions. Recent advances have provided significant insight into the control of this fundamental process while prompting a re-evaluation of what was considered dogma in the field. Emerging evidence also points to a potential overarching control network that governs not only apoptosis but other fundamental mitochondrial processes, including mitochondrial fission/fusion and quality control.

SELECTION OF CITATIONS
SEARCH DETAIL