Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Transl Res ; 249: 49-73, 2022 11.
Article in English | MEDLINE | ID: mdl-35691544

ABSTRACT

As an anti-inflammatory strategy, MAPK-activated protein kinase-2 (MK2) inhibition can potentially avoid the clinical failures seen for direct p38 inhibitors, especially tachyphylaxis. CC-99677, a selective targeted covalent MK2 inhibitor, employs a rare chloropyrimidine that bonds to the sulfur of cysteine 140 in the ATP binding site via a nucleophilic aromatic substitutions (SNAr) mechanism. This irreversible mechanism translates biochemical potency to cells shown by potent inhibition of heat shock protein 27 (HSP27) phosphorylation in LPS-activated monocytic THP-1 cells. The cytokine inhibitory profile of CC-99677 differentiates it from known p38 inhibitors, potentially suppressing a p38 pathway inflammatory response while avoiding tachyphylaxis. Dosed orally, CC-99677 is efficacious in a rat model of ankylosing spondylitis. Single doses, 3 to 400 mg, in healthy human volunteers show linear pharmacokinetics and apparent sustained tumor necrosis factor-α inhibition, with a favorable safety profile. These results support further development of CC-99677 for autoimmune diseases like ankylosing spondylitis.


Subject(s)
Autoimmune Diseases , Spondylitis, Ankylosing , Adenosine Triphosphate , Animals , Anti-Inflammatory Agents , Autoimmune Diseases/drug therapy , Cysteine , HSP27 Heat-Shock Proteins/metabolism , Humans , Intracellular Signaling Peptides and Proteins , Lipopolysaccharides , Protein Serine-Threonine Kinases , Rats , Sulfur , Tumor Necrosis Factor-alpha , p38 Mitogen-Activated Protein Kinases/metabolism
2.
Bioorg Med Chem Lett ; 20(12): 3561-4, 2010 Jun 15.
Article in English | MEDLINE | ID: mdl-20529685

ABSTRACT

A series of N-aryl isonipecotamide alpha-sulfone hydroxamate derivatives has been prepared utilizing a combination of solution-phase and resin-bound library technologies to afford compounds that are potent and highly selective for MMP-13.


Subject(s)
Hydroxamic Acids/chemistry , Matrix Metalloproteinase Inhibitors , Administration, Oral , Amides , Animals , Hydroxamic Acids/chemical synthesis , Hydroxamic Acids/pharmacology , Inhibitory Concentration 50 , Rats , Small Molecule Libraries , Solubility , Substrate Specificity , Sulfones
3.
Bioorg Med Chem Lett ; 20(12): 3557-60, 2010 Jun 15.
Article in English | MEDLINE | ID: mdl-20529684

ABSTRACT

A series of phenyl piperidine alpha-sulfone hydroxamate derivatives has been prepared utilizing a combination of solution-phase and resin-bound library technologies to afford compounds that are potent and highly selective for MMP-13, are dual-sparing of MMP-1 and MMP-14 (MT1-MMP) and exhibit oral bioavailability in rats.


Subject(s)
Matrix Metalloproteinase Inhibitors , Administration, Oral , Animals , Biological Availability , Hydroxamic Acids/administration & dosage , Matrix Metalloproteinase 1/drug effects , Matrix Metalloproteinase 14/drug effects , Piperidines , Rats , Small Molecule Libraries , Solubility , Substrate Specificity , Sulfones
4.
ACS Med Chem Lett ; 11(10): 1899-1904, 2020 Oct 08.
Article in English | MEDLINE | ID: mdl-33062171

ABSTRACT

Hepatocellular carcinoma (HCC) accounts for a majority of primary liver cancer and is one of the most common forms of cancer worldwide. Aberrant signaling of the FGF19-FGFR4 pathway leads to HCC in mice and is hypothesized to be a driver in FGF19 amplified HCC in humans. Multiple small molecule inhibitors have been pursued as targeted therapies for HCC in recent years, including several selective FGFR4 inhibitors that are currently being evaluated in clinical trials. Herein, we report a novel series of highly selective, covalent 2-amino-6,8-dimethyl-pyrido[2,3-d]pyrimidin-7(8H)-ones that potently and selectively inhibit FGFR4 signaling through covalent modification of Cys552, which was confirmed by X-ray crystallography. Correlative target occupancy and pFGFR4 inhibition were observed in vivo, as well as tumor regression in preclinical models of orthotopic and sorafenib-resistant HCC.

5.
J Comput Aided Mol Des ; 23(1): 13-24, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18777160

ABSTRACT

Inducible, microsomal prostaglandin E synthase 1 (mPGES-1), the terminal enzyme in the prostaglandin (PG) biosynthetic pathway, constitutes a promising therapeutic target for the development of new anti-inflammatory drugs. To elucidate structure-function relationships and to enable structure-based design, an mPGES-1 homology model was developed using the three-dimensional structure of the closest homologue of the MAPEG family (Membrane Associated Proteins in Eicosanoid and Glutathione metabolism), mGST-1. The ensuing model of mPGES-1 is a homo-trimer, with each monomer consisting of four membrane-spanning segments. Extensive structure refinement revealed an inter-monomer salt bridge (K26-E77) as well as inter-helical interactions within each monomer, including polar hydrogen bonds (e.g. T78-R110-T129) and hydrophobic pi-stacking (F82-F103-F106), all contributing to the overall stability of the homo-trimer of mPGES-1. Catalytic co-factor glutathione (GSH) was docked into the mPGES-1 model by flexible optimization of both the ligand and the protein conformations, starting from the initial location ascertained from the mGST-1 structure. Possible binding site for the substrate, prostaglandin H(2) (PGH(2)), was identified by systematically probing the refined molecular structure of mPGES-1. A binding model was generated by induced fit docking of PGH(2) in the presence of GSH. The homology model prescribes three potential inhibitor binding sites per mPGES-1 trimer. This was further confirmed experimentally by equilibrium dialysis study which generated a binding stoichiometric ratio of approximately three inhibitor molecules to three mPGES-1 monomers. The structural model that we have derived could serve as a useful tool for structure-guided design of inhibitors for this emergently important therapeutic target.


Subject(s)
Enzyme Inhibitors/chemistry , Intramolecular Oxidoreductases/chemistry , Microsomes/enzymology , Amino Acid Sequence , Biopolymers , Enzyme Inhibitors/pharmacology , Humans , Intramolecular Oxidoreductases/antagonists & inhibitors , Intramolecular Oxidoreductases/metabolism , Models, Molecular , Molecular Sequence Data , Prostaglandin-E Synthases , Protein Conformation , Sequence Homology, Amino Acid
6.
ACS Med Chem Lett ; 10(12): 1592-1602, 2019 Dec 12.
Article in English | MEDLINE | ID: mdl-31857833

ABSTRACT

Many cellular processes and pathways are mediated by the regulation of protein-protein complexes. For example, E3 ubiquitin ligases recruit substrate proteins and transfer a ubiquitin tag to target those proteins for destruction by the proteasome. It has now been shown that this cellular process for protein destruction can be redirected by small molecules in both laboratory and clinical settings. This presents a new paradigm in drug discovery, enabling the rapid removal of target proteins linked to disease. In this Innovations review, we will describe the work done on cereblon as a case study on the different strategies available for targeted protein degradation.

7.
J Chem Theory Comput ; 12(4): 2066-78, 2016 Apr 12.
Article in English | MEDLINE | ID: mdl-27010480

ABSTRACT

Epidermal growth factor receptor (EGFR) inhibitors interrupt EGFR-dependent cellular signaling pathways that lead to accelerated tumor growth and proliferation. Mutation of a threonine in the inhibitor binding pocket, known as the "gatekeeper", to methionine (T790M) confers acquired resistance to several EGFR-selective inhibitors. We studied interactions between EGFR inhibitors and the gatekeeper residues of the target protein. Thermodynamic integration (TI) with Amber14 indicates that the binding energies of gefitinib and AEE788 to the active state of the T790M mutant EGFR is 3 kcal/mol higher than to the wild type (WT), whereas ATP binding energy to the mutant is similar to the WT. Using metadynamics MD simulations with NAMD v2.9, the conformational equilibrium between the inactive resting state and the catalytically competent activate state was determined for the WT EGFR. When combined with the results obtained by Sutto and Gervasio, our simulations showed that the T790M point mutation lowers the free energy of the active state by 5 kcal/mol relative to the inactive state of the enzyme. Relative to the WT, the T790M mutant binds gefitinib more strongly. The T790M mutation is nevertheless resistant due to its increased binding of ATP. By contrast, the binding of AEE788 to the active state causes a conformational change in the αC-helix adjacent to the inhibitor binding pocket, that results in a 2 kcal/mol energy penalty. The energy penalty explains why the binding of AEE788 to the T790M mutant is unfavorable relative to binding to WT EGFR. These results establish the role of the gatekeeper mutation on inhibitor selectivity. Additional molecular dynamics (MD) simulations, TI, and metadynamics MD simulations reveal the origins of the changes in binding energy of WT and mutants.


Subject(s)
ErbB Receptors/genetics , ErbB Receptors/metabolism , Protein Kinase Inhibitors/pharmacology , Quinazolines/pharmacology , Catalytic Domain/drug effects , ErbB Receptors/chemistry , Gefitinib , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Point Mutation , Protein Conformation/drug effects , Thermodynamics
8.
Biochim Biophys Acta ; 1598(1-2): 10-23, 2002 Jul 29.
Article in English | MEDLINE | ID: mdl-12147339

ABSTRACT

MMP-2 is a member of the matrix metalloproteinase family that has been implicated in tumor cell metastasis and angiogenesis. Here, we describe the solution structure of a catalytic domain of MMP-2 complexed with a hydroxamic acid inhibitor (SC-74020), determined by three-dimensional heteronuclear NMR spectroscopy. The catalytic domain, designated MMP-2C, has a short peptide linker replacing the internal fibronectin-domain insertion and is enzymatically active. Distance geometry-simulated annealing calculations yielded 14 converged structures with atomic root-mean-square deviations (r.m.s.d.) of 1.02 and 1.62 A from the mean coordinate positions for the backbone and for all heavy atoms, respectively, when 11 residues at the N-terminus are excluded. The structure has the same global fold as observed for other MMP catalytic domains and is similar to previously solved crystal structures of MMP-2. Differences observed between the solution and the crystal structures, near the bottom of the S1' specificity loop, appear to be induced by the large inhibitor present in the solution structure. The MMP-2C solution structure is compared with MMP-8 crystal structure bound to the same inhibitor to highlight the differences especially in the S1' specificity loop. The finding provides a structural explanation for the selectivity between MMP-2 and MMP-8 that is achieved by large inhibitors.


Subject(s)
Hydroxamic Acids/chemistry , Hydroxamic Acids/pharmacology , Matrix Metalloproteinase 2/metabolism , Protease Inhibitors/metabolism , Sulfonamides/chemistry , Sulfonamides/pharmacology , Amino Acid Sequence , Binding Sites , Catalytic Domain , Humans , Hydroxamic Acids/chemical synthesis , Magnetic Resonance Spectroscopy , Matrix Metalloproteinase 2/chemistry , Models, Molecular , Protease Inhibitors/chemical synthesis , Protease Inhibitors/chemistry , Protein Conformation , Sulfonamides/chemical synthesis
9.
J Med Chem ; 48(21): 6713-30, 2005 Oct 20.
Article in English | MEDLINE | ID: mdl-16220987

ABSTRACT

alpha-Piperidine-beta-sulfone hydroxamate derivatives were explored that are potent for matrix metalloproteinases (MMP)-2, -9, and -13 and are sparing of MMP-1. The investigation of the beta-sulfones subsequently led to the discovery of hitherto unknown alpha-sulfone hydroxamates that are superior to the corresponding beta-sulfones in potency for target MMPs, selectivity vs MMP-1, and exposure when dosed orally. alpha-Piperidine-alpha-sulfone hydroxamate 35f (SC-276) was advanced through antitumor and antiangiogenesis assays and was selected for development. Compound 35f demonstrates excellent antitumor activity vs MX-1 breast tumor in mice when dosed orally as monotherapy or in combination with paclitaxel.


Subject(s)
Antineoplastic Agents/chemical synthesis , Hydroxamic Acids/chemical synthesis , Matrix Metalloproteinase Inhibitors , Piperidines/chemical synthesis , Sulfones/chemical synthesis , Administration, Oral , Angiogenesis Inhibitors/chemical synthesis , Angiogenesis Inhibitors/chemistry , Angiogenesis Inhibitors/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Female , Hydroxamic Acids/chemistry , Hydroxamic Acids/pharmacology , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/mortality , Mice , Mice, Nude , Paclitaxel/therapeutic use , Piperidines/chemistry , Piperidines/pharmacology , Structure-Activity Relationship , Sulfones/chemistry , Sulfones/pharmacology , Xenograft Model Antitumor Assays
10.
J Med Chem ; 54(5): 1211-22, 2011 Mar 10.
Article in English | MEDLINE | ID: mdl-21302953

ABSTRACT

Structure-based virtual screening was applied to design combinatorial libraries to discover novel and potent soluble epoxide hydrolase (sEH) inhibitors. X-ray crystal structures revealed unique interactions for a benzoxazole template in addition to the conserved hydrogen bonds with the catalytic machinery of sEH. By exploitation of the favorable binding elements, two iterations of library design based on amide coupling were employed, guided principally by the docking results of the enumerated virtual products. Biological screening of the libraries demonstrated as high as 90% hit rate, of which over two dozen compounds were single digit nanomolar sEH inhibitors by IC(50) determination. In total the library design and synthesis produced more than 300 submicromolar sEH inhibitors. In cellular systems consistent activities were demonstrated with biochemical measurements. The SAR understanding of the benzoxazole template provides valuable insights into discovery of novel sEH inhibitors as therapeutic agents.


Subject(s)
Benzoxazoles/chemistry , Epoxide Hydrolases/antagonists & inhibitors , Epoxide Hydrolases/chemistry , Models, Molecular , Quantitative Structure-Activity Relationship , Small Molecule Libraries , Benzoxazoles/chemical synthesis , Combinatorial Chemistry Techniques , Crystallography, X-Ray , Drug Design , Enzyme Assays , Fluorometry , Hydrogen Bonding , Molecular Structure , Solubility
11.
J Med Chem ; 53(18): 6653-80, 2010 Sep 23.
Article in English | MEDLINE | ID: mdl-20726512

ABSTRACT

α-Sulfone-α-piperidine and α-tetrahydropyranyl hydroxamates were explored that are potent inhibitors of MMP's-2, -9, and -13 that spare MMP-1, with oral efficacy in inhibiting tumor growth in mice and left-ventricular hypertrophy in rats and in the bovine cartilage degradation ex vivo explant system. α-Piperidine 19v (SC-78080/SD-2590) was selected for development toward the initial indication of cancer, while α-piperidine and α-tetrahydropyranyl hydroxamates 19w (SC-77964) and 9i (SC-77774), respectively, were identified as backup compounds.


Subject(s)
Anti-Inflammatory Agents/chemical synthesis , Antineoplastic Agents/chemical synthesis , Cardiovascular Agents/chemical synthesis , Hydroxamic Acids/chemical synthesis , Matrix Metalloproteinase Inhibitors , Piperidines/chemical synthesis , Pyrans/chemical synthesis , Sulfones/chemical synthesis , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Biological Availability , Cardiovascular Agents/chemistry , Cardiovascular Agents/pharmacology , Cartilage, Articular/drug effects , Cartilage, Articular/pathology , Cattle , Crystallography, X-Ray , Humans , Hydroxamic Acids/chemistry , Hydroxamic Acids/pharmacology , Hypertrophy, Left Ventricular/drug therapy , Macaca fascicularis , Mice , Mice, Nude , Models, Molecular , Molecular Structure , Piperidines/chemistry , Piperidines/pharmacology , Pyrans/chemistry , Pyrans/pharmacology , Rats , Structure-Activity Relationship , Sulfones/chemistry , Sulfones/pharmacology , Xenograft Model Antitumor Assays
14.
J Chem Inf Comput Sci ; 44(3): 871-81, 2004.
Article in English | MEDLINE | ID: mdl-15154752

ABSTRACT

Six docking programs (FlexX, GOLD, ICM, LigandFit, the Northwestern University version of DOCK, and QXP) were evaluated in terms of their ability to reproduce experimentally observed binding modes (poses) of small-molecule ligands to macromolecular targets. The accuracy of a pose was assessed in two ways: First, the RMS deviation of the predicted pose from the crystal structure was calculated. Second, the predicted pose was compared to the experimentally observed one regarding the presence of key interactions with the protein. The latter assessment is referred to as interactions-based accuracy classification (IBAC). In a number of cases significant discrepancies were found between IBAC and RMSD-based classifications. Despite being more subjective, the IBAC proved to be a more meaningful measure of docking accuracy in all these cases.


Subject(s)
Crystallography, X-Ray/methods , Models, Molecular , Molecular Structure
15.
Bioorg Med Chem ; 11(22): 4769-77, 2003 Nov 03.
Article in English | MEDLINE | ID: mdl-14556792

ABSTRACT

The human immunodeficiency virus (HIV) has been shown to be the causative agent for AIDS. The HIV virus encodes for a unique aspartyl protease that is essential for the production of enzymes and proteins in the final stages of maturation. Protease inhibitors have been useful in combating the disease. The inhibitors incorporate a variety of isosteres including the hydroxyethylurea at the protease cleavage site. We have shown that the replacement of t-butylurea moiety by benzothiazolesulfonamide provided inhibitors with improved potency and antiviral activities. Some of the compounds have shown good oral bioavailability and half-life in rats. The synthesis of benzothiazole derivatives led us to explore other heterocycles. During the course of our studies, we also developed an efficient synthesis of benzothiazole-6-sulfonic acid via a two-step procedure starting from sulfanilamide.


Subject(s)
HIV Protease Inhibitors/chemistry , HIV Protease Inhibitors/pharmacology , HIV Protease/metabolism , Sulfonamides/chemistry , Sulfonamides/pharmacology , Thiazoles/chemistry , Thiazoles/pharmacology , Urea/analogs & derivatives , Administration, Oral , Animals , Biological Availability , HIV Protease Inhibitors/chemical synthesis , HIV Protease Inhibitors/pharmacokinetics , Humans , Inhibitory Concentration 50 , Rats , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/pharmacokinetics , Thiazoles/chemical synthesis , Thiazoles/pharmacokinetics , Urea/chemistry , Urea/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL