Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
PLoS Biol ; 12(6): e1001895, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24960609

ABSTRACT

The Wnt receptor Ryk is an evolutionary-conserved protein important during neuronal differentiation through several mechanisms, including γ-secretase cleavage and nuclear translocation of its intracellular domain (Ryk-ICD). Although the Wnt pathway may be neuroprotective, the role of Ryk in neurodegenerative disease remains unknown. We found that Ryk is up-regulated in neurons expressing mutant huntingtin (HTT) in several models of Huntington's disease (HD). Further investigation in Caenorhabditis elegans and mouse striatal cell models of HD provided a model in which the early-stage increase of Ryk promotes neuronal dysfunction by repressing the neuroprotective activity of the longevity-promoting factor FOXO through a noncanonical mechanism that implicates the Ryk-ICD fragment and its binding to the FOXO co-factor ß-catenin. The Ryk-ICD fragment suppressed neuroprotection by lin-18/Ryk loss-of-function in expanded-polyQ nematodes, repressed FOXO transcriptional activity, and abolished ß-catenin protection of mutant htt striatal cells against cell death vulnerability. Additionally, Ryk-ICD was increased in the nucleus of mutant htt cells, and reducing γ-secretase PS1 levels compensated for the cytotoxicity of full-length Ryk in these cells. These findings reveal that the Ryk-ICD pathway may impair FOXO protective activity in mutant polyglutamine neurons, suggesting that neurons are unable to efficiently maintain function and resist disease from the earliest phases of the pathogenic process in HD.


Subject(s)
Forkhead Transcription Factors/metabolism , Huntington Disease/etiology , Neurons/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Receptors, Wnt/metabolism , Aged , Animals , Caenorhabditis elegans , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Cell Line , Female , Humans , Huntington Disease/metabolism , Male , Mice , Mice, Transgenic , Middle Aged , Oligonucleotide Array Sequence Analysis , Presenilin-1/metabolism , Receptor Protein-Tyrosine Kinases/genetics , Serotonin Plasma Membrane Transport Proteins/genetics , Serotonin Plasma Membrane Transport Proteins/metabolism , Wnt Signaling Pathway
2.
J Neurosci ; 32(36): 12630-40, 2012 Sep 05.
Article in English | MEDLINE | ID: mdl-22956852

ABSTRACT

One of the current challenges of neurodegenerative disease research is to determine whether signaling pathways that are essential to cellular homeostasis might contribute to neuronal survival and modulate the pathogenic process in human disease. In Caenorhabditis elegans, sir-2.1/SIRT1 overexpression protects neurons from the early phases of expanded polyglutamine (polyQ) toxicity, and this protection requires the longevity-promoting factor daf-16/FOXO. Here, we show that this neuroprotective effect also requires the DAF-16/FOXO partner bar-1/ß-catenin and putative DAF-16-regulated gene ucp-4, the sole mitochondrial uncoupling protein (UCP) in nematodes. These results fit with a previously proposed mechanism in which the ß-catenin FOXO and SIRT1 proteins may together regulate gene expression and cell survival. Knockdown of ß-catenin enhanced the vulnerability to cell death of mutant-huntingtin striatal cells derived from the HdhQ111 knock-in mice. In addition, this effect was compensated by SIRT1 overexpression and accompanied by the modulation of neuronal UCP expression levels, further highlighting a cross-talk between ß-catenin and SIRT1 in the modulation of mutant polyQ cytoxicity. Taken together, these results suggest that integration of ß-catenin, sirtuin and FOXO signaling protects from the early phases of mutant huntingtin toxicity.


Subject(s)
Caenorhabditis elegans Proteins/biosynthesis , Caenorhabditis elegans Proteins/physiology , Cytoskeletal Proteins/biosynthesis , Nerve Tissue Proteins/toxicity , Signal Transduction/physiology , Sirtuins/physiology , Transcription Factors/biosynthesis , beta Catenin/biosynthesis , Animals , Animals, Genetically Modified , Caenorhabditis elegans , Caenorhabditis elegans Proteins/genetics , Cell Survival/drug effects , Cell Survival/physiology , Cytoskeletal Proteins/genetics , Forkhead Transcription Factors , Huntingtin Protein , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/genetics , Sirtuins/genetics , Transcription Factors/genetics , beta Catenin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL