Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 170
Filter
Add more filters

Publication year range
1.
Cell ; 184(1): 226-242.e21, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33417860

ABSTRACT

Cancer cells enter a reversible drug-tolerant persister (DTP) state to evade death from chemotherapy and targeted agents. It is increasingly appreciated that DTPs are important drivers of therapy failure and tumor relapse. We combined cellular barcoding and mathematical modeling in patient-derived colorectal cancer models to identify and characterize DTPs in response to chemotherapy. Barcode analysis revealed no loss of clonal complexity of tumors that entered the DTP state and recurred following treatment cessation. Our data fit a mathematical model where all cancer cells, and not a small subpopulation, possess an equipotent capacity to become DTPs. Mechanistically, we determined that DTPs display remarkable transcriptional and functional similarities to diapause, a reversible state of suspended embryonic development triggered by unfavorable environmental conditions. Our study provides insight into how cancer cells use a developmentally conserved mechanism to drive the DTP state, pointing to novel therapeutic opportunities to target DTPs.


Subject(s)
Antineoplastic Agents/therapeutic use , Colorectal Neoplasms/drug therapy , Diapause , Drug Resistance, Neoplasm , Animals , Antineoplastic Agents/pharmacology , Autophagy/drug effects , Autophagy/genetics , Cell Line, Tumor , Clone Cells , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Drug Resistance, Neoplasm/drug effects , Embryo, Mammalian/drug effects , Embryo, Mammalian/metabolism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Genetic Heterogeneity/drug effects , Humans , Irinotecan/pharmacology , Irinotecan/therapeutic use , Mice, Inbred NOD , Mice, SCID , Models, Biological , Signal Transduction/drug effects , Up-Regulation/drug effects , Up-Regulation/genetics , Xenograft Model Antitumor Assays
2.
Cell ; 177(1): 85-100, 2019 03 21.
Article in English | MEDLINE | ID: mdl-30901552

ABSTRACT

Genetic interactions identify combinations of genetic variants that impinge on phenotype. With whole-genome sequence information available for thousands of individuals within a species, a major outstanding issue concerns the interpretation of allelic combinations of genes underlying inherited traits. In this Review, we discuss how large-scale analyses in model systems have illuminated the general principles and phenotypic impact of genetic interactions. We focus on studies in budding yeast, including the mapping of a global genetic network. We emphasize how information gained from work in yeast translates to other systems, and how a global genetic network not only annotates gene function but also provides new insights into the genotype-to-phenotype relationship.


Subject(s)
Gene Regulatory Networks/genetics , Gene Regulatory Networks/physiology , Genetic Association Studies/trends , Alleles , Animals , Gene Frequency/genetics , Genetic Variation/genetics , Genotype , Humans , Models, Genetic , Phenotype , Quantitative Trait Loci/genetics , Saccharomyces cerevisiae/genetics
3.
Cell ; 164(1-2): 293-309, 2016 Jan 14.
Article in English | MEDLINE | ID: mdl-26771497

ABSTRACT

Large-scale genomic studies have identified multiple somatic aberrations in breast cancer, including copy number alterations and point mutations. Still, identifying causal variants and emergent vulnerabilities that arise as a consequence of genetic alterations remain major challenges. We performed whole-genome small hairpin RNA (shRNA) "dropout screens" on 77 breast cancer cell lines. Using a hierarchical linear regression algorithm to score our screen results and integrate them with accompanying detailed genetic and proteomic information, we identify vulnerabilities in breast cancer, including candidate "drivers," and reveal general functional genomic properties of cancer cells. Comparisons of gene essentiality with drug sensitivity data suggest potential resistance mechanisms, effects of existing anti-cancer drugs, and opportunities for combination therapy. Finally, we demonstrate the utility of this large dataset by identifying BRD4 as a potential target in luminal breast cancer and PIK3CA mutations as a resistance determinant for BET-inhibitors.


Subject(s)
Algorithms , Breast Neoplasms/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Cycle Proteins , Cell Line, Tumor , Class I Phosphatidylinositol 3-Kinases , Cluster Analysis , Drug Resistance, Neoplasm , Gene Dosage , Gene Expression Profiling , Genome-Wide Association Study , Humans , Linear Models , Nuclear Proteins/genetics , Phosphatidylinositol 3-Kinases , Transcription Factors/genetics
4.
Cell ; 162(2): 391-402, 2015 Jul 16.
Article in English | MEDLINE | ID: mdl-26186192

ABSTRACT

Many mutations cause genetic disorders. However, two people inheriting the same mutation often have different severity of symptoms, and this is partly genetic. The effects of genetic background on mutant phenotypes are poorly understood, but predicting them is critical for personalized medicine. To study this phenomenon comprehensively and systematically, we used RNAi to compare loss-of-function phenotypes for ∼1,400 genes in two isolates of C. elegans and find that ∼20% of genes differ in the severity of phenotypes in these two genetic backgrounds. Crucially, this effect of genetic background on the severity of both RNAi and mutant phenotypes can be predicted from variation in the expression levels of the affected gene. This is also true in mammalian cells, suggesting it is a general property of genetic networks. We suggest that differences in the manifestation of mutant phenotypes between individuals are largely the result of natural variation in gene expression.


Subject(s)
Caenorhabditis elegans/genetics , Mutation , Animals , Caenorhabditis elegans/classification , Gene Knockdown Techniques , Genetic Variation , Phenotype , RNA Interference
5.
Cell ; 161(6): 1413-24, 2015 Jun 04.
Article in English | MEDLINE | ID: mdl-26046442

ABSTRACT

Proteomics has proved invaluable in generating large-scale quantitative data; however, the development of systems approaches for examining the proteome in vivo has lagged behind. To evaluate protein abundance and localization on a proteome scale, we exploited the yeast GFP-fusion collection in a pipeline combining automated genetics, high-throughput microscopy, and computational feature analysis. We developed an ensemble of binary classifiers to generate localization data from single-cell measurements and constructed maps of ∼3,000 proteins connected to 16 localization classes. To survey proteome dynamics in response to different chemical and genetic stimuli, we measure proteome-wide abundance and localization and identified changes over time. We analyzed >20 million cells to identify dynamic proteins that redistribute among multiple localizations in hydroxyurea, rapamycin, and in an rpd3Δ background. Because our localization and abundance data are quantitative, they provide the opportunity for many types of comparative studies, single cell analyses, modeling, and prediction. VIDEO ABSTRACT.


Subject(s)
Proteome/analysis , Saccharomyces cerevisiae Proteins/analysis , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/cytology , Support Vector Machine , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Single-Cell Analysis
6.
Cell ; 163(6): 1515-26, 2015 Dec 03.
Article in English | MEDLINE | ID: mdl-26627737

ABSTRACT

The ability to perturb genes in human cells is crucial for elucidating gene function and holds great potential for finding therapeutic targets for diseases such as cancer. To extend the catalog of human core and context-dependent fitness genes, we have developed a high-complexity second-generation genome-scale CRISPR-Cas9 gRNA library and applied it to fitness screens in five human cell lines. Using an improved Bayesian analytical approach, we consistently discover 5-fold more fitness genes than were previously observed. We present a list of 1,580 human core fitness genes and describe their general properties. Moreover, we demonstrate that context-dependent fitness genes accurately recapitulate pathway-specific genetic vulnerabilities induced by known oncogenes and reveal cell-type-specific dependencies for specific receptor tyrosine kinases, even in oncogenic KRAS backgrounds. Thus, rigorous identification of human cell line fitness genes using a high-complexity CRISPR-Cas9 library affords a high-resolution view of the genetic vulnerabilities of a cell.


Subject(s)
Genes, Essential , Bayes Theorem , CRISPR-Cas Systems , Cell Line, Tumor , Gene Knockout Techniques , Gene Library , Humans , Mutation
7.
Cell ; 163(6): 1484-99, 2015 Dec 03.
Article in English | MEDLINE | ID: mdl-26638075

ABSTRACT

The centrosome is the primary microtubule organizing center of the cells and templates the formation of cilia, thereby operating at a nexus of critical cellular functions. Here, we use proximity-dependent biotinylation (BioID) to map the centrosome-cilium interface; with 58 bait proteins we generate a protein topology network comprising >7,000 interactions. Analysis of interaction profiles coupled with high resolution phenotypic profiling implicates a number of protein modules in centriole duplication, ciliogenesis, and centriolar satellite biogenesis and highlights extensive interplay between these processes. By monitoring dynamic changes in the centrosome-cilium protein interaction landscape during ciliogenesis, we also identify satellite proteins that support cilia formation. Systematic profiling of proximity interactions combined with functional analysis thus provides a rich resource for better understanding human centrosome and cilia biology. Similar strategies may be applied to other complex biological structures or pathways.


Subject(s)
Centrosome/metabolism , Cilia/metabolism , Protein Interaction Maps , Biotinylation , Cell Cycle , Humans , Microtubule-Organizing Center/metabolism
8.
Mol Cell ; 82(16): 2982-2999.e14, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35914530

ABSTRACT

Alternative splicing (AS) is a critical regulatory layer; yet, factors controlling functionally coordinated splicing programs during developmental transitions are poorly understood. Here, we employ a screening strategy to identify factors controlling dynamic splicing events important for mammalian neurogenesis. Among previously unknown regulators, Rbm38 acts widely to negatively control neural AS, in part through interactions mediated by the established repressor of splicing, Ptbp1. Puf60, a ubiquitous factor, is surprisingly found to promote neural splicing patterns. This activity requires a conserved, neural-differential exon that remodels Puf60 co-factor interactions. Ablation of this exon rewires distinct AS networks in embryonic stem cells and at different stages of mouse neurogenesis. Single-cell transcriptome analyses further reveal distinct roles for Rbm38 and Puf60 isoforms in establishing neuronal identity. Our results describe important roles for previously unknown regulators of neurogenesis and establish how an alternative exon in a widely expressed splicing factor orchestrates temporal control over cell differentiation.


Subject(s)
Neurogenesis , RNA Splicing , Alternative Splicing , Animals , Exons/genetics , Mammals , Mice , Neurogenesis/genetics , Neurons , RNA-Binding Proteins/genetics
9.
Cell ; 152(5): 1008-20, 2013 Feb 28.
Article in English | MEDLINE | ID: mdl-23452850

ABSTRACT

Metazoan evolution involves increasing protein domain complexity, but how this relates to control of biological decisions remains uncertain. The Ras guanine nucleotide exchange factor (RasGEF) Sos1 and its adaptor Grb2 are multidomain proteins that couple fibroblast growth factor (FGF) signaling to activation of the Ras-Erk pathway during mammalian development and drive embryonic stem cells toward the primitive endoderm (PrE) lineage. We show that the ability of Sos1/Grb2 to appropriately regulate pluripotency and differentiation factors and to initiate PrE development requires collective binding of multiple Sos1/Grb2 domains to their protein and phospholipid ligands. This provides a cooperative system that only allows lineage commitment when all ligand-binding domains are occupied. Furthermore, our results indicate that the interaction domains of Sos1 and Grb2 have evolved so as to bind ligands not with maximal strength but with specificities and affinities that maintain cooperativity. This optimized system ensures that PrE lineage commitment occurs in a timely and selective manner during embryogenesis.


Subject(s)
Embryo, Mammalian/metabolism , Embryonic Stem Cells/metabolism , GRB2 Adaptor Protein/metabolism , SOS1 Protein/metabolism , Amino Acid Sequence , Animals , Cell Lineage , Endoderm/metabolism , Eukaryota/genetics , Eukaryota/metabolism , Humans , Models, Molecular , Molecular Sequence Data , Protein Structure, Tertiary , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Sequence Alignment , ras Guanine Nucleotide Exchange Factors/metabolism
10.
Nature ; 600(7888): 324-328, 2021 12.
Article in English | MEDLINE | ID: mdl-34819670

ABSTRACT

Activation-induced cytidine deaminase (AID) catalyses the deamination of deoxycytidines to deoxyuracils within immunoglobulin genes to induce somatic hypermutation and class-switch recombination1,2. AID-generated deoxyuracils are recognized and processed by subverted base-excision and mismatch repair pathways that ensure a mutagenic outcome in B cells3-6. However, why these DNA repair pathways do not accurately repair AID-induced lesions remains unknown. Here, using a genome-wide CRISPR screen, we show that FAM72A is a major determinant for the error-prone processing of deoxyuracils. Fam72a-deficient CH12F3-2 B cells and primary B cells from Fam72a-/- mice exhibit reduced class-switch recombination and somatic hypermutation frequencies at immunoglobulin and Bcl6 genes, and reduced genome-wide deoxyuracils. The somatic hypermutation spectrum in B cells from Fam72a-/- mice is opposite to that observed in mice deficient in uracil DNA glycosylase 2 (UNG2)7, which suggests that UNG2 is hyperactive in FAM72A-deficient cells. Indeed, FAM72A binds to UNG2, resulting in reduced levels of UNG2 protein in the G1 phase of the cell cycle, coinciding with peak AID activity. FAM72A therefore causes U·G mispairs to persist into S phase, leading to error-prone processing by mismatch repair. By disabling the DNA repair pathways that normally efficiently remove deoxyuracils from DNA, FAM72A enables AID to exert its full effects on antibody maturation. This work has implications in cancer, as the overexpression of FAM72A that is observed in many cancers8 could promote mutagenesis.


Subject(s)
B-Lymphocytes , DNA Glycosylases , DNA Mismatch Repair , Immunoglobulin Class Switching , Membrane Proteins , Mutation , Neoplasm Proteins , Somatic Hypermutation, Immunoglobulin , Animals , Female , Humans , Mice , B-Lymphocytes/metabolism , CRISPR-Cas Systems , DNA Glycosylases/antagonists & inhibitors , DNA Glycosylases/metabolism , Epistasis, Genetic , HEK293 Cells , Immunoglobulin Class Switching/genetics , Immunoglobulin Switch Region/genetics , Membrane Proteins/deficiency , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice, Inbred C57BL , MutS Homolog 2 Protein/genetics , MutS Homolog 2 Protein/metabolism , Neoplasm Proteins/deficiency , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Somatic Hypermutation, Immunoglobulin/genetics
11.
Nature ; 586(7827): 120-126, 2020 10.
Article in English | MEDLINE | ID: mdl-32968282

ABSTRACT

The genetic circuits that allow cancer cells to evade destruction by the host immune system remain poorly understood1-3. Here, to identify a phenotypically robust core set of genes and pathways that enable cancer cells to evade killing mediated by cytotoxic T lymphocytes (CTLs), we performed genome-wide CRISPR screens across a panel of genetically diverse mouse cancer cell lines that were cultured in the presence of CTLs. We identify a core set of 182 genes across these mouse cancer models, the individual perturbation of which increases either the sensitivity or the resistance of cancer cells to CTL-mediated toxicity. Systematic exploration of our dataset using genetic co-similarity reveals the hierarchical and coordinated manner in which genes and pathways act in cancer cells to orchestrate their evasion of CTLs, and shows that discrete functional modules that control the interferon response and tumour necrosis factor (TNF)-induced cytotoxicity are dominant sub-phenotypes. Our data establish a central role for genes that were previously identified as negative regulators of the type-II interferon response (for example, Ptpn2, Socs1 and Adar1) in mediating CTL evasion, and show that the lipid-droplet-related gene Fitm2 is required for maintaining cell fitness after exposure to interferon-γ (IFNγ). In addition, we identify the autophagy pathway as a conserved mediator of the evasion of CTLs by cancer cells, and show that this pathway is required to resist cytotoxicity induced by the cytokines IFNγ and TNF. Through the mapping of cytokine- and CTL-based genetic interactions, together with in vivo CRISPR screens, we show how the pleiotropic effects of autophagy control cancer-cell-intrinsic evasion of killing by CTLs and we highlight the importance of these effects within the tumour microenvironment. Collectively, these data expand our knowledge of the genetic circuits that are involved in the evasion of the immune system by cancer cells, and highlight genetic interactions that contribute to phenotypes associated with escape from killing by CTLs.


Subject(s)
Genome/genetics , Genomics , Neoplasms/genetics , Neoplasms/immunology , T-Lymphocytes, Cytotoxic/immunology , Tumor Escape/genetics , Tumor Escape/immunology , Animals , Autophagy , Cell Line, Tumor , Female , Genes, Neoplasm/genetics , Humans , Interferon-gamma/immunology , Male , Mice , NF-kappa B/metabolism , Reproducibility of Results , Signal Transduction
12.
Mol Cell ; 72(3): 510-524.e12, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30388412

ABSTRACT

Alternative splicing is crucial for diverse cellular, developmental, and pathological processes. However, the full networks of factors that control individual splicing events are not known. Here, we describe a CRISPR-based strategy for the genome-wide elucidation of pathways that control splicing and apply it to microexons with important functions in nervous system development and that are commonly misregulated in autism. Approximately 200 genes associated with functionally diverse regulatory layers and enriched in genetic links to autism control neuronal microexons. Remarkably, the widely expressed RNA binding proteins Srsf11 and Rnps1 directly, preferentially, and frequently co-activate these microexons. These factors form critical interactions with the neuronal splicing regulator Srrm4 and a bi-partite intronic splicing enhancer element to promote spliceosome formation. Our study thus presents a versatile system for the identification of entire splicing regulatory pathways and further reveals a common mechanism for the definition of neuronal microexons that is disrupted in autism.


Subject(s)
Alternative Splicing/physiology , Genetic Engineering/methods , RNA Splice Sites/physiology , Animals , Autistic Disorder/genetics , CRISPR-Cas Systems/genetics , Cell Line , Exons/physiology , Humans , Mice , Nerve Tissue Proteins , Neurogenesis , Neurons , RNA Precursors/physiology , RNA Splicing/physiology , RNA-Binding Proteins , Ribonucleoproteins , Serine-Arginine Splicing Factors , Spliceosomes
13.
Nucleic Acids Res ; 52(8): 4483-4501, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38587191

ABSTRACT

Messenger RNA precursors (pre-mRNA) generally undergo 3' end processing by cleavage and polyadenylation (CPA), which is specified by a polyadenylation site (PAS) and adjacent RNA sequences and regulated by a large variety of core and auxiliary CPA factors. To date, most of the human CPA factors have been discovered through biochemical and proteomic studies. However, genetic identification of the human CPA factors has been hampered by the lack of a reliable genome-wide screening method. We describe here a dual fluorescence readthrough reporter system with a PAS inserted between two fluorescent reporters. This system enables measurement of the efficiency of 3' end processing in living cells. Using this system in combination with a human genome-wide CRISPR/Cas9 library, we conducted a screen for CPA factors. The screens identified most components of the known core CPA complexes and other known CPA factors. The screens also identified CCNK/CDK12 as a potential core CPA factor, and RPRD1B as a CPA factor that binds RNA and regulates the release of RNA polymerase II at the 3' ends of genes. Thus, this dual fluorescence reporter coupled with CRISPR/Cas9 screens reliably identifies bona fide CPA factors and provides a platform for investigating the requirements for CPA in various contexts.


Subject(s)
CRISPR-Cas Systems , Genes, Reporter , RNA Precursors , mRNA Cleavage and Polyadenylation Factors , Humans , Cyclin-Dependent Kinases/metabolism , Cyclin-Dependent Kinases/genetics , Genome, Human , HEK293 Cells , mRNA Cleavage and Polyadenylation Factors/metabolism , mRNA Cleavage and Polyadenylation Factors/genetics , Polyadenylation , RNA Cleavage , RNA Polymerase II/metabolism , RNA Precursors/metabolism , RNA Precursors/genetics
14.
Mol Syst Biol ; 20(6): 719-740, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38580884

ABSTRACT

Tumor suppressor p53 (TP53) is frequently mutated in cancer, often resulting not only in loss of its tumor-suppressive function but also acquisition of dominant-negative and even oncogenic gain-of-function traits. While wild-type p53 levels are tightly regulated, mutants are typically stabilized in tumors, which is crucial for their oncogenic properties. Here, we systematically profiled the factors that regulate protein stability of wild-type and mutant p53 using marker-based genome-wide CRISPR screens. Most regulators of wild-type p53 also regulate p53 mutants, except for p53 R337H regulators, which are largely private to this mutant. Mechanistically, FBXO42 emerged as a positive regulator for a subset of p53 mutants, working with CCDC6 to control USP28-mediated mutant p53 stabilization. Additionally, C16orf72/HAPSTR1 negatively regulates both wild-type p53 and all tested mutants. C16orf72/HAPSTR1 is commonly amplified in breast cancer, and its overexpression reduces p53 levels in mouse mammary epithelium leading to accelerated breast cancer. This study offers a network perspective on p53 stability regulation, potentially guiding strategies to reinforce wild-type p53 or target mutant p53 in cancer.


Subject(s)
Mutation , Protein Stability , Tumor Suppressor Protein p53 , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Animals , Humans , Mice , Female , CRISPR-Cas Systems , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , Gene Expression Regulation, Neoplastic , Clustered Regularly Interspaced Short Palindromic Repeats
15.
Mol Cell ; 65(3): 539-553.e7, 2017 Feb 02.
Article in English | MEDLINE | ID: mdl-28157508

ABSTRACT

Networks of coordinated alternative splicing (AS) events play critical roles in development and disease. However, a comprehensive knowledge of the factors that regulate these networks is lacking. We describe a high-throughput system for systematically linking trans-acting factors to endogenous RNA regulatory events. Using this system, we identify hundreds of factors associated with diverse regulatory layers that positively or negatively control AS events linked to cell fate. Remarkably, more than one-third of the regulators are transcription factors. Further analyses of the zinc finger protein Zfp871 and BTB/POZ domain transcription factor Nacc1, which regulate neural and stem cell AS programs, respectively, reveal roles in controlling the expression of specific splicing regulators. Surprisingly, these proteins also appear to regulate target AS programs via binding RNA. Our results thus uncover a large "missing cache" of splicing regulators among annotated transcription factors, some of which dually regulate AS through direct and indirect mechanisms.


Subject(s)
Alternative Splicing , Gene Regulatory Networks , Sequence Analysis, RNA/methods , Transcription Factors/metabolism , Animals , Cell Line , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , HEK293 Cells , Humans , Mice , Neurons/cytology , Neurons/metabolism , RNA, Messenger/genetics
16.
Nat Chem Biol ; 18(9): 1023-1031, 2022 09.
Article in English | MEDLINE | ID: mdl-35953550

ABSTRACT

Nanotechnology provides platforms to deliver medical agents to specific cells. However, the nanoparticle's surface becomes covered with serum proteins in the blood after administration despite engineering efforts to protect it with targeting or blocking molecules. Here, we developed a strategy to identify the main interactions between nanoparticle-adsorbed proteins and a cell by integrating mass spectrometry with pooled genome screens and Search Tool for the Retrieval of Interacting Genes analysis. We found that the low-density lipoprotein (LDL) receptor was responsible for approximately 75% of serum-coated gold nanoparticle uptake in U-87 MG cells. Apolipoprotein B and complement C8 proteins on the nanoparticle mediated uptake through the LDL receptor. In vivo, nanoparticle accumulation correlated with LDL receptor expression in the organs of mice. A detailed understanding of how adsorbed serum proteins bind to cell receptors will lay the groundwork for controlling the delivery of nanoparticles at the molecular level to diseased tissues for therapeutic and diagnostic applications.


Subject(s)
Metal Nanoparticles , Protein Corona , Animals , Blood Proteins , Gold , Mice , Protein Corona/chemistry , Protein Corona/metabolism , Receptors, Cell Surface , Receptors, LDL/genetics
17.
Nat Chem Biol ; 18(12): 1370-1379, 2022 12.
Article in English | MEDLINE | ID: mdl-35970996

ABSTRACT

Pyrvinium is a quinoline-derived cyanine dye and an approved anti-helminthic drug reported to inhibit WNT signaling and have anti-proliferative effects in various cancer cell lines. To further understand the mechanism by which pyrvinium is cytotoxic, we conducted a pooled genome-wide CRISPR loss-of-function screen in the human HAP1 cell model. The top drug-gene sensitizer interactions implicated the malate-aspartate and glycerol-3-phosphate shuttles as mediators of cytotoxicity to mitochondrial complex I inhibition including pyrvinium. By contrast, perturbation of the poorly characterized gene C1orf115/RDD1 resulted in strong resistance to the cytotoxic effects of pyrvinium through dysregulation of the major drug efflux pump ABCB1/MDR1. Interestingly, C1orf115/RDD1 was found to physically associate with ABCB1/MDR1 through proximity-labeling experiments and perturbation of C1orf115 led to mis-localization of ABCB1/MDR1. Our results are consistent with a model whereby C1orf115 modulates drug efflux through regulation of the major drug exporter ABCB1/MDR1.


Subject(s)
Antineoplastic Agents , Pyrvinium Compounds , Humans , Pyrvinium Compounds/pharmacology , Wnt Signaling Pathway , Antineoplastic Agents/pharmacology , Genomics
18.
Nat Rev Genet ; 19(1): 34-49, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29033457

ABSTRACT

Gene essentiality is a founding concept of genetics with important implications in both fundamental and applied research. Multiple screens have been performed over the years in bacteria, yeasts, animals and more recently in human cells to identify essential genes. A mounting body of evidence suggests that gene essentiality, rather than being a static and binary property, is both context dependent and evolvable in all kingdoms of life. This concept of a non-absolute nature of gene essentiality changes our fundamental understanding of essential biological processes and could directly affect future treatment strategies for cancer and infectious diseases.


Subject(s)
Genes, Essential , Animals , Conserved Sequence , Drug Delivery Systems , Drug Resistance/genetics , Evolution, Molecular , Gene Editing , Gene Regulatory Networks , Genomics , High-Throughput Nucleotide Sequencing , Humans , Metabolic Engineering , Models, Genetic , Synthetic Biology
19.
Nature ; 559(7713): 285-289, 2018 07.
Article in English | MEDLINE | ID: mdl-29973717

ABSTRACT

The observation that BRCA1- and BRCA2-deficient cells are sensitive to inhibitors of poly(ADP-ribose) polymerase (PARP) has spurred the development of cancer therapies that use these inhibitors to target deficiencies in homologous recombination1. The cytotoxicity of PARP inhibitors depends on PARP trapping, the formation of non-covalent protein-DNA adducts composed of inhibited PARP1 bound to DNA lesions of unclear origins1-4. To address the nature of such lesions and the cellular consequences of PARP trapping, we undertook three CRISPR (clustered regularly interspersed palindromic repeats) screens to identify genes and pathways that mediate cellular resistance to olaparib, a clinically approved PARP inhibitor1. Here we present a high-confidence set of 73 genes, which when mutated cause increased sensitivity to PARP inhibitors. In addition to an expected enrichment for genes related to homologous recombination, we discovered that mutations in all three genes encoding ribonuclease H2 sensitized cells to PARP inhibition. We establish that the underlying cause of the PARP-inhibitor hypersensitivity of cells deficient in ribonuclease H2 is impaired ribonucleotide excision repair5. Embedded ribonucleotides, which are abundant in the genome of cells deficient in ribonucleotide excision repair, are substrates for cleavage by topoisomerase 1, resulting in PARP-trapping lesions that impede DNA replication and endanger genome integrity. We conclude that genomic ribonucleotides are a hitherto unappreciated source of PARP-trapping DNA lesions, and that the frequent deletion of RNASEH2B in metastatic prostate cancer and chronic lymphocytic leukaemia could provide an opportunity to exploit these findings therapeutically.


Subject(s)
CRISPR-Cas Systems , DNA Damage , Gene Editing , Neoplasms/genetics , Neoplasms/pathology , Poly (ADP-Ribose) Polymerase-1/metabolism , Ribonucleotides/genetics , Animals , BRCA1 Protein/deficiency , BRCA1 Protein/genetics , Cell Line , DNA Damage/drug effects , DNA Repair/genetics , DNA Replication , DNA Topoisomerases, Type I/metabolism , Female , Genes, BRCA1 , Genome/genetics , HeLa Cells , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/enzymology , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Male , Mice , Neoplasms/drug therapy , Neoplasms/enzymology , Phthalazines/pharmacology , Piperazines/pharmacology , Poly (ADP-Ribose) Polymerase-1/deficiency , Poly (ADP-Ribose) Polymerase-1/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/enzymology , Prostatic Neoplasms/pathology , Ribonuclease H/deficiency , Ribonuclease H/genetics , Ribonuclease H/metabolism , Synthetic Lethal Mutations , Xenograft Model Antitumor Assays
20.
Nature ; 563(7732): 559-563, 2018 11.
Article in English | MEDLINE | ID: mdl-30464266

ABSTRACT

The zoonotic transmission of hantaviruses from their rodent hosts to humans in North and South America is associated with a severe and frequently fatal respiratory disease, hantavirus pulmonary syndrome (HPS)1,2. No specific antiviral treatments for HPS are available, and no molecular determinants of in vivo susceptibility to hantavirus infection and HPS are known. Here we identify the human asthma-associated gene protocadherin-1 (PCDH1)3-6 as an essential determinant of entry and infection in pulmonary endothelial cells by two hantaviruses that cause HPS, Andes virus (ANDV) and Sin Nombre virus (SNV). In vitro, we show that the surface glycoproteins of ANDV and SNV directly recognize the outermost extracellular repeat domain of PCDH1-a member of the cadherin superfamily7,8-to exploit PCDH1 for entry. In vivo, genetic ablation of PCDH1 renders Syrian golden hamsters highly resistant to a usually lethal ANDV challenge. Targeting PCDH1 could provide strategies to reduce infection and disease caused by New World hantaviruses.


Subject(s)
Cadherins/metabolism , Orthohantavirus/physiology , Virus Internalization , Animals , Cadherins/chemistry , Cadherins/deficiency , Cadherins/genetics , Endothelial Cells/virology , Female , Orthohantavirus/pathogenicity , Hantavirus Pulmonary Syndrome/virology , Haploidy , Host-Pathogen Interactions/genetics , Humans , Lung/cytology , Male , Mesocricetus/virology , Protein Domains , Protocadherins , Sin Nombre virus/pathogenicity , Sin Nombre virus/physiology
SELECTION OF CITATIONS
SEARCH DETAIL