Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Toxicol Appl Pharmacol ; 488: 116970, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38777098

ABSTRACT

Soman produces excitotoxic effects by inhibiting acetylcholinesterase in the cholinergic synapses and neuromuscular junctions, resulting in soman-induced sustained status epilepticus (SSE). Our previous work showed delayed intramuscular (i.m.) treatment with A1 adenosine receptor agonist N-bicyclo-[2.2.1]-hept-2-yl-5'-chloro-5'-deoxyadenosine (ENBA) alone suppressed soman-induced SSE and prevented neuropathology. Using this same rat soman seizure model, we tested if delayed therapy with ENBA (60 mg/kg, i.m.) would terminate seizure, protect neuropathology, and aid in survival when given in conjunction with current standard medical countermeasures (MCMs): atropine sulfate, 2-PAM, and midazolam (MDZ). Either 15- or 30-min following soman-induced SSE onset, male rats received atropine and 2-PAM plus either MDZ or MDZ + ENBA. Electroencephalographic (EEG) activity, physiologic parameters, and motor function were recorded. Either 2- or 14-days following exposure surviving rats were euthanized and perfused for histology. All animals treated with MDZ + ENBA at both time points had 100% EEG seizure termination and reduced total neuropathology compared to animals treated with MDZ (2-day, p = 0.015 for 15-min, p = 0.002 for 30-min; 14-day, p < 0.001 for 15-min, p = 0.006 for 30-min), showing ENBA enhanced MDZ's anticonvulsant and neuroprotectant efficacy. However, combined MDZ + ENBA treatment, when compared to MDZ treatment groups, had a reduction in the 14-day survival rate regardless of treatment time, indicating possible enhancement of MDZ's neuronal inhibitory effects by ENBA. Based on our findings, ENBA shows promise as an anticonvulsant and neuroprotectant in a combined treatment regimen following soman exposure; when given as an adjunct to standard MCMs, the dose of ENBA needs to be adjusted.


Subject(s)
Adenosine A1 Receptor Agonists , Rats, Sprague-Dawley , Seizures , Soman , Animals , Soman/toxicity , Male , Adenosine A1 Receptor Agonists/pharmacology , Rats , Injections, Intramuscular , Seizures/chemically induced , Seizures/drug therapy , Seizures/prevention & control , Neuroprotective Agents/pharmacology , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/therapeutic use , Anticonvulsants/administration & dosage , Electroencephalography/drug effects , Adenosine/analogs & derivatives , Adenosine/administration & dosage , Adenosine/pharmacology , Atropine/pharmacology , Atropine/administration & dosage , Status Epilepticus/chemically induced , Status Epilepticus/drug therapy , Midazolam/pharmacology , Midazolam/therapeutic use
2.
Toxicol Appl Pharmacol ; 464: 116437, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36849019

ABSTRACT

Recently a novel humanized mouse strain has been successfully generated, in which serum carboxylesterase (CES) knock out (KO) mice (Es1-/-) were further genetically modified by knocking in (KI), or adding, the gene that encodes the human form of acetylcholinesterase (AChE). The resulting human AChE KI and serum CES KO (or KIKO) mouse strain should not only exhibit organophosphorus nerve agent (NA) intoxication in a manner more similar to humans, but also display AChE-specific treatment responses more closely mimicking those of humans to facilitate data translation to pre-clinic trials. In this study, we utilized the KIKO mouse to develop a seizure model for NA medical countermeasure investigation, and then applied it to evaluate the anticonvulsant and neuroprotectant (A/N) efficacy of a specific A1 adenosine receptor (A1AR) agonist, N-bicyclo-(2.2.1)hept-2-yl-5'-chloro-5'-deoxyadenosine (ENBA), which has been shown in a rat seizure model to be a potent A/N compound. Male mice surgically implanted with cortical electroencephalographic (EEG) electrodes a week earlier were pretreated with HI-6 and challenged with various doses (26 to 47 µg/kg, SC) of soman (GD) to determine a minimum effective dose (MED) that induced sustained status epilepticus (SSE) activity in 100% of animals while causing minimum lethality at 24 h. The GD dose selected was then used to investigate the MED doses of ENBA when given either immediately following SSE initiation (similar to wartime military first aid application) or at 15 min after ongoing SSE seizure activity (applicable to civilian chemical attack emergency triage). The selected GD dose of 33 µg/kg (1.4 x LD50) generated SSE in 100% of KIKO mice and produced only 30% mortality. ENBA at a dose as little as 10 mg/kg, IP, caused isoelectric EEG activity within minutes after administration in naïve un-exposed KIKO mice. The MED doses of ENBA to terminate GD-induced SSE activity were determined to be 10 and 15 mg/kg when treatment was given at the time of SSE onset and when seizure activity was ongoing for 15 min, respectively. These doses were much lower than in the non-genetically modified rat model, which required an ENBA dose of 60 mg/kg to terminate SSE in 100% GD-exposed rats. At MED doses, all mice survived for 24 h, and no neuropathology was observed when the SSE was stopped. The findings confirmed that ENBA is a potent A/N for both immediate and delayed (i.e., dual purposed) therapy to victims of NA exposure and serves as a promising neuroprotective antidotal and adjunctive medical countermeasure candidate for pre-clinical research and development for human application.


Subject(s)
Nerve Agents , Neuroprotective Agents , Soman , Status Epilepticus , Animals , Male , Mice , Rats , Acetylcholinesterase , Anticonvulsants/adverse effects , Nerve Agents/toxicity , Neuroprotective Agents/adverse effects , Organophosphorus Compounds/therapeutic use , Purinergic P1 Receptor Agonists/adverse effects , Receptors, Purinergic P1 , Seizures/chemically induced , Seizures/drug therapy , Seizures/prevention & control , Soman/toxicity , Soman/therapeutic use , Status Epilepticus/chemically induced
3.
Toxicol Appl Pharmacol ; 419: 115515, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33798593

ABSTRACT

Exposure to organophosphorus nerve agents (NAs) like sarin (GB) and soman (GD) can lead to sustained seizure activity, or status epilepticus (SE). Previous research has shown that activation of A1 adenosine receptors (A1ARs) can inhibit neuronal excitability, which could aid in SE termination. Two A1AR agonists, 2-Chloro-N6-cyclopentyladenosine (CCPA) and N-Bicyclo(2.2.1)hept-2-yl-5'-chloro-5'-deoxyadenosine (ENBA), were effective in terminating GD-induced SE in rats when administered via intraperitoneal (IP) injection. However, IP injection is not a clinically relevant route of administration. This study evaluated the efficacy of these agonists in terminating NA-induced SE when administered via intramuscular (IM) route. Adult male rats were exposed subcutaneously (SC) to either GB (150 µg/kg) or GD (90 µg/kg) and were treated with ENBA or CCPA at 15, 30, or 60 min after seizure onset or left untreated. Up to 7 days after exposure, deeply anesthetized rats were euthanized and perfused brains were removed for histologic assessment of neuropathology (i.e., neuronal damage) in six brain regions (amygdala, cerebral cortex, piriform cortex, thalamus, dorsal hippocampus, and ventral hippocampus). A total neuropathy score (0-24) was determined for each rat by adding the scores from each of the six regions. The higher the total score the more severe the neuropathology. With the GB model and 60 min treatment delay, ENBA-treated rats experienced 78.6% seizure termination (N = 14) and reduced neuropathology (11.6 ± 2.6, N = 5), CCPA-treated rats experienced 85.7% seizure termination (N = 14) and slightly reduced neuropathology (20.7 ± 1.8, N = 6), and untreated rats experienced no seizure termination (N = 13) and severe neuropathology (22.3 ± 1.0, N = 4). With the GD model and 60 min treatment delay, ENBA-treated rats experienced 92.9% seizure termination (N = 14) and reduced neuropathology (13.96 ± 1.8, N = 9), CCPA-treated rats experienced 78.6% seizure termination (N = 14) and slightly reduced neuropathology (22.0 ± 0.9, N = 10); and untreated rats experienced 16.7% seizure termination (N = 12) and severe neuropathology (22.0 ± 1.8, N = 5). While ENBA and CCPA both demonstrate a clear ability to terminate SE when administered up to 60 min after seizure onset, ENBA offers more neuroprotection, making it a promising candidate for NA-induced SE.


Subject(s)
Adenosine A1 Receptor Agonists/administration & dosage , Adenosine/analogs & derivatives , Anticonvulsants/administration & dosage , Brain/drug effects , Deoxyadenosines/administration & dosage , Neuroprotective Agents/administration & dosage , Norbornanes/administration & dosage , Sarin , Soman , Status Epilepticus/prevention & control , Adenosine/administration & dosage , Animals , Brain/metabolism , Brain/pathology , Brain/physiopathology , Disease Models, Animal , Drug Administration Schedule , Injections, Intramuscular , Male , Rats, Sprague-Dawley , Status Epilepticus/chemically induced , Status Epilepticus/metabolism , Status Epilepticus/pathology , Time Factors
4.
Toxicol Appl Pharmacol ; 415: 115443, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33548273

ABSTRACT

The brain is a critical target for the toxic action of organophosphorus (OP) inhibitors of acetylcholinesterase (AChE) such as the nerve agent sarin. However, the available oxime antidote 2-PAM only reactivates OP-inhibited AChE in peripheral tissues. Monoisonitrosoacetone (MINA), a tertiary oxime, reportedly reactivates AChE in the central nervous system (CNS). The current study investigated whether MINA would be beneficial as a supplemental oxime treatment in preventing lethality and reducing morbidity following lethal sarin exposure, MINA supplement would improve AChE recovery in the body, and MINA would be detectable in the CNS. Guinea pigs were exposed to sarin and treated with atropine sulfate and 2-PAM at one minute. Additional 2-PAM or MINA was administered at 3, 5, 15, or 30 min after sarin exposure. Survival and morbidity were assessed at 2 and 24 h. AChE activity in brain and peripheral tissues was evaluated one hour after MINA and 2-PAM treatment. An in vivo microdialysis technique was used to determine partitioning of MINA into the brain. A liquid chromatography-tandem mass spectrometry method was developed for the analysis of MINA in microdialysates. MINA-treated animals exhibited significantly higher survival and lower morbidity compared to 2-PAM-treated animals. 2-PAM was significantly more effective in reactivating AChE in peripheral tissues, but only MINA reactivated AChE in the CNS. MINA was found in guinea pig brain microdialysate samples beginning at ~10 min after administration in a dose-related manner. The data strongly suggest that a centrally penetrating oxime could provide significant benefit as an adjunct to atropine and 2-PAM therapy for OP intoxication.


Subject(s)
Acetylcholinesterase/metabolism , Antidotes/pharmacology , Brain/drug effects , Cholinesterase Reactivators/pharmacology , Organophosphate Poisoning/prevention & control , Oximes/pharmacology , Sarin , Animals , Antidotes/metabolism , Brain/enzymology , Disease Models, Animal , Dose-Response Relationship, Drug , Enzyme Activation , Guinea Pigs , Male , Microdialysis , Organophosphate Poisoning/enzymology , Oximes/metabolism , Permeability , Pralidoxime Compounds/metabolism , Pralidoxime Compounds/pharmacology , Tissue Distribution
5.
Toxicol Appl Pharmacol ; 416: 115466, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33631229

ABSTRACT

Soman, an organophosphorus (OP) compound, disrupts nervous system function through inactivation of acetylcholinesterase (AChE), the enzyme that breaks down acetylcholine at synapses. Left untreated, a state of prolonged seizure activity (status epilepticus, SE) is induced, causing widespread neuronal damage and associated cognitive and behavioral impairments. Previous research demonstrated that therapeutic stimulation of A1 adenosine receptors (A1ARs) can prevent or terminate soman-induced seizure. This study examined the ability of three potent A1AR agonists to provide neuroprotection and, ultimately, prevent observable cognitive and behavioral deficits following exposure to soman. Sprague Dawley rats were challenged with a seizure-inducing dose of soman (1.2 x LD50) and treated 1 min later with one of the following A1AR agonists: (6)-Cyclopentyladenosine (CPA), 2-Chloro-N6-cyclopentyladenosine (CCPA) or N-bicyclo(2.2.1)hept-2-yl-5'-chloro-5'-deoxyadenosine (cdENBA). An active avoidance shuttle box task was used to evaluate locomotor responses to aversive stimuli at 3, 7 and 14 days post-exposure. Animals treated with CPA, CCPA or cdENBA demonstrated a higher number of avoidance responses and a faster reaction to the aversive stimulus than the soman/saline control group across all three sessions. Findings suggest that A1AR agonism is a promising neuroprotective countermeasure, capable of preventing the long-term deficits in learning and memory that are characteristic of soman intoxication.


Subject(s)
Adenosine A1 Receptor Agonists/pharmacology , Anticonvulsants/pharmacology , Brain/drug effects , Neuroprotective Agents/pharmacology , Organophosphate Poisoning/prevention & control , Receptor, Adenosine A1/drug effects , Seizures/prevention & control , Soman , Adenosine/analogs & derivatives , Adenosine/pharmacology , Animals , Behavior, Animal/drug effects , Brain/metabolism , Brain/pathology , Deoxyadenosines/pharmacology , Disease Models, Animal , Male , Organophosphate Poisoning/etiology , Organophosphate Poisoning/metabolism , Organophosphate Poisoning/physiopathology , Rats, Sprague-Dawley , Receptor, Adenosine A1/metabolism , Seizures/chemically induced , Seizures/metabolism , Seizures/pathology
6.
Toxicol Mech Methods ; 29(5): 322-333, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30558458

ABSTRACT

The efficacy of anticonvulsant therapies to stop seizure activities following organophosphorus nerve agents (NAs) has been documented as being time-dependent. We utilized the guinea pig NA-seizure model to compare the effectiveness of phencynonate (PCH) and scopolamine (SCP) when given at the early (at time of seizure onset) or late (40 min after seizure onset) phase of seizure progression. PCH possesses both anticholinergic and anti-NMDA activities, while SCP is a purely anti-muscarinic compound. Animals with cortical electrodes were pretreated with pyridostigmine bromide 30 min prior to exposure to a 2.0 x LD50 subcutaneous dose of a NA (GA, GB, GD, GF, VR, or VX), followed one min later with atropine sulfate and 2-PAM. At either early or late phase, animals were treated with either PCH or SCP and the 24-h anticonvulsant ED50 doses were determined. When administered at seizure onset, PCH, and SCP were both effective at terminating seizure activity against all NAs, with ED50 values for SCP generally being lower. At the 40 min time, ED50 values were obtained following GA, GD, GF, and VR challenges for SCP, but ED50 value was obtained only following GD for PCH, indicating a superior efficacy of SCP. When seizure activity was controlled, a significant improvement in weight loss, neuropathology, and survival was observed, regardless of treatment or NA. Overall, these results demonstrate the differing efficacies of these two similarly structured anticholinergic compounds with delayed administration and warrant further investigation into the timing and mechanisms of the seizure maintenance phase in different animal models.


Subject(s)
Anticonvulsants/pharmacology , Aza Compounds/pharmacology , Brain/drug effects , Glycolates/pharmacology , Nerve Agents/toxicity , Organophosphorus Compounds/toxicity , Scopolamine/pharmacology , Seizures/prevention & control , Age of Onset , Animals , Anticonvulsants/administration & dosage , Aza Compounds/administration & dosage , Brain/pathology , Disease Models, Animal , Dose-Response Relationship, Drug , Glycolates/administration & dosage , Guinea Pigs , Lethal Dose 50 , Male , Scopolamine/administration & dosage , Seizures/chemically induced , Seizures/pathology
7.
Toxicol Mech Methods ; 26(5): 378-88, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27329284

ABSTRACT

Organophosphorus nerve agents such as soman (GD) inhibit acetylcholinesterase, producing an excess of acetylcholine (ACh), which results in respiratory distress, convulsions and status epilepticus that leads to neuropathology. Several drugs (topiramate, clobazam, pregnanolone, allopregnanolone, UBP 302, cyclopentyladenosine [CPA], ketamine, midazolam and scopolamine) have been identified as potential neuroprotectants that may terminate seizures and reduce brain damage. To systematically evaluate their efficacy, this study employed in vivo striatal microdialysis and liquid chromatography to respectively collect and analyze extracellular ACh in freely moving rats treated with these drugs 20 min after seizure onset induced by a high dose of GD. Along with microdialysis, EEG activity was recorded and neuropathology assessed at 24 h. GD induced a marked increase of ACh, which peaked at 30 min post-exposure to 800% of control levels and then steadily decreased toward baseline levels. Approximately 40 min after treatment, only midazolam (10 mg/kg) and CPA (60 mg/kg) caused a significant reduction of ACh levels, with CPA reducing ACh levels more rapidly than midazolam. Both drugs facilitated a return to baseline levels at least 55 min after treatment. At 24 h, only animals treated with CPA (67%), midazolam (18%) and scopolamine (27%) exhibited seizure termination. While all treatments except for topiramate reduced neuropathology, CPA, midazolam and scopolamine showed the greatest reduction in pathology. Our results suggest that delayed treatment with CPA, midazolam, or scopolamine is effective at reducing GD-induced seizure activity and neuropathology, with CPA and midazolam capable of facilitating a reduction in GD-induced ACh elevation.


Subject(s)
Acetylcholine/metabolism , Brain , Nerve Agents/toxicity , Neuroprotective Agents/therapeutic use , Neurotoxicity Syndromes/prevention & control , Seizures/prevention & control , Animals , Brain/drug effects , Brain/metabolism , Brain/pathology , Dose-Response Relationship, Drug , Electroencephalography , Male , Microdialysis , Neuroprotective Agents/administration & dosage , Neurotoxicity Syndromes/metabolism , Neurotoxicity Syndromes/pathology , Rats, Sprague-Dawley , Seizures/metabolism , Seizures/pathology , Survival Analysis , Time Factors
8.
Toxicol Mech Methods ; 24(6): 385-95, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24785252

ABSTRACT

The current regimen for treating nerve agent poisoning does not sufficiently suppress the excitotoxic activity that causes severe brain damage, especially in cases where treatment is delayed and nerve agent-induced status epilepticus develops. New therapeutic targets are required to improve survivability and minimize neuropathology after irreversible acetylcholinesterase inactivation. Earlier studies have shown that systemic delivery of adenosine agonists decreases nerve agent lethality; however, the mechanism of protection remains to be understood. The primary aim of this study was to investigate the role of central adenosine receptor (AR) stimulation in neuroprotection by directly injecting (6)-cyclopentyladenosine (CPA), an adenosine agonist specific to the A1 receptor subtype (A1R), into the brain intracerebroventricularly (ICV) in a soman seizure rat model. In addition to general A1R stimulation, we hypothesized that bilateral micro-injection of CPA into the cholinergic basal forebrain (BF) could also suppress excitotoxic activity. The results from these studies demonstrated that centrally administered adenosine agonists are anti-seizure and neuroprotective. CPA-delivered ICV prevented seizure and convulsion in 100% of the animals. Moreover, neuropathological evaluation indicated that adenosine treatments reduced brain damage from severe to minimal. Inhibition of the BF via CPA had varied results. Some animals were protected by treatment; however, others displayed similar pathology to the control. Overall, these data suggest that stimulating central ARs could be an effective target for the next generation countermeasures for nerve agent intoxication.


Subject(s)
Adenosine A1 Receptor Agonists/pharmacology , Adenosine/analogs & derivatives , Anticonvulsants/pharmacology , Receptor, Adenosine A1/metabolism , Seizures/chemically induced , Seizures/drug therapy , Soman/toxicity , Adenosine/pharmacology , Animals , Central Nervous System/drug effects , Central Nervous System/pathology , Chemical Warfare Agents/toxicity , Rats
9.
Neurotox Res ; 42(5): 41, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39230655

ABSTRACT

Recently a novel genetically modified mouse strain with serum carboxylesterase knocked-out and the human acetylcholinesterase gene knocked-in (KIKO) was created to simulate human responses to nerve agent (NA) exposure and its standard medical treatment. A1 adenosine receptor (A1AR) agonist N-bicyclo-(2.2.1)-hept-2-yl-5'-chloro-5'-deoxyadenosine (ENBA) alone is a potent anticonvulsant and neuroprotectant (A/N) in both rat and KIKO mouse soman (GD) seizure models. In this study we utilized the KIKO mouse to evaluate further the basic pharmacologic A/N effects of ENBA as an adjunct to standard NA medical treatments (i.e., atropine sulfate, pralidoxime chloride [2-PAM], and midazolam). Male mice, implanted with cortical electroencephalographic (EEG) electrodes, were pretreated with asoxime (HI-6) and exposed to an epileptogenic dose of GD (33 µg/kg, s.c.) or saline (sham exposure) and then treated 15 min after seizure onset with ENBA at 15 mg/kg, i.p. (a minimum efficacy dose in suppressing NA-induced seizure) alone or as an adjunct to standard medical treatments. We collected EEG activity, seizure suppression outcomes, daily body temperature and weight, heart rate, toxic signs, neuropathology, and lethality data for up to 14 days. Without ENBA, death from NA exposure was 45%, while with ENBA, either alone or in combination with midazolam, the survival improved to 80% and 90%, respectively. Additionally, seizure was suppressed quickly and permanently, toxic signs, hypothermia, and bradycardia recovered by 48 h, and no neuropathology was evident. Our findings confirmed that ENBA is a potent A/N adjunct for delayed medical treatments of NA exposure.


Subject(s)
Acetylcholinesterase , Adenosine A1 Receptor Agonists , Disease Models, Animal , Seizures , Soman , Animals , Soman/toxicity , Seizures/chemically induced , Seizures/drug therapy , Male , Adenosine A1 Receptor Agonists/pharmacology , Humans , Mice , Acetylcholinesterase/metabolism , Electroencephalography , Adenosine/analogs & derivatives , Adenosine/pharmacology , Mice, Knockout , Anticonvulsants/pharmacology , Anticonvulsants/toxicity
10.
Neuropharmacology ; 253: 109966, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38677446

ABSTRACT

Organophosphorus nerve agents, such as soman (GD), produce excitotoxic effects resulting in sustained status epilepticus (SSE) and brain damage. Previous work shows that neuronal inhibitory effects of A1 adenosine receptor (A1AR) agonists, such as N6- Bicyclo (2.2.1)-hept-2-yl-5'-chloro-5'-deoxyadenosine (Cl-ENBA), suppresses GD-induced SSE and improves neuropathology. Some other physiologic effects of these agonists are hypothermia, hypotension, and sedation. Hypothermia may also shield the brain from injury by slowing down chemical insults, lessening inflammation, and contributing to improved neurological outcomes. Therefore, we attempted to isolate the hypothermic effect from ENBA by assessing the neuroprotective efficacy of direct surface body cooling in a rat GD-induced SSE model, and comparing the effects on seizure termination, neuropathology, and survival. Male rats implanted with a body temperature (Tb) transponder and electroencephalographic (EEG) electrodes were primed with asoxime (HI-6), exposed to GD 30 min later, and then treated with Cl-ENBA or had Tb lowered directly via body cooling at 30 min after the onset of seizure activity. Afterwards, they were either allowed to develop hypothermia as expected, or received thermal support to maintain normothermic Tb for a period of 6-h. Neuropathology was assessed at 24 h. Regardless of Cl-ENBA or surface cooling, all hypothermic GD-exposed groups had significantly improved 24-h survival compared to rats with normothermic Tb (81% vs. 39%, p < 0.001). Cl-ENBA offered neuroprotection independently of hypothermic Tb. While hypothermia enhanced the overall efficacy of Cl-ENBA by improving survival outcomes, body cooling didn't reduce seizure activity or neuropathology following GD-induced SSE.


Subject(s)
Adenosine A1 Receptor Agonists , Hypothermia, Induced , Rats, Sprague-Dawley , Seizures , Soman , Animals , Male , Adenosine A1 Receptor Agonists/pharmacology , Soman/toxicity , Hypothermia, Induced/methods , Seizures/chemically induced , Seizures/drug therapy , Seizures/prevention & control , Rats , Adenosine/analogs & derivatives , Adenosine/pharmacology , Body Temperature/drug effects , Brain/drug effects , Brain/pathology , Electroencephalography , Disease Models, Animal
11.
Neuropharmacology ; 253: 109983, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38704023

ABSTRACT

Exposure to organophosphorus compounds, such as soman (GD), cause widespread toxic effects, sustained status epilepticus, neuropathology, and death. The A1 adenosine receptor agonist N-bicyclo-(2.2.1)-hept-2-yl-5'-chloro-5'-deoxyadenosine (ENBA), when given 1 min after GD exposure, provides neuroprotection and prevents behavioral impairments. Here, we tested the ability of ENBA at delayed treatment times to improve behavioral outcomes via a two-way active avoidance task in two male animal models, each consisting of saline and GD exposure groups. In a rat model, animals received medical treatments (atropine sulfate [A], 2-PAM [P], and midazolam [MDZ]) or AP + MDZ + ENBA at 15 or 30 min after seizure onset and were subjected to behavioral testing for up to 14 days. In a human acetylcholinesterase knock-in serum carboxylesterase knock-out mouse model, animals received AP, AP + MDZ, AP + ENBA, or AP + MDZ + ENBA at 15 min post seizure onset and were subjected to the behavioral task on days 7 and 14. In rats, the GD/AP + MDZ + ENBA group recovered to saline-exposed avoidance levels while the GD/AP + MDZ group did not. In mice, in comparison with GD/AP + MDZ group, the GD/AP + MDZ + ENBA showed decreases in escape latency, response latency, and pre-session crossings, as well as increases in avoidances. In both models, only ENBA-treated groups showed control level inter-trial interval crossings by day 14. Our findings suggest that ENBA, alone and as an adjunct to medical treatments, can improve behavioral and cognitive outcomes when given at delayed time points after GD intoxication.


Subject(s)
Acetylcholinesterase , Adenosine A1 Receptor Agonists , Soman , Animals , Soman/toxicity , Male , Adenosine A1 Receptor Agonists/pharmacology , Rats , Acetylcholinesterase/metabolism , Humans , Mice , Mice, Knockout , Disease Models, Animal , Rats, Sprague-Dawley , Memory/drug effects , Avoidance Learning/drug effects , Adenosine/analogs & derivatives , Adenosine/pharmacology
12.
Arch Toxicol ; 85(12): 1607-16, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21695469

ABSTRACT

Organophosphorus nerve agents such as sarin (GB) and VX irreversibly inhibit acetylcholinesterase, causing a buildup of acetylcholine (ACh) in synapses and neuromuscular junctions, which leads to excess bronchial secretions, convulsions, seizures, coma, and death. Understanding the unique toxic characteristics of different nerve agents is vital in the effort to develop broad spectrum medical countermeasures. To this end, we employed a repeated measure multivariate design with striatal microdialysis collection and high-performance liquid chromatography analysis to measure changes in concentrations of several neurotransmitters (ACh, glutamate, aspartate, GABA) in the same samples during acute exposure to GB or VX in freely moving guinea pigs. Concurrent with microdialysis collection, we used cortical electrodes to monitor brain seizure activity. This robust double multivariate design provides greater fidelity when comparing data while also reducing the required number of subjects. No correlation between nerve agents' propensity for causing seizure and seizure-related lethality was observed. The GB seizure group experienced more rapid and severe cholinergic toxicity and lethality than that of the VX seizure group. Seizures generated from GB and VX exposure resulted in further elevation of ACh level and then a gradual return to baseline. Glutamate levels increased in the GB, but not in the VX, seizure group. There were no consistent changes in either aspartate or GABA as a result of either nerve agent. These observations reinforce findings with other nerve agents that seizure activity per se contributes to the elevated levels of brain ACh observed after nerve agent exposure.


Subject(s)
Chemical Warfare Agents/toxicity , Organothiophosphorus Compounds/toxicity , Sarin/toxicity , Seizures/chemically induced , Acetylcholine/metabolism , Animals , Brain/metabolism , Cholinesterase Inhibitors/toxicity , Chromatography, High Pressure Liquid , Electroencephalography , Glutamic Acid/drug effects , Glutamic Acid/metabolism , Guinea Pigs , Male , Microdialysis , Multivariate Analysis , Seizures/physiopathology , Severity of Illness Index
13.
Toxicol Mech Methods ; 21(1): 53-62, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21117832

ABSTRACT

This study examined whether pro-2-PAM, a pro-drug dihydropyridine derivative of the oxime 2-pralidoxime (2-PAM) that can penetrate the brain, could prevent or reverse the central toxic effects of three nerve agents; sarin, cyclosarin, and VX. The first experiment tested whether pro-2-PAM could reactivate guinea pig cholinesterase (ChE) in vivo in central and peripheral tissues inhibited by these nerve agents. Pro-2-PAM produced a dose-dependent reactivation of sarin- or VX-inhibited ChE in both peripheral and brain tissues, but with substantially greater reactivation in peripheral tissues compared to brain. Pro-2-PAM produced 9-25% reactivation of cyclosarin-inhibited ChE in blood, heart, and spinal cord, but no reactivation in brain or muscle tissues. In a second experiment, the ability of pro-2-PAM to block or terminate nerve agent-induced electroencephalographic seizure activity was evaluated. Pro-2-PAM was able to block sarin- or VX-induced seizures (16-33%) over a dose range of 24-32 mg/kg, but was ineffective against cyclosarin-induced seizures. Animals that were protected from seizures showed significantly less weight loss and greater behavioral function 24 h after exposure than those animals that were not protected. Additionally, brains were free from neuropathology when pro-2-PAM prevented seizures. In summary, pro-2-PAM provided modest reactivation of sarin- and VX-inhibited ChE in the brain and periphery, which was reflected by a limited ability to block or terminate seizures elicited by these agents. Pro-2-PAM was able to reactivate blood, heart, and spinal cord ChE inhibited by cyclosarin, but was not effective against cyclosarin-induced seizures.


Subject(s)
Cholinesterase Reactivators/pharmacology , Organophosphorus Compounds/toxicity , Organothiophosphorus Compounds/toxicity , Pralidoxime Compounds/pharmacology , Sarin/toxicity , Animals , Guinea Pigs , Male , Prodrugs , Seizures/prevention & control
14.
Toxicol Rep ; 8: 896-907, 2021.
Article in English | MEDLINE | ID: mdl-33996503

ABSTRACT

Animal models are essential for evaluating the toxicity of chemical warfare nerve agents (CWNAs) to extrapolate to human risk and are necessary to evaluate the efficacy of medical countermeasures. The Göttingen minipig is increasingly used for toxicological studies because it has anatomical and physiological characteristics that are similar to those of humans. Our objective was to determine whether the minipig would be a useful large animal model to evaluate the toxic effects of soman (GD). We determined the intramuscular (IM) median lethal dose (LD50) of GD in adult male Göttingen minipigs using an up-and-down dosing method. In addition to lethality estimates, we characterized the observable signs of toxicity, blood and tissue cholinesterase (ChE) activity and brain pathology following GD exposure. The 24 h LD50 of GD was estimated to be 4.7 µg/kg, with 95 % confidence limits of 3.6 and 6.3 µg/kg. As anticipated, GD inhibited ChE activity in blood and several tissues. Neurohistopathological analysis showed neurodegeneration and neuroinflammation in survivors exposed to 4.7 µg/kg of GD, including in the primary visual cortex and various thalamic nuclei. These findings suggest that the minipig will be a useful large animal model for assessing drugs to mitigate neuropathological effects of exposure to CWNAs.

15.
Drug Chem Toxicol ; 33(3): 279-83, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20429808

ABSTRACT

Near-lethal exposure to nerve agents produces prolonged epileptiform seizures requiring the administration of benzodiazepine anticonvulsant drugs, such as diazepam. Clinically, benzodiazepines are reported to lose anticonvulsant effectiveness the greater the delay between seizure onset and benzodiazepine treatment. This time-dependent diminished effectiveness of diazepam was tested in the present study. Seizures elicited by the nerve agent, soman, were produced in guinea pigs instrumented to record brain electrocorticographic (ECoG) activity. Different groups of animals were administered 10 mg/kg, intramuscularly, of diazepam at 5, 40, 60, 80, or 160 minutes after the onset of seizure activity. There was a progressive loss in the anticonvulsant efficacy of diazepam as the treatment was delayed after seizure onset, but no differences in the time for diazepam to stop seizures. The results show a diminished ability of diazepam to stop nerve-agent-induced seizures the longer treatment is delayed.


Subject(s)
Anticonvulsants/pharmacology , Diazepam/pharmacology , Seizures/chemically induced , Seizures/drug therapy , Soman/antagonists & inhibitors , Soman/toxicity , Animals , Chemical Warfare Agents/toxicity , Electroencephalography , Guinea Pigs , Male , Pilot Projects , Time Factors
16.
Toxicol Mech Methods ; 20(3): 143-52, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20163292

ABSTRACT

Organophosphorus nerve agents irreversibly inhibit acetylcholinesterase (AChE) in the peripheral and central nervous systems, causing an increase in the concentration of acetylcholine (ACh) in the synapse or neuromuscular junction and subsequent adverse effects. In this study, in vivo microdialysis was utilized to collect samples from the striatum for monitoring changes in extracellular ACh levels along with cortical electroencephalographic (EEG) recordings for identifying seizure activity after acute subcutaneous (s.c.) exposure to 1.0 x LD(50) of the nerve agents sarin, soman, or one of two V-type agents (VX, or a Russian V-agent, designated VR) in unanesthetized freely moving guinea pigs. Based on EEG recordings, these animals were subsequently divided into groups that developed seizures (S) and those that did not develop seizures (NS). Maximum ACh levels in the striatum were observed at 60-70 min for sarin and soman S groups and 105 min for VX and VR S groups. In all NS groups the greatest increase in extracellular ACh occurred within 30 min after exposure, although in the sarin NS group a few sporadic increases of ACh from control occurred. Animals that developed seizures, regardless of the nerve agent, had significantly higher extracellular striatal ACh levels compared to the controls or those animals that did not develop seizures, yet both S and NS groups displayed similar levels of blood AChE inhibition. Regardless of the agent, all animals in the non-seizure groups survived 24 h, while lethality (25-42%) was observed only in animals that experienced seizure activity.


Subject(s)
Acetylcholine/metabolism , Brain/drug effects , Cholinesterase Inhibitors/toxicity , Seizures/chemically induced , Acetylcholine/antagonists & inhibitors , Acetylcholine/blood , Animals , Brain/metabolism , Chemical Warfare Agents/toxicity , Choline/metabolism , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Electroencephalography , Guinea Pigs , Male , Organothiophosphorus Compounds/toxicity , Sarin/toxicity , Seizures/metabolism , Soman/toxicity
17.
Toxicol Mech Methods ; 20(9): 600-8, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20919801

ABSTRACT

Organophosphorus nerve agents like cyclosarin and tabun are potent cholinesterase inhibitors. The inhibition of acetylcholinesterase, which is responsible for breaking down acetylcholine (ACh) at the synapse and neuromuscular junction, leads to a build-up of extracellular ACh and a series of toxic consequences including hypersecretion, tremor, convulsion/seizure, respiratory distress, coma, and death. This study employed simultaneous and continuous electroencephalographic recording and striatal microdialysis collection for quantification of ACh changes (via subsequent HPLC analysis) during acute exposure to a 1.0 × LD(50) subcutaneous dose of either cyclosarin or tabun to investigate differences in cholinergic and behavioral effects. Information about the unique mechanisms and consequences of different nerve agents is intended to aid in the development of broad-spectrum medical countermeasures for nerve agents. At the dose administered, non-seizure and sustained seizure responses were observed in both agent groups and in the tabun-exposed group some subjects experienced an unsustained seizure response. Significant extracellular ACh increases were only observed in seizure groups. Cyclosarin and tabun were found to exhibit some unique cholinergic and ictogenic characteristics. Lethality only occurred in subjects experiencing sustained seizure, and there was no difference in lethality between agent groups that progressed to sustained seizure.


Subject(s)
Brain/drug effects , Cholinesterase Inhibitors/toxicity , Corpus Striatum/metabolism , Organophosphates/toxicity , Organophosphorus Compounds/toxicity , Seizures/chemically induced , Animals , Brain/metabolism , Chemical Warfare Agents/toxicity , Cholinesterases/blood , Corpus Striatum/drug effects , Corpus Striatum/enzymology , Guinea Pigs , Male , Seizures/metabolism
18.
Toxics ; 8(4)2020 Nov 17.
Article in English | MEDLINE | ID: mdl-33213094

ABSTRACT

Organophosphorus compound exposure remains a present threat through agricultural accidents, warfare, or terrorist activity. The primary mechanism of organophosphorus toxicity is through inhibition of the enzyme acetylcholinesterase, with current emergency treatment including anticholinergics, benzodiazepines, and oxime reactivators. However, a need for more effective and broadly acting countermeasures remains. This study aimed to develop larval zebrafish as a high-throughput model for evaluating novel therapeutics against acute organophosphorus exposure. Larval zebrafish at six days post-fertilization were exposed to acute concentrations of seven organophosphorus compounds and treated with one of three oximes. Lethality studies indicated similar relative toxicity to that seen in the established rodent model, with chemical warfare agents proving more lethal than organophosphorus pesticides. Additionally, the organophosphorus-specific response for oxime reactivation of acetylcholinesterase was comparable to what has been previously reported. Behavioral studies measuring the visual motor response demonstrated greater efficacy for centrally acting oxime compounds than for those that are contained to the peripheral tissue. Overall, these results support the use of this larval zebrafish model as a high-throughput screening platform for evaluating novel treatments following acute organophosphorus exposure.

19.
Arch Toxicol ; 83(12): 1083-9, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19763542

ABSTRACT

Methoxime (MMB-4) is a leading candidate oxime acetylcholinesterase (AChE) reactivator to replace pralidoxime (2-PAM) for therapeutic treatment of nerve agent intoxication. 4-Pyridine aldoxime (4-PA) is a synthetic starting material, a breakdown product, and a probable metabolite of MMB-4. There is a possibility that 4-PA may adversely interact with the nerve agent, thereby affecting nerve agent toxicity and biological AChE activity. This study evaluated the effects of 4-PA on sarin (GB)-, cyclosarin (GF)-, and VX-induced toxicity and AChE activity in blood, brain, and peripheral tissues of guinea pigs. Animals were pretreated with atropine methyl nitrate (1.0 mg/kg, im) 15 min prior to subcutaneous administration with 1.0 x LD(50) of GB, GF, or VX and then treated 15 min after the administration of nerve agents with 4-PA (3.5, 7.0, or 14.0 mg/kg, im). The dose-response effects of 4-PA alone were also examined. Toxic signs and lethality were monitored, blood and tissues were collected, and AChE activities were determined at 60 min after nerve agent administration. Under the condition of this study, all animals exposed to nerve agents exhibited some degree of toxic signs such as salivation, lacrimation, rhinorrhea, and convulsions. 4-PA at the three doses tested neither induced toxic signs nor altered the toxicity of GB, GF, or VX at the 1.0 x LD(50) exposure dose. Additionally, it did not modify the AChE activity in blood, brain, and peripheral tissues by itself or affect the AChE activity inhibited by a 1.0 x LD(50) dose of these three nerve agents in guinea pigs.


Subject(s)
Acetylcholinesterase/metabolism , Chemical Warfare Agents/toxicity , Cholinesterase Inhibitors/toxicity , Cholinesterase Reactivators/pharmacology , Neurotoxicity Syndromes/enzymology , Oximes/pharmacology , Animals , Dose-Response Relationship, Drug , Drug Interactions , Guinea Pigs , Longevity/drug effects , Male , Neurotoxicity Syndromes/etiology , Organophosphorus Compounds/toxicity , Organothiophosphorus Compounds/toxicity , Salivation/drug effects , Sarin/toxicity , Seizures/chemically induced , Tears/metabolism
20.
Toxicol Mech Methods ; 19(6-7): 386-400, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19778239

ABSTRACT

The capability of several oximes (HI-6, HLö7, MMB-4, TMB-4, carboxime, ICD 585, ICD 692, ICD 3805, and 2-PAM) to reactivate in vivo AChE inhibited by the nerve agents sarin, cyclosarin, VX, or VR in blood, brain regions, and peripheral tissues in guinea pigs was examined and compared. Animals were injected subcutaneously with 1.0 LD(50) of sarin, cyclosarin, VR, or VX, and treated intramuscularly 5 min later with one of these compounds. Toxic signs and lethality were monitored, and tissue AChE activities were determined at 60 min after nerve agent. The animals exposed to sarin or cyclosarin, alone or with non-oxime treatment, some died within 60 min; however, when treated with an oxime, no animal died. For VR or VX, all animals survived for 60 min after exposure, with or without non-oxime or oxime therapy. These nerve agents caused differential degrees of inhibition: in whole blood sarin = cyclosarin > VR = VX; in brain regions sarin > cyclosarin > VX > VR; and in peripheral tissues sarin > VX > cyclosarin > VR. These oximes exhibited differential potency in reactivating nerve agent-inhibited AChE in various peripheral tissues, but not AChE activity in the brain regions. There was no difference in the AChE reactivating potency between the dichloride and dimethanesulfonate salts of HI-6. AChE inhibited by sarin was the most and cyclosarin the least susceptible to oxime reactivation. Overall, MMB-4 appeared to be, among all oximes tested, the most effective in vivo AChE reactivator against the broadest spectrum of nerve agents.


Subject(s)
Acetylcholinesterase/metabolism , Brain/enzymology , Cholinesterase Inhibitors/metabolism , Cholinesterase Reactivators/metabolism , Erythrocytes/enzymology , Organophosphorus Compounds/metabolism , Oximes/metabolism , Animals , Chemical Warfare Agents/metabolism , Diaphragm/enzymology , Guinea Pigs , Humans , Male , Molecular Structure , Muscle, Skeletal/enzymology , Myocardium/enzymology , Oximes/chemistry , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL