Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Molecules ; 27(2)2022 Jan 06.
Article in English | MEDLINE | ID: mdl-35056666

ABSTRACT

To explore the role of fatty acids as flavor precursors in the flavor of oxidized tallow, the volatile flavor compounds and free fatty acid (FFAs) in the four oxidization stages of tallow were analyzed via gas chromatography (GC)-mass spectrometry (MS), the aroma characteristics of them were analyzed by GC-olfactory (GC-O) method combined with sensory analysis and partial least-squares regression (PLSR) analysis. 12 common FFAs and 35 key aroma-active compounds were obtained. Combined with the results of odor activity value (OAV) and FD factor, benzaldehyde was found to be an important component in unoxidized tallow. (E,E)-2,4-Heptadienal, (E,E)-2,4-decadienal, (E)-2-nonenal, octanal, hexanoic acid, hexanal and (E)-2-heptenal were the key compounds involved in the tallow flavor oxidation. The changes in FFAs and volatile flavor compounds during oxidation and the metabolic evolution of key aroma-active compounds are systematically summarized in this study. The paper also provides considerable guidance in oxidation control and meat flavor product development.


Subject(s)
Evolution, Molecular , Fats/chemistry , Fatty Acids, Nonesterified/analysis , Flavoring Agents/analysis , Meat Products/analysis , Odorants/analysis , Volatile Organic Compounds/analysis , Animals , Cattle , Smell
2.
Eat Weight Disord ; 27(8): 3469-3478, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36223059

ABSTRACT

PURPOSE: As a maladaptive disordered eating behavior, binge eating (BE) onset has been reported in children as young as eight years old and is linked with a range of negative psychological consequences. However, previous neuroimaging research of BE has mainly focused on adults in clinical conditions, and little is known about the potential neurostructural and neurofunctional bases of BE in healthy children. METHODS: In this study, we examined these issues in 76 primary school students (mean age = 9.86 years) using voxel-based morphometry and resting-state functional connectivity (rsFC) approaches. RESULTS: After controlling for age, sex, and total intracranial volume/head motion, we observed that higher levels of BE were correlated with greater gray matter volumes (GMV) in the left fusiform and right insula and weaker rsFC between the right insula and following three regions: right orbital frontal cortex, left cingulate gyrus, and left superior frontal gyrus. No significant associations were observed between BE and regional white matter volume. Significant sex differences were found only in the relationship between BE and GMV in the left fusiform. Furthermore, the GMV- and rsFC-based predictive models (a machine-learning method) achieved significant correlations between the actual and predicted BE values, demonstrating the robustness of our findings. CONCLUSION: The present study provides novel evidence for the brain structural and functional substrates of children's BE, and further reveals that the weakened communication between core regions associated with negative affectivity, reward responsivity, and executive function is strongly related to dysregulated eating. LEVEL OF EVIDENCE: Level V, descriptive study.


Subject(s)
Binge-Eating Disorder , Bulimia , Adult , Humans , Male , Female , Child , Gray Matter/diagnostic imaging , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Prefrontal Cortex , Bulimia/diagnostic imaging
3.
Appetite ; 167: 105660, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34425147

ABSTRACT

As the coronavirus disease 2019 (COVID-19) spreads globally, people are at risk of developing disinhibited eating behaviors. This study aimed to examine whether perceived mortality threat and negative affect mediate the relationship between trait self-control and disinhibited eating during the pandemic. A longitudinal survey was administered to a sample of college students (N = 634) before the outbreak (September 2019, T1), during the mid-term (February 2020, T2), and in the later stage of the pandemic (April 2020, T3). Self-report measures of trait self-control (T1), perceived mortality threat (T2, T3), negative affect (T2, T3), and disinhibited eating (T2, T3) were successively completed. Trait self-control was found to be negatively associated with negative affect, perceived mortality threat, and disinhibited eating during the mid-term and later stage of the pandemic. Disinhibited eating was positively associated with negative affect and perceived mortality threat. The longitudinal mediation results demonstrated that trait self-control (T1) could negatively predict disinhibited eating (T3) through negative affect (T2) rather than through perceived mortality threat. These findings suggest that trait self-control is of great importance in regulating psychological discomfort and disinhibited eating during stressful periods and that negative affect might be the main psychological mechanism underlying the relationship between self-control ability and disinhibited eating.


Subject(s)
COVID-19 , Self-Control , Feeding Behavior , Humans , SARS-CoV-2 , Self Report
4.
Molecules ; 24(18)2019 Sep 11.
Article in English | MEDLINE | ID: mdl-31514370

ABSTRACT

The volatile compounds of three different fresh-picked truffle varieties (Tuber sinensis, T1, Tuber sinoalbidum, T2 and Tuber sinoexcavatum, T3) were extracted by headspace solid-phase microextraction (HS-SPME). Separation and identification of volatile components and sulfur compounds were investigated by gas chromatography-olfactometry (GC-O), gas chromatography-mass spectrometry (GC-MS) and gas chromatography with flame photometric detection (GC-FPD). The results showed that 44, 43 and 44 volatile compounds were detected in T1, T2 and T3 samples, respectively. In addition, 9, 10 and 9 sulfur compounds were identified in three samples by GC-FPD, respectively. Combining physicochemical and sensory properties, T1 presented fatty, green and rotten cabbage odor; T2 exhibited mushroom, sulfuric and musty odor notes; T3 had nutty, floral and roasted potato odor. Dimethyl sulfide, 3-methylbutanal, dimethyl disulfide, 3-octanone, bis(methylthio) methane, octanal, 1-octen-3-one, 1-octen-3-ol and benzeneacetaldehyde played indispensable roles in the overall aroma of three truffles. Finally, based on quantitative concentration in T1, odorous compounds (OAV) > 1 were mixed to recombine aroma, demonstrating that these key aroma compounds based on OAV can successfully recombine pretty similar aroma of each variety.


Subject(s)
Ascomycota/chemistry , Flavoring Agents/analysis , Odorants/analysis , Chromatography, Gas , Least-Squares Analysis , Olfactometry , Reference Standards , Reproducibility of Results , Volatile Organic Compounds/analysis
5.
Molecules ; 24(13)2019 Jun 27.
Article in English | MEDLINE | ID: mdl-31252622

ABSTRACT

Sweet orange flavor, with its refreshing, joyful and attractive aroma, is favored by the majority of consumers all over the world. However, the industry terminology between flavorists for flavor evaluation is a bit vague and not intuitive for customers. Therefore, the study focused on analysis of sweet orange aroma and establishment of base module of orange flavor. The approach to the research involves screening key aroma compounds, identifying the attributes aroma and building base module of sweet orange. The notes of sweet orange flavor were determined by GC-O olfaction and sensory evaluation. 25 key aroma compounds with OAV ≥ 1 were screened and divided into eight notes: citrus, fruity, fresh, green, peely, woody, fatty, floral. Partial least squares regression (PLSR) was used to further verify the corresponding relationship between the volatile substances and notes. Terpenes, esters, aldehydes and alcohols compounds can provide these notes. Based on the notes, 8 base modules of sweet orange were built by selecting and matching aroma ingredients. Through this study, beginners could be trained according to the 8 notes of base modules and flavorists can engage in dialogue with different raw material sourcing teams or providers.


Subject(s)
Citrus sinensis/chemistry , Flavoring Agents/analysis , Odorants/analysis , Gas Chromatography-Mass Spectrometry , Least-Squares Analysis
6.
Regul Toxicol Pharmacol ; 75: 27-34, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26739812

ABSTRACT

Based on encouraged development of potential reduced-exposure products (PREPs) by the US Institute of Medicine, casings (glucose and peptides) added treatments (CAT) and enzymatic (protease and xylanase) hydrolysis treatments (EHT) were developed to study their effect on alkaloids reduction in tobacco and cigarette mainstream smoke (MS) and further investigate the correlation between sensory attributes and alkaloids. Results showed that the developed treatments reduced nicotine by 14.5% and 24.4% in tobacco and cigarette MS, respectively, indicating that both CAT and EHT are potentially effective for developing lower-risk cigarettes. Sensory and electronic nose analysis confirmed the significant influence of treatments on sensory and cigarette MS components. PLSR analysis demonstrated that tobacco alkaloids were positively correlated to the off-taste, irritation and impact attributes, and negatively correlated to the aroma and softness attributes. Additionally, nicotine and anabasine from tobacco leaves positively contributed to the impact attribute, while they negatively contributed to the aroma attribute (P<0.05). Meanwhile, most alkaloids in cigarette MS positively contributed to the impact and irritation attributes (P<0.05). Hence, this study paved a way to better understand the correlation between tobacco alkaloids and sensory attributes.


Subject(s)
Alkaloids/analysis , Nicotiana/chemistry , Plant Leaves/chemistry , Tobacco Smoke Pollution/analysis , Electronic Nose , Endo-1,4-beta Xylanases/chemistry , Female , Glucose/chemistry , Humans , Hydrolysis , Male , Odorants , Peptide Hydrolases/chemistry , Peptides/chemistry , Taste
7.
J Agric Food Chem ; 72(28): 15906-15919, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38959426

ABSTRACT

The present study investigated the impact of four chicken liver protein hydrolysate-based cat food attractants on palatability. Aroma compounds were analyzed in these attractants, which were subsequently sprayed onto four different types of cat foods. Results revealed that CF4 exhibited the highest intake ratio and the first choice ratio, followed by CF2 sample. Orthogonal partial least-squares discriminant analysis (OPLS-DA) demonstrated significant differences among 50 volatile compounds identified from the four cat foods. Using variable importance in projection (VIP) values, we selected 17 key flavor compounds responsible for distinguishing between the four cat foods. Peptides with a molecular mass <180 Da showed correlation with nonanoic acid and cedrol, while those >3000 Da correlated with hexanoic acid ethyl ester. Regression coefficients (RCs) calculated from partial least-squares regression (PLSR) results showed positive correlations between compound content and palatability for six compounds, whereas negative correlations were observed for ten compounds. Validation experiments confirmed that nonanal, 2-propylpyridine, and 3-octen-2-one enhanced palatability and correlated with peptides ranging from 180 to 500 Da; conversely, nonanoic acid ethyl ester and 3-methyl-pentanoic acid reduced palatability and correlated with peptides ranging from 1000 to 3000 Da.


Subject(s)
Chickens , Flavoring Agents , Liver , Odorants , Protein Hydrolysates , Taste , Volatile Organic Compounds , Animals , Protein Hydrolysates/chemistry , Flavoring Agents/chemistry , Liver/metabolism , Liver/chemistry , Liver/drug effects , Volatile Organic Compounds/chemistry , Odorants/analysis , Cats , Humans
8.
Int J Biol Macromol ; 271(Pt 2): 132442, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38761903

ABSTRACT

During the pathogenesis of rheumatoid arthritis, inflammatory cells usually infiltrate synovial tissues, notably, M1-type macrophages, whose redox imbalance leads to the degradation of joint structures and deterioration of function. Natural active products play a vital role in immune modulation and antioxidants. In this study, we constructed a ROS-responsive nanoparticle called FTL@SIN, which consists of fucoidan (Fuc) and luteolin (Lut) connected by a ROS-responsive bond, Thioketal (TK), and encapsulated with an anti-rheumatic drug, Sinomenine (SIN), for synergistic anti-inflammatory effects. The FTL@SIN is then dispersed in high molecular weight Fuc-fabricated dissolvable microneedles (FTL@SIN MNs) for local administration. Therapy of FTL@SIN MNs afforded a significant decrease in macrophage inflammation while decreasing key pro-inflammatory cytokines and repolarizing M1 type to M2 type, thereby ameliorating synovial inflammation, and promoting cartilage repair. Additionally, our investigations have revealed that Fucoidan (Fuc) demonstrates synergistic effects, exhibiting superior mechanical strength and enhanced physical stability when compared to microneedles formulated solely with hyaluronic acid. This study combines nanomedicine with traditional Chinese medicine, a novel drug delivery strategy that presents a promising avenue for therapeutic intervention in rheumatoid arthritis.


Subject(s)
Arthritis, Rheumatoid , Macrophages , Needles , Polysaccharides , Reactive Oxygen Species , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/administration & dosage , Animals , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , Mice , Reactive Oxygen Species/metabolism , Macrophages/metabolism , Macrophages/drug effects , Polymers/chemistry , RAW 264.7 Cells , Inflammation/drug therapy , Humans , Nanoparticles/chemistry , Drug Delivery Systems , Cytokines/metabolism , Morphinans
9.
Psychol Rep ; 127(2): 786-806, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38462852

ABSTRACT

Reactive aggression is an aggressive response to a perceived threat or provocation. It has detrimental effects on individuals and society. Rejection sensitivity, a disposition that one tends to anxiously expect, readily perceive, and intensely react to social rejection, has been associated with reactive aggression. Considering that the mechanism underlying this link remains unclear, this study explores the mediating role of loneliness and maladaptive coping. Participants included 1104 early adults between the ages of 17-23 (Mage = 20.35, SD = 1.11, 33.6% men) in China who completed the Chinese version of the Tendency to Expect Rejection Scale, Loneliness Scale, Ways of Coping Questionnaire, and Reactive-Active Aggression Questionnaire. The serial mediation model revealed that loneliness and maladaptive coping independently mediated the association of rejection sensitivity with reactive aggression. More importantly, the chain mediating effect of "loneliness-maladaptive coping" also accounted for this link. The above findings contribute to a deeper understanding of the relationships among these factors and suggested that rejection sensitivity could positively be related to reactive aggression through loneliness and maladaptive coping.


Subject(s)
Aggression , Loneliness , Psychological Tests , Self Report , Male , Adult , Humans , Adolescent , Young Adult , Female , Coping Skills , Personality
10.
Child Neuropsychol ; : 1-18, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38375872

ABSTRACT

Preserving a normal body mass index (BMI) is crucial for the healthy growth and development of children. As a core aspect of executive functions, inhibitory control plays a pivotal role in maintaining a normal BMI, which is key to preventing issues of childhood obesity. By studying individual variations in inhibitory control performance and its associated connectivity-based neuromarker in a sample of primary school students (N = 64; 9-12 yr), we aimed to unravel the pathway through which inhibitory control impacts children's BMI. Utilizing resting-state functional MRI scans and a connectivity-based psychometric prediction framework, we found that enhanced inhibitory control abilities were primarily associated with increased functional connectivity in brain structures vital to executive functions, such as the superior frontal lobule, superior parietal lobule, and posterior cingulate cortex. Conversely, inhibitory control abilities displayed a negative relationship with functional connectivity originating from reward-related brain structures, such as the orbital frontal and ventral medial prefrontal lobes. Furthermore, we revealed that both inhibitory control and its corresponding neuromarker can moderate the association between food-related delayed gratification and BMI in children. However, only the neuromarker of inhibitory control maintained its moderating effect on children's future BMI, as determined in the follow-up after one year. Overall, our findings shed light on the potential mechanisms of how inhibitory control in children impacts BMI, highlighting the utility of the connectivity-based neuromarker of inhibitory control in the context of childhood obesity.

11.
Food Res Int ; 177: 113917, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38225152

ABSTRACT

This study aimed to screen peptides with saltiness-enhancing effects from enzymatic hydrolyzed Agaricus bisporus protein and quantify their salt-reduction. The saltiness evaluation standard curve was first established to evaluate salinity. The peptide fractions (U-1, U-2, and U-3) were obtained from enzymatic hydrolyzed Agaricus bisporus protein by ultrafiltration. Quantitative calculations showed that the U-2 fraction (200-2000 Da) had the strongest saltiness-enhancing effect, and its perceived saltiness in 50 mmol NaCl solution was 60.24 ± 0.10 mmol/L. The peptide sequences were identified by liquid chromatography/mass spectrometry (LC-MS/MS). Results suggested that the potential peptides with saltiness-enhancing effects were umami peptides. Molecular docking with the umami receptor T1R1/T1R3 revealed that the key amino acid residues were Asp82, Glu392, Glu270, and Asp269. Furthermore, peptide YDPNDPEK (976.4138 Da), DDWDEDAPR(1117.4312 Da), and DVPDGPPPE (1058.4668 Da) were synthesized for salt-reduction quantification. 0.4 % peptide YDPNDPEK in NaCl solution was found to have a salt-reduction of 30 %, which provided the basic theory and data for the salt-reduction of peptide in enzymatic hydrolyzed Agaricus bisporus protein.


Subject(s)
Agaricus , Peptides , Sodium Chloride , Tandem Mass Spectrometry , Agaricus/enzymology , Chromatography, Liquid , Molecular Docking Simulation , Peptides/chemistry , Protein Hydrolysates , Sodium Chloride, Dietary
12.
Child Neuropsychol ; 30(3): 486-502, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37278282

ABSTRACT

Conscientiousness is a personality trait that matures from early childhood to late adolescence, yet little is known about its underlying brain mechanisms during this period. To investigate this, our study examined the resting-state functional network connectivity (rsFNC) of 69 school-aged children (mean age = 10.12 years, range = 9-12) using a whole-brain region-of-interest (ROI) based analysis, based on functional magnetic resonance imaging (fMRI). The results indicated a positive association between conscientiousness and the rsFNC between the fronto-parietal network (FPN) and two brain networks: the somatosensory motor-hand network (SMHN) and the auditory network (AN). However, conscientiousness was negatively associated with the rsFNC between FPN and two other networks: the salience network (SN); the default mode network (DMN). Moreover, our results suggest that the FPN may play a hub role in the neural performance of children's conscientiousness. Intrinsic brain networks, particularly those involved in higher-order cognitive functions, impact children's conscientiousness. Therefore, FPN plays an important role in the development of children's personality, providing insight into the neural mechanisms underlying children's personality.


Subject(s)
Brain Mapping , Brain , Child, Preschool , Adolescent , Child , Humans , Brain Mapping/methods , Neural Pathways/diagnostic imaging , Brain/diagnostic imaging , Cognition , Magnetic Resonance Imaging
13.
Food Res Int ; 190: 114661, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945592

ABSTRACT

Chinese steamed bread (CSB) is an important staple of the Chinese people, and its flavor profile is mostly affected by wheat varieties among others. This study selected wheat flour made from three different wheat varieties and investigated their contribution to the CSB flavor profile in terms of metabolism. Thirteen aroma-active compounds identified by GC-O were determined as the main contributors to the different aroma profiles of three CSBs. 350 sensory trait-related metabolites were obtained from five key modules via weighted gene co-expression network analysis. It was found that the sensory characteristics of CSBs made of different wheat flour were significantly different. The higher abundance of lipids in Yongliang No.4 (YL04) wheat flour was converted to large number of fatty acids in fermented dough, which led to the bitterness of CSB. Besides, the abundance in organic acids and fatty acids contributed to the sour, milky, wetness and roughness attributes of YL04-CSB. More fatty amides and flavonoids in Jiangsu Red Durum wheat flour contributed to the fermented and winey attributes of CSB. Carbohydrates with higher abundance in Canadian wheat flour was involved in sugar-amine reaction and glucose conversion, which enhanced the sweetness of CSB. In addition, fatty acids, organic acids, amino acids, and glucose were crucial metabolites which can further formed into various characteristic compounds such as hexanal, hexanol, 2,3-butanediol, acetoin, and 2,3-butanedione and thus contributed to the winey, fresh sweet, and green aroma properties. This study is conductive to better understand the evolution of the compounds that affect the quality and aroma of CSBs.


Subject(s)
Bread , Flour , Odorants , Taste , Triticum , Bread/analysis , China , Fatty Acids/analysis , Fermentation , Flour/analysis , Odorants/analysis , Steam , Triticum/chemistry , Volatile Organic Compounds/analysis
14.
Food Funct ; 15(6): 2879-2894, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38318946

ABSTRACT

Agaricus bisporus contains amino acids associated with thickness and full-mouthfeel, making it a potential candidate for salt substitutes and flavor enhancers in various food applications. Kokumi peptides were isolated from the enzymatic digest of Agaricus bisporus using ultrafiltration nanofiltration, gel chromatographic separation, and RP-HPLC, coupled with sensory evaluation. Subsequently, the peptides, EWVPVTK and EYPPLGR, were selected for solid-phase synthesis based on molecular docking. Sensory analysis, including thresholds, time intensity, and dose-configuration relationships, indicated that EWVPVTK and EYPPLGR exhibited odor thresholds of 0.6021 mmol L-1 and 2.332 mmol L-1 in an aqueous solution. Molecular docking scores correlated with low sensory thresholds, signifying strong taste sensitivities. EWVPVTK, in particular, demonstrated a higher sense of richness at lower concentrations compared to EYPPLGR. Molecular docking and dynamics simulations elucidated that the interactions between Kokumi peptides and the CaSR receptor primarily involved hydrogen bonding, electrostatic interactions, and hydrophobic interactions. Both EWVPVTK and EYPPLGR exhibited stable binding to the CaSR receptor. Active binding sites were identified, with EWVPVTK interacting at Arg 66, Asp 216, Gln 245, and Asn 102, while EYPPLGR engaged with Ser 272, Gln 193, Glu 297, Ala-298, Tyr-2, and Agr-66 in hydrophilic interactions through hydrogen bonds. Notably, these two Kokumi peptides were found to be enriched in umami and sweet amino acids, underscoring their pivotal role in umami perception. This study not only identifies novel Kokumi peptides from Agaricus bisporus but also contributes theoretical foundations and insights for future studies in the realm of Kokumi peptides.


Subject(s)
Agaricus , Peptides , Taste , Molecular Docking Simulation , Computer Simulation , Peptides/chemistry , Amino Acids/chemistry
15.
Foods ; 13(7)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38611301

ABSTRACT

The objective of our study was to analyze and identify enzymatic peptides from straw mushrooms that can enhance salty taste with the aim of developing saltiness enhancement peptides to reduce salt intake and promote dietary health. We isolated taste-related peptides from the straw mushroom extract using ultrafiltration and identified them using UPLC-Q-TOF-MS/MS. The study found that the ultrafiltration fraction (500-2000 Da) of straw mushroom peptides had a saltiness enhancement effect, as revealed via subsequent E-tongue and sensory analyses. The ultrafiltration fractions (500-2000 Da) were found to contain 220 peptides, which were identified through UPLC-Q-TOF-MS/MS analysis. The interaction of these peptides with the T1R1/T1R3 receptor was also assessed. The investigation highlighted the significant involvement of Asp223, Gln243, Leu232, Asp251, and Pro254 in binding peptides from triple-enzymatically hydrolyzed straw mushrooms to T1R1/T1R3. Based on the binding energy and active site analysis, three peptides were selected for synthesis: DFNALPFK (-9.2 kcal/mol), YNEDNGIVK (-8.8 kcal/mol), and VPGGQEIKDR (-8.9 kcal/mol). Importantly, 3.2 mmol of VPGGQEIKDR increased the saltiness level of a 0.05% NaCl solution to that of a 0.15% NaCl solution. Additionally, the addition of 0.8 mmol of YNEDNGIVK to a 0.05% NaCl solution resulted in the same level of saltiness as a 0.1% NaCl solution.

16.
Food Funct ; 15(5): 2459-2473, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38328886

ABSTRACT

Yeast extract, a widely utilized natural substance in the food industry and biopharmaceutical field, holds significant potential for flavor enhancement. Kokumi peptides within yeast extracts were isolated through ultrafiltration and gel chromatography, followed by identification using liquid chromatography tandem mass spectrometry (LC-MS/MS). Two peptides, IQGFK and EDFFVR, were identified and synthesized using solid-phase methods based on molecular docking outcomes. Sensory evaluations and electronic tongue analyses conducted with chicken broth solutions revealed taste thresholds of 0.12 mmol L-1 for IQGFK and 0.16 mmol L-1 for EDFFVR, respectively, and both peptides exhibited kokumi properties. Additionally, through molecular dynamics simulations, the binding mechanisms between these peptides and the calcium-sensing receptor (CaSR) were explored. The findings indicated stable binding of both peptides to the receptor. IQGFK primarily interacted through electrostatic interactions, with key binding sites including Asp275, Asn102, Pro274, Trp70, Tyr218, and Ser147. EDFFVR mainly engaged via van der Waals energy and polar solvation free energy, with key binding sites being Asp275, Ile416, Pro274, Arg66, Ala298, and Tyr218. This suggests that both peptides can activate the CaSR, thereby inducing kokumi activity. This study provides a theoretical foundation and reference for the screening and identification of kokumi peptides, successfully uncovering two novel kokumi peptides derived from yeast extract.


Subject(s)
Tandem Mass Spectrometry , Taste , Taste/physiology , Chromatography, Liquid , Molecular Docking Simulation , Peptides/chemistry , Receptors, Calcium-Sensing/metabolism
17.
Foods ; 12(8)2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37107417

ABSTRACT

Recently, edible films or coatings that are made from algal polysaccharides have become promising candidates for replacing plastic-based packaging materials for food storage due to their non-toxic, biodegradable, biocompatible, and bioactive characteristics. Ulvan, a significant biopolymer with unique functional properties derived from marine green algae, has been extensively used in various sectors. However, there are fewer commercial applications of this sugar in the food packaging industry compared to many other algae-derived polysaccharides, such as alginates, carrageenan, and agar. This article aims to review the unparalleled chemical composition/structure and physiochemical properties of ulvan and the latest developments in ulvan-based edible films and coatings, thus highlighting their potential applications in the food packaging industry.

18.
Psychophysiology ; 60(8): e14291, 2023 08.
Article in English | MEDLINE | ID: mdl-36951595

ABSTRACT

Self-control, the ability to regulate prepotent desires or impulses in order to realize one's valued goal, has been found to be associated with early life adversity. However, the neural correlates underlying this relationship remain poorly understood. The present study employed resting-state functional magnetic resonance imaging (fMRI) to investigate this issue among late adolescents (N = 538). Results showed that family unpredictability rather than family harshness of early life adversity was negatively correlated with self-control ability. The whole brain analysis showed that self-control was associated with enhanced ALFF in the right middle and inferior frontal gyrus, the left anterior insula, and with decreased ALFF in the left precuneus. Moreover, the mediating analysis showed that ALFF in the inferior frontal gyrus could partially mediated the association of family unpredictability with self-control ability. These findings suggested that the brain regions implicating in executive control might be the neural correlates underlying the relationship between early life adversity and self-control ability, which advances the mechanistic understanding of how early family environment relates to the development of self-regulation in late adolescence.


Subject(s)
Adverse Childhood Experiences , Humans , Adolescent , Magnetic Resonance Imaging/methods , Brain , Brain Mapping , Prefrontal Cortex/diagnostic imaging
19.
Food Chem ; 398: 133835, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-35963219

ABSTRACT

The study aimed to identify umami peptides from Boletus edulis and explore their umami mechanism. 421, 713 and 616 peptides identified by LC-MS/MS from control sample (CS), enzymatically extracted sample (EES) and high-pressure cooking sample (HPCS), respectively. According to molecular docking study, three potential umami peptides (DGF, KCGQ and HHYE) were chemically synthesized for sensory evaluation. DGF/HHYE had the lowest umami recognition threshold values in the absence (0.37 mmol/L for DGF)/presence (0.21 mmol/L for HHYE) of monosodium l-glutamate. KCGQ exhibited the strongest synergistic umami effect. Molecular dynamic simulation revealed that hydrogen bonds and hydrophobic interactions were the major intermolecular interaction forces and the charged amino acid residues (D1, E4 and K1) in umami peptides were dominate in the molecular recognition of umami peptides and the receptor. This study lays the groundwork for the efficient screening of umami peptides from edible fungi and contributes to the umami peptides structure-activity relationship research.


Subject(s)
Tandem Mass Spectrometry , Taste , Basidiomycota , Chromatography, Liquid , Molecular Docking Simulation , Peptides/chemistry
20.
Food Res Int ; 169: 112909, 2023 07.
Article in English | MEDLINE | ID: mdl-37254344

ABSTRACT

In this work, raw Pu-erh tea (RAPT) was employed for kombucha preparation, and the microbial composition and volatile flavor compounds of the fermented tea had been investigated during natural fermentation process. The head space-solid phase microextraction-gas chromatograph mass spectrometry (HS-SPME-GC-MS) was performed for volatiles analysis of unfermented tea and kombucha fermented for 3 days (KF-3) and 6 days (KF-6). Meanwhile, the microbial community of KF-3 and KF-6 were evaluated by metagenomic analysis. A total of 72 volatile compounds were identified and obvious changes in volatiles were observed during the fermentation process based on the results of GC-MS and principal component analysis (PCA). Metagenomic sequencing analysis demonstrated that bacterium Komagataeibacter saccharivorans and unclassified-g-komagataeibacter and yeast Saccharomyces cerevisiae and Brettanomyces bruxellensis were the most common microbes contained in the sampled kombucha communities. Furthermore, the relevance among microbial community and volatile compounds was evaluated through correlation heatmap analysis. The results suggested that the main flavor volatiles of kombucha (i.e., acids, esters and terpenes) were closely related to species of genus Komagataeibacter, Gluconacetobacter, Saccharomyces, Brettanomyces, Acetobacter, Novacetimonas and Pichia microorganisms. The obtained results would help to better understand microbial communities and volatile compounds of kombucha, which could provide useful information for enhancing the flavor quality of kombucha products.


Subject(s)
Microbiota , Fermentation , Gas Chromatography-Mass Spectrometry , Microbiota/genetics , Metagenome , Saccharomyces cerevisiae , Tea/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL