Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Clin Microbiol ; 59(7): e0231320, 2021 06 18.
Article in English | MEDLINE | ID: mdl-33910962

ABSTRACT

In vivo diagnostic imaging of bacterial infections is currently reliant on targeting their metabolic pathways, an ineffective method to identify microbial species with low metabolic activity. Here, we establish HS-198 as a small-molecule fluorescent conjugate that selectively targets the highly conserved bacterial protein HtpG (high-temperature protein G), within Borrelia burgdorferi, the bacterium responsible for Lyme disease. We describe the use of HS-198 to target morphologic forms of B. burgdorferi in both the logarithmic growth phase and the metabolically dormant stationary phase as well as in inactivated spirochetes. Furthermore, in a murine infection model, systemically injected HS-198 identified B. burgdorferi as revealed by imaging in postnecropsy tissue sections. These findings demonstrate how small-molecule probes directed at conserved bacterial protein targets can function to identify the microbe using noninvasive imaging and potentially as scaffolds to deliver antimicrobial agents to the pathogen.


Subject(s)
Borrelia burgdorferi , Lyme Disease , Animals , Bacterial Proteins/genetics , Diagnostic Imaging , Humans , Lyme Disease/diagnosis , Mice
2.
Stem Cells ; 36(2): 252-264, 2018 02.
Article in English | MEDLINE | ID: mdl-29086459

ABSTRACT

Hematopoietic regeneration following chemotherapy may be distinct from regeneration following radiation. While we have shown that epidermal growth factor (EGF) accelerates regeneration following radiation, its role following chemotherapy is currently unknown. We sought to identify EGF as a hematopoietic growth factor for chemotherapy-induced myelosuppression. Following 5-fluorouracil (5-FU), EGF accelerated hematopoietic stem cell regeneration and prolonged survival compared with saline-treated mice. To mitigate chemotherapy-induced injury to endothelial cells in vivo, we deleted Bax in VEcadherin+ cells (VEcadherinCre;BaxFL/FL mice). Following 5-FU, VEcadherinCre;BaxFL/FL mice displayed preserved hematopoietic stem/progenitor content compared with littermate controls. 5-FU and EGF treatment resulted in increased cellular proliferation, decreased apoptosis, and increased DNA double-strand break repair by non-homologous end-joining recombination compared with saline-treated control mice. When granulocyte colony stimulating factor (G-CSF) is given with EGF, this combination was synergistic for regeneration compared with either G-CSF or EGF alone. EGF increased G-CSF receptor (G-CSFR) expression following 5-FU. Conversely, G-CSF treatment increased both EGF receptor (EGFR) and phosphorylation of EGFR in hematopoietic stem/progenitor cells. In humans, the expression of EGFR is increased in patients with colorectal cancer treated with 5-FU compared with cancer patients not on 5-FU. Similarly, EGFR signaling is responsive to G-CSF in humans in vivo with both increased EGFR and phospho-EGFR in healthy human donors following G-CSF treatment compared with donors who did not receive G-CSF. These data identify EGF as a hematopoietic growth factor following myelosuppressive chemotherapy and that dual therapy with EGF and G-CSF may be an effective method to accelerate hematopoietic regeneration. Stem Cells 2018;36:252-264.


Subject(s)
Epidermal Growth Factor/pharmacology , Granulocyte Colony-Stimulating Factor/pharmacology , Animals , Apoptosis/drug effects , Cell Cycle/drug effects , ErbB Receptors/metabolism , Fluorouracil/pharmacology , Hematopoiesis/drug effects , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/drug effects , Mice , Mice, Inbred C57BL , Signal Transduction/drug effects
3.
Breast Cancer Res ; 20(1): 90, 2018 08 09.
Article in English | MEDLINE | ID: mdl-30092835

ABSTRACT

BACKGROUND: Upregulation of human epidermal growth factor receptor 3 (HER3) is a major mechanism of acquired resistance to therapies targeting its heterodimerization partners epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2), but also exposes HER3 as a target for immune attack. We generated an adenovirus encoding full length human HER3 (Ad-HER3) to serve as a cancer vaccine. Previously we reported the anti-tumor efficacy and function of the T cell response to this vaccine. We now provide a detailed assessment of the antitumor efficacy and functional mechanisms of the HER3 vaccine-induced antibodies (HER3-VIAs) in serum from mice immunized with Ad-HER3. METHODS: Serum containing HER3-VIA was tested in complement-dependent cytotoxicity (CDC) and antibody-dependent cellular cytotoxicity (ADCC) assays and for its effect on HER3 internalization and degradation, downstream signaling of HER3 heterodimers and growth of metastatic HER2+ (BT474M1), HER2 therapy-resistant (rBT474), and triple negative (MDA-MB-468) breast cancers. RESULTS: HER3-VIAs mediated CDC and ADCC, HER3 internalization, interruption of HER3 heterodimer-driven tumor signaling pathways, and anti-proliferative effects against HER2+ tumor cells in vitro and significant antitumor effects against metastatic HER2+ BT474M1, treatment refractory HER2+ rBT474 and triple negative MDA-MB-468 in vivo. CONCLUSIONS: In addition to the T cell anti-tumor response induced by Ad-HER3, the HER3-VIAs provide additional functions to eliminate tumors in which HER3 signaling mediates aggressive behavior or acquired resistance to HER2-targeted therapy. These data support clinical studies of vaccination against HER3 prior to or concomitantly with other therapies to prevent outgrowth of therapy-resistant HER2+ and triple negative clones.


Subject(s)
Antibodies/immunology , Antineoplastic Agents/pharmacology , Cancer Vaccines/immunology , Receptor, ErbB-3/immunology , Triple Negative Breast Neoplasms/therapy , Adenoviridae/genetics , Animals , Antibody-Dependent Cell Cytotoxicity , Antineoplastic Agents/therapeutic use , Breast/pathology , Cancer Vaccines/administration & dosage , Cancer Vaccines/genetics , Cell Line, Tumor , Cell Proliferation , Drug Resistance, Neoplasm , Epitope Mapping , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Female , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Humans , Immunization, Passive/methods , Mice , Mice, Inbred BALB C , Mice, Inbred NOD , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/metabolism , Receptor, ErbB-3/genetics , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/pathology , Xenograft Model Antitumor Assays
4.
PLoS Med ; 13(12): e1002136, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27923043

ABSTRACT

BACKGROUND: Inflammatory breast cancer (IBC) is a rare, aggressive form of breast cancer associated with HER2 amplification, with high risk of metastasis and an estimated median survival of 2.9 y. We performed an open-label, single-arm phase II clinical trial (ClinicalTrials.gov NCT01325428) to investigate the efficacy and safety of afatinib, an irreversible ErbB family inhibitor, alone and in combination with vinorelbine in patients with HER2-positive IBC. This trial included prospectively planned exome analysis before and after afatinib monotherapy. METHODS AND FINDINGS: HER2-positive IBC patients received afatinib 40 mg daily until progression, and thereafter afatinib 40 mg daily and intravenous vinorelbine 25 mg/m2 weekly. The primary endpoint was clinical benefit; secondary endpoints were objective response (OR), duration of OR, and progression-free survival (PFS). Of 26 patients treated with afatinib monotherapy, clinical benefit was achieved in 9 patients (35%), 0 of 7 trastuzumab-treated patients and 9 of 19 trastuzumab-naïve patients. Following disease progression, 10 patients received afatinib plus vinorelbine, and clinical benefit was achieved in 2 of 4 trastuzumab-treated and 0 of 6 trastuzumab-naïve patients. All patients had treatment-related adverse events (AEs). Whole-exome sequencing of tumour biopsies taken before treatment and following disease progression on afatinib monotherapy was performed to assess the mutational landscape of IBC and evolutionary trajectories during therapy. Compared to a cohort of The Cancer Genome Atlas (TCGA) patients with HER2-positive non-IBC, HER2-positive IBC patients had significantly higher mutational and neoantigenic burden, more frequent gain-of-function TP53 mutations and a recurrent 11q13.5 amplification overlapping PAK1. Planned exploratory analysis revealed that trastuzumab-naïve patients with tumours harbouring somatic activation of PI3K/Akt signalling had significantly shorter PFS compared to those without (p = 0.03). High genomic concordance between biopsies taken before and following afatinib resistance was observed with stable clonal structures in non-responding tumours, and evidence of branched evolution in 8 of 9 tumours analysed. Recruitment to the trial was terminated early following the LUX-Breast 1 trial, which showed that afatinib combined with vinorelbine had similar PFS and OR rates to trastuzumab plus vinorelbine but shorter overall survival (OS), and was less tolerable. The main limitations of this study are that the results should be interpreted with caution given the relatively small patient cohort and the potential for tumour sampling bias between pre- and post-treatment tumour biopsies. CONCLUSIONS: Afatinib, with or without vinorelbine, showed activity in trastuzumab-naïve HER2-positive IBC patients in a planned subgroup analysis. HER2-positive IBC is characterized by frequent TP53 gain-of-function mutations and a high mutational burden. The high mutational load associated with HER2-positive IBC suggests a potential role for checkpoint inhibitor therapy in this disease. TRIAL REGISTRATION: ClinicalTrials.gov NCT01325428.


Subject(s)
Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Quinazolines/therapeutic use , Receptor, ErbB-2/antagonists & inhibitors , Vinblastine/analogs & derivatives , Adolescent , Adult , Afatinib , Aged , Antineoplastic Agents/adverse effects , Antineoplastic Agents, Phytogenic/adverse effects , Antineoplastic Agents, Phytogenic/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Cohort Studies , Female , Humans , Inflammatory Breast Neoplasms , Middle Aged , Quinazolines/adverse effects , Vinblastine/adverse effects , Vinblastine/therapeutic use , Vinorelbine , Young Adult
5.
J Natl Compr Canc Netw ; 13(8): 1005-11, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26285246

ABSTRACT

CHAMBER was a regional educational initiative for providers of care to patients with HER2+ breast cancer. The study goals were to (1) enhance testing for HER2/neu overexpression in patients with invasive breast cancer; (2) increase the appropriate use of targeted therapy for patients with HER2+ breast cancer; and (3) enhance patients' coping ability. This Performance Improvement Continuing Medical Education (PI-CME) initiative included clinical practice assessment, educational activities, and reassessment. Chart review revealed a high rate of HER2 testing (98%) before and after education. Targeted therapy for patients with HER2+ breast cancer declined after the program (from 96% to 61%), perhaps attributable to an increase in awareness of medical reasons to avoid use of targeted therapy. Assessment for patients' emotional coping ability increased after education (from 55% to 76%; P=.01). Rates of testing for HER2 amplification and assessment of emotional well-being after education were consistent with ASCO Quality Oncology Practice Initiative benchmark values. Documentation of actions to address emotional problems remained an area for improvement.


Subject(s)
Breast Neoplasms/diagnosis , Breast Neoplasms/therapy , Education, Medical, Continuing , Health Personnel , Quality Improvement , Adaptation, Psychological , Breast Neoplasms/metabolism , Female , Guideline Adherence , Health Personnel/education , Health Personnel/standards , Humans , Medication Adherence , Receptor, ErbB-2/metabolism
6.
Nat Cell Biol ; 9(8): 961-9, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17643115

ABSTRACT

Cell migration driven by the epidermal growth factor receptor (EGFR) propels morphogenesis and involves reorganization of the actin cytoskeleton. Although de novo transcription precedes migration, transcript identity remains largely unknown. Through their actin-binding domains, tensins link the cytoskeleton to integrin-based adhesion sites. Here we report that EGF downregulates tensin-3 expression, and concomitantly upregulates cten, a tensin family member that lacks the actin-binding domain. Knockdown of cten or tensin-3, respectively, impairs or enhances mammary cell migration. Furthermore, cten displaces tensin-3 from the cytoplasmic tail of integrin beta1, thereby instigating actin fibre disassembly. In invasive breast cancer, cten expression correlates not only with high EGFR and HER2, but also with metastasis to lymph nodes. Moreover, treatment of inflammatory breast cancer patients with an EGFR/HER2 dual-specificity kinase inhibitor significantly downregulated cten expression. In conclusion, a transcriptional tensin-3-cten switch may contribute to the metastasis of mammary cancer.


Subject(s)
Breast Neoplasms/metabolism , Cell Movement/physiology , Epidermal Growth Factor/metabolism , Microfilament Proteins/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Enzyme Inhibitors/metabolism , ErbB Receptors , Female , Humans , Microfilament Proteins/genetics , Oligonucleotide Array Sequence Analysis , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Tensins
7.
Cell Chem Biol ; 31(3): 465-476.e12, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-37918401

ABSTRACT

Conventional antimicrobial discovery relies on targeting essential enzymes in pathogenic organisms, contributing to a paucity of new antibiotics to address resistant strains. Here, by targeting a non-essential enzyme, Borrelia burgdorferi HtpG, to deliver lethal payloads, we expand what can be considered druggable within any pathogen. We synthesized HS-291, an HtpG inhibitor tethered to the photoactive toxin verteporfin. Reactive oxygen species, generated by light, enables HS-291 to sterilize Borrelia cultures by causing oxidation of HtpG, and a discrete subset of proteins in proximity to the chaperone. This caused irreversible nucleoid collapse and membrane blebbing. Tethering verteporfin to the HtpG inhibitor was essential, since free verteporfin was not retained by Borrelia in contrast to HS-291. For this reason, we liken HS-291 to a berserker, wreaking havoc upon the pathogen's biology once selectively absorbed and activated. This strategy expands the druggable pathogenic genome and offsets antibiotic resistance by targeting non-essential proteins.


Subject(s)
Borrelia burgdorferi , Borrelia burgdorferi/genetics , Borrelia burgdorferi/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Verteporfin/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Molecular Chaperones/metabolism
8.
Breast Cancer Res ; 15(5): R85, 2013.
Article in English | MEDLINE | ID: mdl-24044505

ABSTRACT

INTRODUCTION: The human epidermal growth factor receptor 2 (HER2) receptor tyrosine kinase (RTK) oncogene is an attractive therapeutic target for the treatment of HER2-addicted tumors. Although lapatinib, an FDA-approved small-molecule HER2 and epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), represents a significant therapeutic advancement in the treatment of HER2+ breast cancers, responses to lapatinib have not been durable. Consequently, elucidation of mechanisms of acquired therapeutic resistance to HER-directed therapies is of critical importance. METHODS: Using a functional protein-pathway activation mapping strategy, along with targeted genomic knockdowns applied to a series of isogenic-matched pairs of lapatinib-sensitive and resistant cell lines, we now report an unexpected mechanism of acquired resistance to lapatinib and similar TKIs. RESULTS: The signaling analysis revealed that whereas HER2 was appropriately inhibited in lapatinib-resistant cells, EGFR tyrosine phosphorylation was incompletely inhibited. Using a targeted molecular knockdown approach to interrogate the causal molecular underpinnings of EGFR-persistent activation, we found that lapatinib-resistant cells were no longer oncogene addicted to HER2-HER3-PI3K signaling, as seen in the parental lapatinib-sensitive cell lines, but instead were dependent on a heregulin (HRG)-driven HER3-EGFR-PI3K-PDK1 signaling axis. Two FDA-approved EGFR TKIs could not overcome HRG-HER3-mediated activation of EGFR, or reverse lapatinib resistance. The ability to overcome EGFR-mediated acquired therapeutic resistance to lapatinib was demonstrated through molecular knockdown of EGFR and treatment with the irreversible pan-HER TKI neratinib, which blocked HRG-dependent phosphorylation of HER3 and EGFR, resulting in apoptosis of resistant cells. In addition, whereas HRG reversed lapatinib-mediated antitumor effects in parental HER2+ breast cancer cells, neratinib was comparatively resistant to the effects of HRG in parental cells. Finally, we showed that HRG expression is an independent negative predictor of clinical outcome in HER2+ breast cancers, providing potential clinical relevance to our findings. CONCLUSIONS: Molecular analysis of acquired therapeutic resistance to lapatinib identified a new resistance mechanism based on incomplete and "leaky" inhibition of EGFR by lapatinib. The selective pressure applied by incomplete inhibition of the EGFR drug target resulted in selection of ligand-driven feedback that sustained EGFR activation in the face of constant exposure to the drug. Inadequate target inhibition driven by a ligand-mediated autocrine feedback loop may represent a broader mechanism of therapeutic resistance to HER TKIs and suggests adopting a different strategy for selecting more effective TKIs to advance into the clinic.


Subject(s)
Autocrine Communication , Breast Neoplasms/metabolism , ErbB Receptors/metabolism , Neuregulin-1/metabolism , Receptor, ErbB-2/metabolism , Receptor, ErbB-3/metabolism , Signal Transduction , Breast Neoplasms/genetics , Breast Neoplasms/mortality , CSK Tyrosine-Protein Kinase , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/genetics , Drug Resistance, Neoplasm , ErbB Receptors/genetics , Female , Gene Expression , Gene Knockdown Techniques , Humans , Lapatinib , Neuregulin-1/genetics , Phosphatidylinositol 3-Kinases , Phosphoprotein Phosphatases/metabolism , Phosphorylation , Prognosis , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , Quinazolines/pharmacology , Receptor, ErbB-3/genetics , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , src-Family Kinases/antagonists & inhibitors
9.
Breast Cancer Res ; 14(2): R62, 2012 Apr 17.
Article in English | MEDLINE | ID: mdl-22510516

ABSTRACT

INTRODUCTION: Although human epidermal growth factor receptor 2 (HER2) positive or estrogen receptor (ER) positive breast cancers are treated with clinically validated anti-HER2 or anti-estrogen therapies, intrinsic and acquired resistance to these therapies appears in a substantial proportion of breast cancer patients and new therapies are needed. Identification of additional molecular factors, especially those characterized by aggressive behavior and poor prognosis, could prioritize interventional opportunities to improve the diagnosis and treatment of breast cancer. METHODS: We compiled a collection of 4,010 breast tumor gene expression data derived from 23 datasets that have been posted on the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) database. We performed a genome-scale survival analysis using Cox-regression survival analyses, and validated using Kaplan-Meier Estimates survival and Cox Proportional-Hazards Regression survival analyses. We conducted a genome-scale analysis of chromosome alteration using 481 breast cancer samples obtained from The Cancer Genome Atlas (TCGA), from which combined expression and copy number data were available. We assessed the correlation between somatic copy number alterations and gene expression using analysis of variance (ANOVA). RESULTS: Increased expression of each of the heat shock protein (HSP) 90 isoforms, as well as HSP transcriptional factor 1 (HSF1), was correlated with poor prognosis in different subtypes of breast cancer. High-level expression of HSP90AA1 and HSP90AB1, two cytoplasmic HSP90 isoforms, was driven by chromosome coding region amplifications and were independent factors that led to death from breast cancer among patients with triple-negative (TNBC) and HER2-/ER+ subtypes, respectively. Furthermore, amplification of HSF1 was correlated with higher HSP90AA1 and HSP90AB1 mRNA expression among the breast cancer cells without amplifications of these two genes. A collection of HSP90AA1, HSP90AB1 and HSF1 amplifications defined a subpopulation of breast cancer with up-regulated HSP90 gene expression, and up-regulated HSP90 expression independently elevated the risk of recurrence of TNBC and poor prognosis of HER2-/ER+ breast cancer. CONCLUSIONS: Up-regulated HSP90 mRNA expression represents a confluence of genomic vulnerability that renders HER2 negative breast cancers more aggressive, resulting in poor prognosis. Targeting breast cancer with up-regulated HSP90 may potentially improve the effectiveness of clinical intervention in this disease.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , Gene Expression Regulation, Neoplastic , HSP90 Heat-Shock Proteins/genetics , Receptor, ErbB-2/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/mortality , DNA-Binding Proteins/genetics , Female , Gene Amplification , Heat Shock Transcription Factors , Humans , Kaplan-Meier Estimate , Phenotype , Prognosis , Proportional Hazards Models , Survival Analysis , Transcription Factors/genetics , Up-Regulation
10.
Breast Cancer Res ; 14(3): R89, 2012 Jun 07.
Article in English | MEDLINE | ID: mdl-22676470

ABSTRACT

INTRODUCTION: Sustained HER2 signaling at the cell surface is an oncogenic mechanism in a significant proportion of breast cancers. While clinically effective therapies targeting HER2 such as mAbs and tyrosine kinase inhibitors exist, tumors overexpressing HER2 eventually progress despite treatment. Thus, abrogation of persistent HER2 expression at the plasma membrane to synergize with current approaches may represent a novel therapeutic strategy. METHODS: We generated polyclonal anti-HER2 antibodies (HER2-VIA) by vaccinating mice with an adenovirus expressing human HER2, and assessed their signaling effects in vitro and anti-tumor effects in a xenograft model. In addition, we studied the signaling effects of human HER2-specific antibodies induced by vaccinating breast cancer patients with a HER2 protein vaccine. RESULTS: HER2-VIA bound HER2 at the plasma membrane, initially activating the downstream kinases extracellular signal-regulated protein kinase 1/2 and Akt, but subsequently inducing receptor internalization in clathrin-coated pits in a HER2 kinase-independent manner, followed by ubiquitination and degradation of HER2 into a 130 kDa fragment phosphorylated at tyrosine residues 1,221/1,222 and 1,248. Following vaccination of breast cancer patients with the HER2 protein vaccine, HER2-specific antibodies were detectable and these antibodies bound to cell surface-expressed HER2 and inhibited HER2 signaling through blocking tyrosine 877 phosphorylation of HER2. In contrast to the murine antibodies, human anti-HER2 antibodies induced by protein vaccination did not mediate receptor internalization and degradation. CONCLUSION: These data provide new insight into HER2 trafficking at the plasma membrane and the changes induced by polyclonal HER2-specific antibodies. The reduction of HER2 membrane expression and HER2 signaling by polyclonal antibodies induced by adenoviral HER2 vaccines supports human clinical trials with this strategy for those breast cancer patients with HER2 therapy-resistant disease.


Subject(s)
Antibodies/immunology , Breast Neoplasms/immunology , Breast Neoplasms/therapy , Cancer Vaccines/immunology , Cancer Vaccines/therapeutic use , Receptor, ErbB-2/immunology , Animals , Cell Line, Tumor , Cell Membrane/metabolism , Cell Proliferation , Clathrin-Coated Vesicles/metabolism , Endocytosis/immunology , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Neoplasm Transplantation , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Receptor, ErbB-2/metabolism , Transplantation, Heterologous , Ubiquitination , Vaccination
11.
J Transl Med ; 10: 28, 2012 Feb 10.
Article in English | MEDLINE | ID: mdl-22325452

ABSTRACT

BACKGROUND: Patients with HER2-overexpressing metastatic breast cancer, despite initially benefiting from the monoclonal antibody trastuzumab and the EGFR/HER2 tyrosine kinase inhibitor lapatinib, will eventually have progressive disease. HER2-based vaccines induce polyclonal antibody responses against HER2 that demonstrate enhanced anti-tumor activity when combined with lapatinib in murine models. We wished to test the clinical safety, immunogenicity, and activity of a HER2-based cancer vaccine, when combined with lapatinib. METHODS: We immunized women (n = 12) with metastatic, trastuzumab-refractory, HER2-overexpressing breast cancer with dHER2, a recombinant protein consisting of extracellular domain (ECD) and a portion of the intracellular domain (ICD) of HER2 combined with the adjuvant AS15, containing MPL, QS21, CpG and liposome. Lapatinib (1250 mg/day) was administered concurrently. Peripheral blood antibody and T cell responses were measured. RESULTS: This regimen was well tolerated, with no cardiotoxicity. Anti-HER2-specific antibody was induced in all patients whereas HER2-specific T cells were detected in one patient. Preliminary analyses of patient serum demonstrated downstream signaling inhibition in HER2 expressing tumor cells. The median time to progression was 55 days, with the majority of patients progressing prior to induction of peak anti-HER2 immune responses; however, 300-day overall survival was 92% (95% CI: 77-100%). CONCLUSIONS: dHER2 combined with lapatinib was safe and immunogenic with promising long term survival in those with HER2-overexpressing breast cancers refractory to trastuzumab. Further studies to define the anticancer activity of the antibodies induced by HER2 vaccines along with lapatinib are underway. TRIAL REGISTRY: ClinicalTrials.gov NCT00952692.


Subject(s)
Immunotherapy , Quinazolines/pharmacology , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/immunology , Aged , Antibody Formation/drug effects , Antibody Formation/immunology , Demography , Epitopes/immunology , Female , Humans , Kaplan-Meier Estimate , Lapatinib , Middle Aged , Phosphorylation/drug effects , Protein Structure, Tertiary , Proto-Oncogene Proteins c-akt/metabolism , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , Treatment Outcome , Vaccination
12.
Breast Cancer Res Treat ; 130(2): 691-7, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21850396

ABSTRACT

Inflammatory Breast Carcinoma (IBC), the most aggressive type of breast tumor with unique clinicopathological presentation, is hypothesized to have distinct etiology with a socioeconomic status (SES) component. Using the Surveillance, Epidemiology and End Results (SEER) Program data for 2004-2007, we compare incidence rates of IBC to non-inflammatory locally advanced breast cancer (LABC) among racial/ethnic groups with different SES. The analysis includes women 20-84 years of age. To examine evidence for the distinct etiology of IBC, we analyzed age-distribution patterns of IBC and non-inflammatory LABC, using a mathematical carcinogenesis model. Based on the Collaborative Staging Extension codes, 2,942 incident IBC cases (codes 71 and 73) and 5,721 non-inflammatory LABC cases (codes 40-62) were identified during the four-year study period. Age-adjusted rates of IBC among non-Hispanic White and Hispanic women were similar (2.5/100,000 in both groups). Similar rates were also found in non-inflammatory LABC in these two groups (4.8/100,000 and 4.2/100,000, respectively). In African-American women, the IBC (3.91/100,000) and non-inflammatory LABC (8.47/100,000) rates were greater compared with other ethnic/racial sub-groups. However, the ratio of rates of IBC/non-inflammatory LABC was similar among all the racial/ethnic groups, suggesting that African-American women are susceptible to aggressive breast tumors in general but not specifically to IBC. The mathematical model successfully predicted the observed age-specific rates of both examined breast tumors and revealed distinct patterns. IBC rates increased until age 65 and then slightly decreased, whereas non-inflammatory LABC rates steadily increased throughout the entire age interval. The number of critical transition carcinogenesis stages (m-stages) predicted by the model were 6.3 and 8.5 for IBC and non-inflammatory LABC, respectively, supporting different etiologies of these breast tumors.


Subject(s)
Inflammatory Breast Neoplasms/ethnology , Adult , Black or African American , Aged , Aged, 80 and over , Algorithms , Female , Hispanic or Latino , Humans , Incidence , Inflammatory Breast Neoplasms/pathology , Middle Aged , Models, Biological , United States/epidemiology , White People , Young Adult
13.
Mol Cancer Res ; 19(5): 886-899, 2021 05.
Article in English | MEDLINE | ID: mdl-33514658

ABSTRACT

The ERBB2 proto-oncogene is associated with an aggressive phenotype in breast cancer. Its role in hematologic malignancies is incompletely defined, in part because ERBB2 is not readily detected on the surface of cancer cells. We demonstrate that truncated ERBB2, which lacks the extracellular domain, is overexpressed on primary CD34+ myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) cells compared with healthy hematopoietic cells. This overexpression of ERBB2 is associated with aberrant, oncogenic signaling with autophosphorylation of multiple tyrosine sites. Like in breast cancers, ERBB2 can exist as truncated isoforms p95ERBB2 and p110ERBB2 in MDS and AML. Neutralization of ERBB2 signaling with ERBB2 tyrosine kinase inhibitors (i.e., lapatinib, afatinib, and neratinib) increases apoptotic cell death and reduces human engraftment of MDS cells in mice at 21 weeks posttransplantation. Inhibition of ERBB2 modulates the expression of multiple pro- and anti-apoptotic mitochondrial proteins, including B-cell lymphoma 2 (BCL2). Dual blockade with ERBB2 and BCL2 inhibitors triggers additional reductions of BCL2 phosphorylation and myeloid cell leukemia-1 (MCL1) expression compared with single drug treatment. Dual therapy was synergistic at all tested doses, with a dose reduction index of up to 29 for lapatinib + venetoclax compared with venetoclax alone. Notably, these agents operated together and shifted cancer cells to a pro-apoptotic phenotype, resulting in increased mitochondrial cytochrome c release and activated caspase-3-mediated cell death. IMPLICATIONS: These findings warrant study of ERBB2 and BCL2 combination therapy in patients with MDS and AML. VISUAL OVERVIEW: http://mcr.aacrjournals.org/content/molcanres/19/5/886/F1.large.jpg.


Subject(s)
Leukemia, Myeloid, Acute/genetics , Myelodysplastic Syndromes/genetics , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Receptor, ErbB-2/antagonists & inhibitors , Animals , Apoptosis , Humans , Proto-Oncogene Proteins c-bcl-2/metabolism , Receptor, ErbB-2/metabolism
14.
Int J Cancer ; 126(12): 2893-903, 2010 Jun 15.
Article in English | MEDLINE | ID: mdl-19856307

ABSTRACT

The monoclonal antibody trastuzumab and the EGFR/HER2 tyrosine kinase inhibitor lapatinib improve the clinical outcome of patients with HER2-overexpressing breast cancer. However, the majority of metastatic cancers will eventually progress, suggesting the need for other therapies. Because HER2 overexpression persists, we hypothesized that the anti-HER2 immune response induced by cancer vaccines would be an effective strategy for treating trastuzumab- and lapatinib-refractory tumors. Furthermore, we hypothesized that the antibody response could synergize with lapatinib to enhance tumor inhibition. We developed a recombinant adenoviral vector expressing a kinase-inactive HER2 (Ad-HER2-ki) to use as a cancer vaccine. Vaccine-induced polyclonal HER2-specific antiserum was analyzed for receptor internalization and signaling effects alone and in combination with lapatinib. Ad-HER2-ki vaccine-induced potent T cell and antibody responses in mice and the vaccine-induced polyclonal HER2-specific antiserum mediated receptor internalization and degradation much more effectively than trastuzumab. Our in vitro studies demonstrated that HER2 vaccine-induced antibodies effectively caused a decrease in HER2 expression, but when combined with lapatinib caused significant inhibition of HER2 signaling, decreased pERK and pAKT levels and reduced breast tumor cell proliferation. In addition, a known mechanism of resistance to lapatinib, induction of survivin, was inhibited. The combination of Ad-HER2-ki plus lapatinib also showed superior antitumor efficacy in vivo. Based on these results, we feel clinical studies using this approach to target HER2-overexpressing breast cancer, including trastuzumab- and lapatinib-resistant tumors is warranted.


Subject(s)
Breast Neoplasms/immunology , Breast Neoplasms/therapy , Cancer Vaccines/therapeutic use , Genetic Therapy , Protein Kinase Inhibitors/pharmacology , Quinazolines/pharmacology , Receptor, ErbB-2/genetics , Adenoviridae/genetics , Animals , Blotting, Western , Breast Neoplasms/metabolism , Cell Proliferation , Combined Modality Therapy , Drug Synergism , Enzyme-Linked Immunosorbent Assay , Female , Flow Cytometry , Humans , Lapatinib , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptor, ErbB-2/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
15.
Lancet Oncol ; 10(6): 581-8, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19394894

ABSTRACT

BACKGROUND: Inflammatory breast cancer is an aggressive and biologically distinct form with a higher frequency of HER2 overexpression than other breast cancers. For patients with resistance to conventional anthracycline or taxane and trastuzumab treatment, options are limited. Lapatinib, an oral reversible inhibitor of epidermal growth factor receptor tyrosine kinases, previously had a 50% response rate in a cohort of 30 patients with HER2-overexpressing (HER2+) recurrent or anthracycline-refractory inflammatory breast cancer. We aimed to assess efficacy of lapatinib in an expanded cohort of patients with relapsed or refractory HER2+ disease. METHODS: From March, 2005, to September, 2007, 126 patients with relapsed or refractory HER2+ inflammatory breast cancer were treated with lapatinib 1500 mg once daily in a non-randomised, open-label, phase II study. Pretreatment tumour biopsies were done to verify pathological features of inflammatory breast cancer. Skin disease was assessed every 4 weeks, and response in sites of measurable locally advanced or metastatic disease were assessed by response evaluation in solid tumours (RECIST) criteria every 8 weeks. The primary aim was to assess combined objective response rate, by clinically evaluable skin disease criteria and RECIST, if applicable. Analyses were done by intention to treat; patients with missing data were treated as non-responders. This study is registered with ClinicalTrials.gov, number NCT00105950. FINDINGS: Clinical presentation and biomarker analysis showed a tumour molecular profile consistent with inflammatory breast cancer. No patients had complete response. 49 patients (39%; 95% CI 30-48) had partial response. Median progression-free survival was 14.6 weeks (95% CI 12.1-16.0), with median duration of response of 20.9 weeks (12.7-32.1). Likelihood of response to lapatinib was not affected by previous treatment with trastuzumab. 130 (92%) of 141 patients had at least one adverse event; 45 (32%) had serious adverse events, the most common were dyspnoea (eight patients) and pleural effusion (six). Five patients had fatal adverse events that were possibly treatment related. INTERPRETATION: Lapatinib monotherapy is a potentially effective treatment for relapsed or refractory HER2+ inflammatory breast cancer. FUNDING: GlaxoSmithKline.


Subject(s)
Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Quinazolines/therapeutic use , Receptor, ErbB-2/metabolism , Adult , Aged , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/mortality , Female , Humans , Lapatinib , Middle Aged , Receptor, ErbB-2/genetics , Recurrence , Skin Diseases/pathology , Treatment Outcome
16.
Article in English | MEDLINE | ID: mdl-32923873

ABSTRACT

PURPOSE: Next-generation sequencing (NGS) multigene panel testing has become widespread, including the Veterans Affairs (VA), through the VA National Precision Oncology Program (NPOP). The interpretation of genomic alterations remains a bottleneck for realizing precision medicine. We sought to examine the concordance for pathogenicity determination and clinical actionability of annotation services in NPOP. METHODS: Unique gene variants were generated from NGS gene panel results using two sequencing services. For each unique gene variant, annotations were provided through N-of-One (NoO), IBM Watson for Genomics (WfG), and OncoKB. Annotations for pathogenicity (all three sources) and actionability (WfG and OncoKB) were examined for concordance. Cohen's kappa statistic was calculated to measure agreement between annotation services. RESULTS: Among 1,227 NGS results obtained between 2015 and 2017, 1,388 unique variants were identified in 117 genes. The genes with the largest number of variants included TP53 (270), STK11 (92), and CDKN2A (81). The most common cancer type was lung adenocarcinoma (440), followed by colon adenocarcinoma (113). For pathogenic and likely pathogenic variants, there was 30% agreement between WfG and NoO (kappa, -0.26), 76% agreement between WfG and OncoKB (kappa, 0.22), and 42% agreement between NoO and OncoKB (kappa, -0.07). For level 1 drug actionability of gene variant-diagnosis combinations, there was moderate agreement between WfG and OncoKB (96.9%; kappa, 0.44), with 27 combinations identified as level 1 by both services, 58 by WfG alone, and 6 variants by OncoKB alone. CONCLUSION: There is substantial variability in pathogenicity assessment of NGS variants in solid tumors by annotation services. In addition, there was only moderate agreement in level 1 therapeutic actionability recommendations between WfG and OncoKB. Improvement in the precision of NGS multigene panel annotation is needed.

17.
PLoS One ; 15(7): e0235861, 2020.
Article in English | MEDLINE | ID: mdl-32706774

ABSTRACT

BACKGROUND: To support the rising need for testing and to standardize tumor DNA sequencing practices within the U.S. Department of Veterans Affairs (VA)'s Veterans Health Administration (VHA), the National Precision Oncology Program (NPOP) was launched in 2016. We sought to assess oncologists' practices, concerns, and perceptions regarding Next-Generation Sequencing (NGS) and the NPOP. MATERIALS AND METHODS: Using a purposive total sampling approach, oncologists who had previously ordered NGS for at least one tumor sample through the NPOP were invited to participate in semi-structured interviews. Questions assessed the following: expectations for the NPOP, procedural requirements, applicability of testing results, and the summative utility of the NPOP. Interviews were assessed using an open coding approach. Thematic analysis was conducted to evaluate the completed codebook. Themes were defined deductively by reviewing the direct responses to interview questions as well as inductively by identifying emerging patterns of data. RESULTS: Of the 105 medical oncologists who were invited to participate, 20 (19%) were interviewed from 19 different VA medical centers in 14 states. Five recurrent themes were observed: (1) Educational Efforts Regarding Tumor DNA Sequencing Should be Undertaken, (2) Pathology Departments Share a Critical Role in Facilitating Test Completion, (3) Tumor DNA Sequencing via NGS Serves as the Most Comprehensive Testing Modality within Precision Oncology, (4) The Availability of the NPOP Has Expanded Options for Select Patients, and (5) The Completion of Tumor DNA Sequencing through the NPOP Could Help Improve Research Efforts within VHA Oncology Practices. CONCLUSION: Medical oncologists believe that the availability of tumor DNA sequencing through the NPOP could potentially lead to an improvement in outcomes for veterans with metastatic solid tumors. Efforts should be directed toward improving oncologists' understanding of sequencing, strengthening collaborative relationships between oncologists and pathologists, and assessing the role of comprehensive NGS panels within the battery of precision tests.


Subject(s)
Health Knowledge, Attitudes, Practice , High-Throughput Nucleotide Sequencing/standards , Neoplasms/genetics , Oncologists/psychology , Sequence Analysis, DNA/standards , United States Department of Veterans Affairs , Adult , Early Detection of Cancer/standards , Female , Genetic Testing/standards , Humans , Male , Middle Aged , Neoplasms/diagnosis , Precision Medicine/standards , State Health Plans , Surveys and Questionnaires , United States
18.
Clin Cancer Res ; 14(21): 6730-4, 2008 Nov 01.
Article in English | MEDLINE | ID: mdl-18980964

ABSTRACT

Breast cancers overexpressing the ErbB2 (HER2) receptor tyrosine kinase oncogene are treated with targeted therapies such as trastuzumab (Herceptin), an anti-ErbB2 antibody, and lapatinib (GW572016/Tykerb), a selective small molecule inhibitor of ErbB2 and epidermal growth factor receptor tyrosine kinases that was recently approved for ErbB2+ breast cancers that progressed on trastuzumab-based therapy. The efficacy of lapatinib as a monotherapy or in combination with chemotherapy, however, is limited by the development of therapeutic resistance that typically occurs within 12 months of starting therapy. In contrast to small molecule inhibitors targeting other receptor tyrosine kinases where resistance has been attributed to mutations within the targeted receptor, ErbB2 mutations have not been commonly found in breast tumors. Instead, acquired resistance to lapatinib seems to be mediated by redundant survival pathways that are activated as a consequence of marked inhibition of ErbB2 kinase activity. For example, inhibition of phosphatidylinositol3 kinase-Akt in lapatinib-treated cells leads to derepression of FOXO3A, a transcription factor that up-regulates estrogen receptor (ER) signaling, resulting in a switch in the regulation of survival factors (e.g., survivin) and cell survival from ErbB2 alone to ER and ErbB2 in resistant cells. In this review, we discuss the effects of lapatinib on signaling networks in ErbB2+ breast cancer cells to elucidate potential mechanisms of therapeutic resistance and strategies to overcome or prevent its development.


Subject(s)
Breast Neoplasms/drug therapy , Drug Resistance, Neoplasm , Protein Kinase Inhibitors/therapeutic use , Quinazolines/therapeutic use , Receptor, ErbB-2/metabolism , Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Breast Neoplasms/metabolism , Humans , Lapatinib , Models, Biological , Receptor, ErbB-2/antagonists & inhibitors , Signal Transduction/drug effects
19.
Cancer Res ; 67(3): 1170-5, 2007 Feb 01.
Article in English | MEDLINE | ID: mdl-17283152

ABSTRACT

Trastuzumab antitumor activity in ErbB2-overexpressing breast cancers seems to be dependent upon the presence of phosphatase and tensin homologue deleted on chromosome 10 (PTEN), a phosphatase that dampens phosphatidylinositol 3-kinase-Akt signaling. Consequently, PTEN deficiency, which occurs in 50% of breast cancers, predicts for resistance to trastuzumab monotherapy. Here, we show that lapatinib, a small-molecule inhibitor of ErbB1 and ErbB2 tyrosine kinases, exerts its antitumor activity in a PTEN-independent manner. Steady-state phosphorylated ErbB2 (p-ErbB2) and p-Akt (S473) protein levels were inhibited within 30 min following lapatinib but not in response to trastuzumab in BT474 and Au565 cells (two ErbB2-overexpressing breast cancer cell lines that are sensitive to the proapoptotic effects of lapatinib). Whereas trastuzumab reportedly inhibits SRC phosphorylation (Y416), which in turn reduced SRC-ErbB2 protein interactions, lapatinib had no effect on either variable. To assess the potential functional role that PTEN might play in lapatinib antitumor activity, we selectively knocked down PTEN in BT474 and Au565 cells using small interfering RNA transfection. Loss of PTEN did not affect induction of tumor cell apoptosis by lapatinib in either cell line. In addition, lapatinib inhibited Akt phosphorylation in MDA-MB-468 cells, an ErbB1-expressing/ErbB2 non-overexpressing breast cancer line, despite their PTEN-null status. Moreover, patients with ErbB2-overexpressing inflammatory breast cancers responded to lapatinib monotherapy regardless of PTEN status. Thus, lapatinib seems to exert its antitumor activity in ErbB2-overexpressing breast cancers in a PTEN-independent manner. These data emphasize the importance of assessing PTEN status in tumors when selecting ErbB2-targeted therapies in patients with breast cancer.


Subject(s)
Breast Neoplasms/drug therapy , PTEN Phosphohydrolase/deficiency , Quinazolines/pharmacology , Receptor, ErbB-2/biosynthesis , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Apoptosis/physiology , Breast Neoplasms/enzymology , Breast Neoplasms/genetics , Cell Line, Tumor , Humans , Lapatinib , PTEN Phosphohydrolase/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/metabolism , Signal Transduction/drug effects
20.
Article in English | MEDLINE | ID: mdl-32914016

ABSTRACT

PURPOSE: The Veterans Health Administration (VHA) is the largest cancer care provider in the United States, with the added challenge of serving more than twice the percentage of patients with cancer in rural areas than the national average. The VHA established the National Precision Oncology Program in 2016 to implement and standardize the practice of precision oncology across the diverse VHA system. METHODS: Tumor or peripheral blood specimens from veterans with advanced solid tumors who were eligible for treatment were submitted for next-generation sequencing (NGS) at two commercial laboratories. Annotated results were generated by the laboratories and independently using IBM Watson for Genomics. Levels-of-evidence treatment recommendations were based on OncoKB criteria. RESULTS: From July 2016 to June 2018, 3,698 samples from 72 VHA facilities were submitted for NGS testing, of which 3,182 samples (86%) were successfully sequenced. Most samples came from men with lung, prostate, and colorectal cancers. Thirty-four percent of samples were from patients who lived in a rural area. TP53, ATM, and KRAS were among the most commonly mutated genes. Approximately 70% of samples had at least one actionable mutation, with clinical trials identified as the recommended option in more than 50%. Mutations in genes associated with a neuroendocrine prostate cancer phenotype were expressed at increased frequency among veterans than in the general population. The most frequent therapies prescribed in response to NGS testing were immune checkpoint inhibitors, EGFR kinase inhibitors, and PARP inhibitors. CONCLUSION: Clinical implementation of precision oncology is feasible across the VHA health care system, including rural sites. Veterans have unique occupational exposures that might inform the nature of the mutational signatures identified here. Importantly, these results underscore the importance of increasing clinical trial availability to veterans.

SELECTION OF CITATIONS
SEARCH DETAIL