Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
BMC Cancer ; 17(1): 555, 2017 Aug 22.
Article in English | MEDLINE | ID: mdl-28830374

ABSTRACT

BACKGROUND: The Empty Spiracles Homeobox (EMX-) 2 gene has been associated with regulation of growth and differentiation in neuronal development. While recent studies provide evidence that EMX2 regulates tumorigenesis of various solid tumors, its role in colorectal cancer remains unknown. We aimed to assess the prognostic significance of EMX2 expression in stage III colorectal adenocarcinoma. METHODS: Expression levels of EMX2 in human colorectal cancer and adjacent mucosa were assessed by qRT-PCR technology, and results were correlated with clinical and survival data. siRNA-mediated knockdown and adenoviral delivery-mediated overexpression of EMX2 were performed in order to investigate its effects on the migration of colorectal cancer cells in vitro. RESULTS: Compared to corresponding healthy mucosa, colorectal tumor samples had decreased EMX2 expression levels. Furthermore, EMX2 down-regulation in colorectal cancer tissue was associated with distant metastasis (M1) and impaired overall patient survival. In vitro knockdown of EMX2 resulted in increased tumor cell migration. Conversely, overexpression of EMX2 led to an inhibition of tumor cell migration. CONCLUSIONS: EMX2 is frequently down-regulated in human colorectal cancer, and down-regulation of EMX2 is a prognostic marker for disease-free and overall survival. EMX2 might thus represent a promising therapeutic target in colorectal cancer.


Subject(s)
Biomarkers, Tumor , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Gene Expression , Homeodomain Proteins/genetics , Liver Neoplasms/diagnosis , Liver Neoplasms/secondary , Transcription Factors/genetics , Adenoviridae/genetics , Cell Line, Tumor , Cell Movement/genetics , Cohort Studies , Colorectal Neoplasms/mortality , Colorectal Neoplasms/therapy , Female , Follow-Up Studies , Gene Transfer Techniques , Genetic Vectors/genetics , Homeodomain Proteins/metabolism , Humans , Liver Neoplasms/mortality , Liver Neoplasms/therapy , Male , Neoplasm Staging , Prognosis , Transcription Factors/metabolism , Transduction, Genetic
2.
Mol Cancer ; 12(1): 120, 2013 Oct 10.
Article in English | MEDLINE | ID: mdl-24107265

ABSTRACT

BACKGROUND: Overexpression of Decoy Receptor 3 (DcR3), a soluble member of the tumor necrosis factor receptor superfamily, is a common event in several types of cancer. In renal cell carcinoma (RCC), DcR3 overexpression is associated with lymph node and distant metastasis as well as a poor prognosis. However, the functional role and regulation of DcR3 expression in RCC is so far unknown. METHODS: Modulation of DcR3 expression by siRNA and ectopic gene expression, respectively, was performed in ACHN and 769-P RCC cell lines. Functional effects of a modulated DcR3 expression were analyzed with regard to migration, invasion, adhesion, clonogenicity, and proliferation. Furthermore, quantitative RT-PCR and immunoblot analyses were performed to evaluate the expression of downstream mediators of DcR3. In further experiments, luciferase assays, quantitative RT-PCR and immunoblot analyses were applied to study the regulation of DcR3 expression in RCC. Additionally, an ex vivo tissue slice culture technique combined with immunohistochemistry was used to study the regulation of DcR3 expression in human RCC specimens. RESULTS: Here, we show that DcR3 promotes adhesion, migration and invasiveness of RCC cells. The DcR3-dependent increase in cellular invasiveness is accompanied with an up-regulation of integrin alpha 4, matrixmetalloproteinase 7 and urokinase plasminogen activator (uPA). Further, we identified a signaling pathway regulating DcR3 expression in RCC. Using in vitro experiments as well as an ex vivo RCC tissue slice culture model, we demonstrate that expression of DcR3 is regulated in a PI3K/AKT-dependent manner involving the transcription factor nuclear factor of activated T-cells (NFAT). CONCLUSIONS: Taken together, our results identify DcR3 as a key driver of tumor cell dissemination and suggest DcR3 as a promising target for rational therapy of RCC.


Subject(s)
Carcinoma, Renal Cell/metabolism , Cell Movement , Kidney Neoplasms/metabolism , Phosphatidylinositol 3-Kinases/physiology , Receptors, Tumor Necrosis Factor, Member 6b/metabolism , Carcinoma, Renal Cell/pathology , Cell Adhesion , Cell Line, Tumor , Chromones/pharmacology , Fibronectins/metabolism , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , HEK293 Cells , Humans , Kidney Neoplasms/pathology , Morpholines/pharmacology , NFATC Transcription Factors/metabolism , Neoplasm Invasiveness , Phosphoinositide-3 Kinase Inhibitors , Proto-Oncogene Proteins c-akt/metabolism , RNA, Small Interfering/genetics , Receptors, Tumor Necrosis Factor, Member 6b/genetics , Signal Transduction , Transcription, Genetic
3.
Front Immunol ; 14: 1067352, 2023.
Article in English | MEDLINE | ID: mdl-36798126

ABSTRACT

Hepato-pancreatico-biliary (HPB) malignancies are difficult-to-treat and continue to to have a high mortality and significant therapeutic resistance to standard therapies. Immune oncology (IO) therapies have demonstrated efficacy in several solid malignancies when combined with chemotherapy, whereas response rates in pancreatic ductal adenocarcinoma (PDA) are poor. While promising in hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), there remains an unmet need to fully leverage IO therapies to treat HPB tumors. We therefore defined T cell subsets in the tumor microenvironment of HPB patients utilizing a novel, multiparameter flow cytometry and bioinformatics analysis. Our findings quantify the T cell phenotypic states in relation to checkpoint receptor expression. We demonstrate the presence of CD103+ tissue resident memory T cells (TRM), CCR7+ central memory T cells, and CD57+ terminally differentiated effector cells across all HPB cancers, while the anti-tumor function was dampened by expression of multiple co-inhibitory checkpoint receptors. Terminally exhausted T cells lacking co-stimulatory receptors were more prevalent in PDA, whereas partially exhausted T cells expressing both co-inhibitory and co-stimulatory receptors were most prevalent in HCC, especially in early stage. HCC patients had significantly higher TRM with a phenotype that could confer restored activation in response to immune checkpoint therapies. Further, we found a lack of robust alteration in T cell activation state or checkpoint expression in response to chemotherapy in PDA patients. These results support that HCC patients might benefit most from combined checkpoint therapies, whereas efforts other than cytotoxic chemotherapy will likely be necessary to increase overall T cell activation in CCA and PDA for future clinical development.


Subject(s)
Bile Duct Neoplasms , Biliary Tract Neoplasms , Carcinoma, Hepatocellular , Carcinoma, Pancreatic Ductal , Liver Neoplasms , Pancreatic Neoplasms , Humans , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/pathology , Bile Ducts, Intrahepatic/metabolism , Tumor Microenvironment , Pancreatic Neoplasms
5.
J Clin Invest ; 133(11)2023 06 01.
Article in English | MEDLINE | ID: mdl-36976649

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy that harbors mutations in homologous recombination-repair (HR-repair) proteins in 20%-25% of cases. Defects in HR impart a specific vulnerability to poly ADP ribose polymerase inhibitors and platinum-containing chemotherapy in tumor cells. However, not all patients who receive these therapies respond, and many who initially respond ultimately develop resistance. Inactivation of the HR pathway is associated with the overexpression of polymerase theta (Polθ, or POLQ). This key enzyme regulates the microhomology-mediated end-joining (MMEJ) pathway of double-strand break (DSB) repair. Using human and murine HR-deficient PDAC models, we found that POLQ knockdown is synthetically lethal in combination with mutations in HR genes such as BRCA1 and BRCA2 and the DNA damage repair gene ATM. Further, POLQ knockdown enhances cytosolic micronuclei formation and activates signaling of cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING), leading to enhanced infiltration of activated CD8+ T cells in BRCA2-deficient PDAC tumors in vivo. Overall, POLQ, a key mediator in the MMEJ pathway, is critical for DSB repair in BRCA2-deficient PDAC. Its inhibition represents a synthetic lethal approach to blocking tumor growth while concurrently activating the cGAS-STING signaling pathway to enhance tumor immune infiltration, highlighting what we believe to be a new role for POLQ in the tumor immune environment.


Subject(s)
Adenocarcinoma , Pancreatic Neoplasms , Humans , Animals , Mice , Adenocarcinoma/drug therapy , Adenocarcinoma/genetics , DNA Breaks, Double-Stranded , Cell Line, Tumor , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Homologous Recombination , Signal Transduction , Immunity , Pancreatic Neoplasms
6.
Nat Commun ; 14(1): 797, 2023 02 13.
Article in English | MEDLINE | ID: mdl-36781852

ABSTRACT

The tumor microenvironment (TME) in pancreatic ductal adenocarcinoma (PDAC) is a complex ecosystem that drives tumor progression; however, in-depth single cell characterization of the PDAC TME and its role in response to therapy is lacking. Here, we perform single-cell RNA sequencing on freshly collected human PDAC samples either before or after chemotherapy. Overall, we find a heterogeneous mixture of basal and classical cancer cell subtypes, along with distinct cancer-associated fibroblast and macrophage subpopulations. Strikingly, classical and basal-like cancer cells exhibit similar transcriptional responses to chemotherapy and do not demonstrate a shift towards a basal-like transcriptional program among treated samples. We observe decreased ligand-receptor interactions in treated samples, particularly between TIGIT on CD8 + T cells and its receptor on cancer cells, and identify TIGIT as the major inhibitory checkpoint molecule of CD8 + T cells. Our results suggest that chemotherapy profoundly impacts the PDAC TME and may promote resistance to immunotherapy.


Subject(s)
Adenocarcinoma , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Adenocarcinoma/drug therapy , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Tumor Microenvironment/genetics , Ecosystem , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Sequence Analysis, RNA , Pancreatic Neoplasms
SELECTION OF CITATIONS
SEARCH DETAIL