Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
J Transl Med ; 21(1): 406, 2023 06 22.
Article in English | MEDLINE | ID: mdl-37349774

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) is a common complication in critically ill patients with sepsis and is often associated with a poor prognosis. We aimed to construct and validate an interpretable prognostic prediction model for patients with sepsis-associated AKI (S-AKI) using machine learning (ML) methods. METHODS: Data on the training cohort were collected from the Medical Information Mart for Intensive Care IV database version 2.2 to build the model, and data of patients were extracted from Hangzhou First People's Hospital Affiliated to Zhejiang University School of Medicine for external validation of model. Predictors of mortality were identified using Recursive Feature Elimination (RFE). Then, random forest, extreme gradient boosting (XGBoost), multilayer perceptron classifier, support vector classifier, and logistic regression were used to establish a prognosis prediction model for 7, 14, and 28 days after intensive care unit (ICU) admission, respectively. Prediction performance was assessed using the receiver operating characteristic (ROC) curve and decision curve analysis (DCA). SHapley Additive exPlanations (SHAP) were used to interpret the ML models. RESULTS: In total, 2599 patients with S-AKI were included in the analysis. Forty variables were selected for the model development. According to the areas under the ROC curve (AUC) and DCA results for the training cohort, XGBoost model exhibited excellent performance with F1 Score of 0.847, 0.715, 0.765 and AUC (95% CI) of 0.91 (0.90, 0.92), 0.78 (0.76, 0.80), and 0.83 (0.81, 0.85) in 7 days, 14 days and 28 days group, respectively. It also demonstrated excellent discrimination in the external validation cohort. Its AUC (95% CI) was 0.81 (0.79, 0.83), 0.75 (0.73, 0.77), 0.79 (0.77, 0.81) in 7 days, 14 days and 28 days group, respectively. SHAP-based summary plot and force plot were used to interpret the XGBoost model globally and locally. CONCLUSIONS: ML is a reliable tool for predicting the prognosis of patients with S-AKI. SHAP methods were used to explain intrinsic information of the XGBoost model, which may prove clinically useful and help clinicians tailor precise management.


Subject(s)
Acute Kidney Injury , Sepsis , Humans , Critical Illness , Prognosis , Acute Kidney Injury/etiology , Sepsis/complications , Machine Learning
2.
Zhongguo Zhong Yao Za Zhi ; 48(1): 82-95, 2023 Jan.
Article in Zh | MEDLINE | ID: mdl-36725261

ABSTRACT

With the approach of untargeted metabolomics and correlation analysis, this study aimed to explore the mechanism of Aurantii Fructus from Lingnan region in alleviating dryness by analyzing the different effects of raw Aurantii Fructus(RAF) and processed Aurantii Fructus(PAF) on fecal endogenous metabolism in normal rats. Eighteen Sprague-Dawley(SD) rats were randomly divided into a control group(C), an RAF group(10 g·kg~(-1)), and a PAF group(10 g·kg~(-1)). After seven days of administration, the effects of RAF and PAF on dryness-related indexes were compared, including water intake, fecal water content, salivary secretion, the expression of AQP5, VIP, and 5-HT in the submandibular gland, as well as the expression of AQP3, VIP, and 5-HT in the colon. The fecal samples in each group were determined by LC-MS. Multivariate statistical analysis and Pearson correlation coefficient were used for screening the differential metabolites and metabolic pathways in alleviating dryness of RAF. The results indicated that both RAF and PAF showed certain dryness, and the dryness of RAF was more significant. Moreover, PAF could alleviate dryness of RAF to a certain extent by reducing the water intake, fecal water content, and the expression of AQP3, VIP, and 5-HT in the colon and increasing the salivary secretion and the levels of AQP5, VIP, and 5-HT in the submandibular gland. According to the analysis of fecal metabolomics, 99 and 58 metabolites related to dryness were found in RAF and PAF respectively, where 16 of them played an important role in alleviating dryness of RAF. Pathway analysis revealed that the mechanism of PAF in alleviating dryness of RAF was presumably related to the regulation of riboflavin metabolism, purine metabolism, arginine biosynthesis, pyrimidine metabolism, alanine metabolism, aspartate metabolism, glutamate metabolism, and retinol metabolism pathways. This study suggested that PAF might alleviate dryness of RAF by affecting the metabolic levels of the body, which provides a new basis for further clarifying the processing mechanism of PAF.


Subject(s)
Drugs, Chinese Herbal , Rats , Animals , Drugs, Chinese Herbal/pharmacology , Rats, Sprague-Dawley , Serotonin , Metabolomics , Water
3.
Endocr Pract ; 27(12): 1183-1188, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34216800

ABSTRACT

OBJECTIVE: Agranulocytosis is a rare but serious adverse drug reaction (ADR) of thionamide antithyroid drugs (ATDs). We explored the characteristics of ADRs in patients with hyperthyroidism. METHODS: This retrospective study included 3558 inpatients with Graves disease treated in a Class A Grade 3 hospital between 2015 and 2019. The clinical presentation and laboratory workup of patients with antithyroid drug (ATD)-induced agranulocytosis was analyzed. RESULTS: Agranulocytosis was thought to be caused by ATDs in 36 patients. The hospital length of stay was 12 (10-16) days, and hospitalization costs were approximately $2810.89 ($2156.50-$4164.67). The median duration of ATD therapy prior to agranulocytosis development was 30 (20-40) days. Fever (83.33%) and sore throat (75%) were the most common symptoms as early signs of agranulocytosis. The lowest neutrophil counts were 0.01 (0.00-0.03) × 109/L and 0.14 (0.02-0.29) × 109/L in the methimazole and propylthiouracil groups, respectively (P = .037). The recovery times of agranulocytosis were 9.32 ± 2.89 days and 5.60 ± 4.10 days in the methimazole and propylthiouracil groups, respectively (P = .016). Patients with severe agranulocytosis required a longer time to recover (P < .001) and had closer to normal serum thyroxine and triiodothyronine levels. The interval between the first symptom of agranulocytosis and ATD withdrawal was 1 (0-3) day. CONCLUSIONS: Patients with agranulocytosis needed a long hospital length of stay and incurred high costs. Methimazole was prone to causing a more serious agranulocytosis than propylthiouracil. High thyroid hormone was unlikely to play a role in adverse drug reactions. Patient education is important.


Subject(s)
Agranulocytosis , Hyperthyroidism , Agranulocytosis/chemically induced , Agranulocytosis/epidemiology , Antithyroid Agents/adverse effects , Humans , Methimazole/adverse effects , Propylthiouracil/adverse effects , Retrospective Studies
4.
J Clin Pharm Ther ; 46(6): 1564-1575, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34312870

ABSTRACT

WHAT IS KNOWN AND OBJECTIVE: Mycophenolate mofetil, an ester prodrug of mycophenolic acid (MPA), is widely used to prevent graft rejection after kidney transplantation. The pharmacokinetic (PK) of MPA has been extensively studied, which revealed a high degree of variability. An integrated population PK (PopPK) model of MPA and its main metabolite mycophenolic acid glucuronide (MPAG) was developed using the adult patients who underwent kidney transplant and were administered oral mycophenolate mofetil combined with tacrolimus. METHODS: In total, 917 MPA and 740 MPAG concentrations in191 adult patients were analysed via nonlinear mixed-effects modelling. The concentration-time data were adequately described using a chain compartment model, including central and peripheral compartments for MPA and a central compartment for MPAG. Stepwise forward inclusion and backward elimination procedures were used to investigate the effects of genetic polymorphisms, including in UGT1A8, UGT1A9, UGT2B7, ABCB1, ABCC2, ABCG2, SLCO1B1, SLCO1B3, and HNF1α. RESULTS AND DISCUSSION: These genetic polymorphisms in metabolic enzymes and transporters have no obvious impact on the PK of MPA in adult patients who underwent kidney transplant and were co-treated with tacrolimus. The post-transplant time, serum albumin, and creatinine clearance were identified as significant covariates affecting the PK of MPA and MPAG, which should be considered in the clinical use of mycophenolate mofetil. WHAT IS NEW AND CONCLUSION: We established a PopPK model of MPA and MPAG in Chinese adult patients who underwent kidney transplant and were co-treated with tacrolimus. Genetic polymorphisms in metabolic enzymes and transporters showed no obvious impact on MMF PK. A model-informed dosing strategy was proposed by the established model, and MMF dose adjustment should be based on ALB levels and the post-transplantation time.


Subject(s)
Immunosuppressive Agents/pharmacokinetics , Kidney Transplantation/methods , Membrane Transport Proteins/genetics , Mycophenolic Acid/pharmacokinetics , Tacrolimus/therapeutic use , Adolescent , Adult , Asian People , China , Creatinine/blood , Drug Therapy, Combination , Female , Genotype , Humans , Immunosuppressive Agents/therapeutic use , Male , Middle Aged , Mycophenolic Acid/therapeutic use , Polymorphism, Genetic , Serum Albumin/analysis , Tacrolimus/administration & dosage , Young Adult
5.
Eur J Clin Microbiol Infect Dis ; 39(6): 1043-1052, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31898798

ABSTRACT

As long-standing clinical problems, a series of complicated infections are more difficult to treat due to the development of antibiotic resistance, especially caused by methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus faecium (VRE), and multidrug-resistant Mycobacterium tuberculosis (M. tuberculosis). Moreover, the treatment options available to against these infections are also becoming increasingly limited. Linezolid is the first synthetic oxazolidinone antibiotic with a unique mechanism of action, and its efficacy against Gram-positive bacteria has been clearly demonstrated. However, the limitations of linezolid alone for the treatment of these complicated infections have been reported in the recent years. Combination therapy may be a good approach to enhance efficacy and prevent the development of resistance. In this review, the results of multiple linezolid combination therapies from in vitro, animal studies, and clinical cases for the treatment of MRSA, VRE, and multidrug-resistant M. tuberculosis strains will be discussed, and thus provide more relevant information for clinician in clinical practice.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Bacterial Infections/drug therapy , Linezolid/therapeutic use , Animals , Bacteria/drug effects , Bacteria/isolation & purification , Bacterial Infections/microbiology , Drug Resistance, Bacterial/drug effects , Drug Therapy, Combination , Humans
6.
Lab Invest ; 97(1): 53-69, 2017 01.
Article in English | MEDLINE | ID: mdl-27918554

ABSTRACT

Chemotherapy is the main treatment method of patients with advanced liver cancer. However, drug resistance is a serious problem in the treatment of hepatocellular carcinoma (HCC). Acid sensing ion channel 1a (ASIC1a) is a H+-gated cation channel; it mediates tumor cell migration and invasion, which suggests that it is involved in the development of malignant tumors. Therefore, we studied the relationship between ASIC1a and drug resistance in human hepatocellular carcinoma. In our study, we found that ASIC1a is highly expressed in human HCC tissue, and that its levels were significantly increased in resistant HCC cells Bel7402/FU and HepG2/ADM. Inhibiting the activity of ASIC1a enhances the chemosensitivity of Bel7402/FU and HepG2/ADM cells. The overexpression of ASIC1a contributed to drug resistance in Bel7402 and HepG2 cells, whereas knockdown of ASIC1a overcame drug resistance in Bel7402/FU and HepG2/ADM cells. We further demonstrated that ASIC1a mediated calcium influx, which resulted in the activation of PI3K/AKT signaling and increased drug resistance. These data suggest that ASIC1a/Ca2+/PI3K/AKT signaling represents a novel pathway that regulates drug resistance, thus offering a potential target for chemotherapy of HCC.


Subject(s)
Acid Sensing Ion Channels/metabolism , Calcium/metabolism , Carcinoma, Hepatocellular/metabolism , Drug Resistance, Neoplasm , Liver Neoplasms/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Acid Sensing Ion Channels/genetics , Blotting, Western , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Hep G2 Cells , Humans , Immunohistochemistry , Liver Neoplasms/genetics , Liver Neoplasms/pathology , RNA Interference , Signal Transduction
7.
J Cell Mol Med ; 20(4): 644-54, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26781745

ABSTRACT

Congenital heart disease (CHD) is a worldwide health problem, particularly in young populations. In spite of the advancement and progress in medical research and technology, the underlying causative factors and mechanisms of CHD still remain unclear. Bone morphogenetic protein receptor IA (ALK3) mediates the development of ventricular septal defect (VSD). We have recently found that paired box gene 8 (Pax8) may be the downstream molecule of ALK3. Paired box gene 8 plays an essential role in VSD, and apoptosis and proliferation imbalance leads to septal dysplasia. Recent studies have also disclosed that cellular senescence also participates in embryonic development. Whether programmed senescence exists in cardiac organogenesis has not ever been reported. We hypothesized that together with various biological processes, such as apoptosis, enhanced cellular senescence may occur actively in the development of Pax8 null mice murine hearts. In H9C2 myogenic cells, Pax8 overexpression can rescue caspase-dependent apoptosis induced by ALK3 silencing. Senescent cells and senescence-associated mediators in Pax8 knockout hearts increased compared with the wild-type ones in an age-dependent manner. These results suggest that Pax8 maybe the downstream molecule of ALK3, it mediates the murine heart development perhaps via cellular senescence, which may serve as a mechanism that compensates for the cell loss via apoptosis in heart development.


Subject(s)
Bone Morphogenetic Protein Receptors, Type I/genetics , Heart Septal Defects, Ventricular/genetics , Myocardium/metabolism , Myocytes, Cardiac/metabolism , PAX8 Transcription Factor/genetics , Animals , Animals, Newborn , Apoptosis/genetics , Bone Morphogenetic Protein Receptors, Type I/antagonists & inhibitors , Bone Morphogenetic Protein Receptors, Type I/metabolism , Cell Line , Cellular Senescence , Gene Expression Regulation, Developmental , Heart Septal Defects, Ventricular/metabolism , Heart Septal Defects, Ventricular/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle Development/genetics , Myocardium/pathology , Myocytes, Cardiac/pathology , PAX8 Transcription Factor/deficiency , Primary Cell Culture , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction
8.
Mol Cell Biochem ; 395(1-2): 199-209, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24939363

ABSTRACT

Acid-sensing ion channels (ASICs), a group of Na(+)-selective and Ca(2+)-permeant ligand-gated cation channels, can be transiently activated by extracellular acid. Among seven subunits of ASICs, acid-sensing ion channel 1a (ASIC1a), which is responsible for Ca(2+) transportation, is elevated in response to inflammation, tumor, and ischemic injury in central nervous system and non-neuronal tissues. In this study, we demonstrated for the first time the presence of ASIC1a in rat liver and hepatic stellate cells (HSCs). Furthermore, the expression of ASIC1a was increased in primary HSCs and liver tissues of CCl4-treated rats, suggesting that ASIC1a may play certain role in liver fibrosis. Interestingly, we identified that the level of ASIC1a was significantly elevated in response to platelet-derived growth factor (PDGF) induction in a time- and dose-dependent manner. It was also established that Ca(2+)-transporting ASIC1a was involved in acid-induced injury of different cell types. Moreover, inhibition or silencing of ASIC1a was able to inhibit PDGF-induced pro-fibrogenic effects of activated rat HSCs, including cell activation, de novo synthesis of extracellular matrix components through mitogen-activated protein kinase signaling pathway. Collectively, our studies identified that ASIC1a was expressed in rat liver and HSCs and provided a strong evidence for the involvement of the ASIC1a in the progression of hepatic fibrosis.


Subject(s)
Acid Sensing Ion Channels/metabolism , Carbon Tetrachloride Poisoning/pathology , Hepatic Stellate Cells/cytology , Liver Cirrhosis/chemically induced , Liver/pathology , MAP Kinase Signaling System , Acid Sensing Ion Channels/genetics , Animals , Calcium/metabolism , Carbon Tetrachloride Poisoning/genetics , Carbon Tetrachloride Poisoning/metabolism , Cells, Cultured , Gene Expression Regulation , Hepatic Stellate Cells/pathology , Liver/metabolism , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Male , Platelet-Derived Growth Factor , Rats , Rats, Sprague-Dawley
9.
Ther Drug Monit ; 36(5): 612-7, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24577123

ABSTRACT

BACKGROUND: To evaluate the influence of the single nucleotide polymorphism (SNP) rs 6265 in the brain-derived neurotrophic factor (BDNF) gene and 21 SNPs of the glial cell line-derived neurotrophic factor (GDNF) gene on the efficacy of paroxetine in patients with major depressive disorder (MDD). METHODS: Genotyping for BDNF and GDNF polymorphisms was performed in 298 patients with MDD who started 20 mg paroxetine per day and had their plasma concentrations measured after 6 weeks. The SNPs were selected from the HapMap Chinese ethnic group and literature reports. Changes in the severity of MDD were assessed with the Hamilton Depression Rating Scale (HAM-D) at baseline and at a 6-week follow-up. Paroxetine plasma concentration was measured using high-performance liquid chromatography with fluorescence detection. The Sequenom MassArray system was used for genotyping. RESULTS: At the 6-week follow-up, 219 of the 298 patients (73.5%) were responders and 79 patients (26.5%) were nonresponders to paroxetine treatment. The lower threshold concentration of paroxetine for response was 50 ng/mL, and a linear relationship was found between paroxetine plasma concentration and clinical response. The allele types for the SNPs rs 6265 (P < 0.001), rs 2973049 (P = 0.005), and rs 2216711 (P = 0.006) demonstrated significant associations with paroxetine treatment remission at week 6. CONCLUSIONS: Genetic variants in the BDNF and GDNF regions may be indicators of treatment response to paroxetine in patients with MDD.


Subject(s)
Asian People , Brain-Derived Neurotrophic Factor/metabolism , Depressive Disorder, Major/drug therapy , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Paroxetine/therapeutic use , Polymorphism, Single Nucleotide , Adult , Brain-Derived Neurotrophic Factor/genetics , Depressive Disorder, Major/genetics , Female , Genotype , Glial Cell Line-Derived Neurotrophic Factor/genetics , Humans , Male , Middle Aged , Paroxetine/blood , Selective Serotonin Reuptake Inhibitors/blood , Selective Serotonin Reuptake Inhibitors/therapeutic use
10.
J Inflamm Res ; 17: 5475-5494, 2024.
Article in English | MEDLINE | ID: mdl-39165320

ABSTRACT

Rheumatoid arthritis (RA) is a systemic inflammatory disease whose precise pathogenesis remains mysterious. The involvement of epigenetic regulation in the pathogenesis of RA is one of the most anticipated findings, among which non-coding RNAs (ncRNAs) hold great application promise as diagnostic and therapeutic biomarkers for RA. Extracellular vesicles (EVs) are a heterogeneous group of nano-sized, membrane-enclosed vesicles that mediate intercellular communication and substance exchange, especially the transfer of ncRNAs from donor cells, thereby regulating the functional activities and biological processes of recipient cells. In light of the significant correlation between EVs, ncRNAs, and RA, we first documented expression levels of EVs and their-encapsulated ncRNAs in RA individuals, and methodically discussed their-implicated signaling pathways and phenotypic changes. The last but not least, we paied special attention to the therapeutic benefits of gene therapy reagents specifically imitating or silencing candidate ncRNAs with exosomes as carriers on RA animal models, and briefly highlighted their clinical application advantage and foreground. In conclusion, the present review may be conducive to a deeper comprehension of the diagnostic and therapeutic roles of EVs-enwrapped ncRNAs in RA, with special emphasis on exosomal ncRNAs, which may offer hints for the monitoring and treatment of RA.

11.
Front Pharmacol ; 15: 1288584, 2024.
Article in English | MEDLINE | ID: mdl-38500762

ABSTRACT

Objective: To evaluate the efficacy of the fruits of the medicinal plant Forsythia suspensa (Thunb.) Vahl (FS), in treating inflammation-associated diseases through a meta-analysis of animal models, and also probe deeply into the signaling pathways underlying the progression of inflammation. Materials and methods: All data analyses were performed using Review Manager 5.3 and the results are presented as flow diagrams, risk-of-bias summaries, forest plots, and funnel plots. Summary estimates were calculated using a random- or fixed-effect model, depending on the value of I2. Results: Of the 710 records identified in the initial search, 11 were selected for the final meta-analysis. Each study extracted data from the model and treatment groups for analysis, and the results showed that FS alleviated the inflammatory cytokine levels in serum; oxidant indicator: reactive oxygen species; enzymes of liver function; endotoxin and regulatory cells in blood; and improved the antioxidant enzyme superoxide dismutase. Conclusion: FS effectively reversed the change in acute or chronic inflammation indicators in animal models, and the regulation of multiple channel proteins in inflammatory signaling pathways suggests that FS is a good potential drug for inflammatory disease drug therapy.

12.
J Food Sci ; 89(5): 2611-2628, 2024 May.
Article in English | MEDLINE | ID: mdl-38571450

ABSTRACT

Fructus Aurantii (FA) is an edible and medicinal functional food used worldwide that enhances digestion. Since raw FA (RFA) possesses certain side effects for some patients, processed FA (PFA) is commonly used in clinical practice. This study aimed to establish an objective and comprehensive quality evaluation of the PFA that employed the technique of steaming and fermentation. Combined with the volatile and non-volatile components, as well as the regulation of gut microbiota, the differentiation between RFA and PFA was analyzed. The results showed that the PFA considerably reduced the contents of flavonoid glycosides while increasing hesperidin-7-O-glucoside and flavonoid aglycones. The electronic nose and GC-MS (Gas chromatography/mass spectrometry) effectively detected the variation in flavor between RFA and PFA. Correlation analysis revealed that eight volatile components (relative odor activity value [ROAV] ≥ 0.1) played a key role in inducing odor modifications. The original floral and woody notes were subdued due to decreased levels of linalool, sabinene, α-terpineol, and terpinen-4-ol. After processing, more delightful flavors such as lemon and fruity aromas were acquired. Furthermore, gut microbiota analysis indicated a significant increase in beneficial microbial taxa. Particularly, Lactobacillus, Akkermansia, and Blautia exhibited higher abundance following PFA treatment. Conversely, a lower presence of pathogenic bacteria, including Proteobacteria, Flexispira, and Clostridium. This strategy contributes to a comprehensive analysis technique for the quality assessment of FA, providing scientific justifications for processing FA into high-value products with enhanced health benefits. PRACTICAL APPLICATION: This study provided an efficient approach to Fructus Aurantii quality evaluation. The methods of fermentation and steaming showed improved quality and safety.


Subject(s)
Fermentation , Fruit , Gas Chromatography-Mass Spectrometry , Gastrointestinal Microbiome , Odorants , Taste , Volatile Organic Compounds , Fruit/chemistry , Fruit/microbiology , Odorants/analysis , Gas Chromatography-Mass Spectrometry/methods , Volatile Organic Compounds/analysis , Citrus/chemistry , Humans , Flavoring Agents/analysis , Bacteria/classification , Food Handling/methods , Quality Control , Flavonoids/analysis
13.
Gut Pathog ; 15(1): 15, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36945019

ABSTRACT

BACKGROUND: The pseudo germ-free (PGF) model has been widely used to research the role of intestinal microbiota in drug metabolism and efficacy, while the modelling methods and the utilization of the PGF model are still not standardized and unified. A comprehensive and systematic research of the PGF model on the composition and function of the intestinal microbiota, changes in host cytochrome P450 (CYP450) enzymes expression and intestinal mucosal permeability in four different modelling cycles of the PGF groups are provided in this paper. RESULTS: 16S rRNA gene amplicon sequencing was employed to compare and analyze the alpha and beta diversity, taxonomic composition, taxonomic indicators and predicted function of gut microbiota in the control and PGF groups. Bacterial richness and diversity decreased significantly in the PGF group beginning after the first week of establishment of the PGF model with antibiotic exposure. The PGF group exposed to antibiotics for 4-week-modelling possessed the fewest indicator genera. Moreover, increased intestinal mucosal permeability occurred in the second week of PGF model establishment, indicating that one week of antibiotic exposure is an appropriate time to establish the PGF model. The results of immunoblots revealed that CYP1A2, CYP2C19 and CYP2E1 expression was significantly upregulated in the PGF group compared with the control group, implying that the metabolic clearance of related drugs would change accordingly. The abundance of functional pathways predicted in the gut microbiota changed dramatically between the control and PGF groups. CONCLUSIONS: This study provides information concerning the microbial and CYP450 enzyme expression profiles as a reference for evaluating drug metabolism differences co-affected by gut microbiota and host CYP450 enzymes in the PGF model.

14.
Front Cell Infect Microbiol ; 13: 1215288, 2023.
Article in English | MEDLINE | ID: mdl-38035333

ABSTRACT

Background: Carbapenem-resistant gram-negative bacterial (CRGNB) infections are increasing among kidney transplant recipients, and effective therapeutic options are limited. This study aimed to investigate the efficacy and adverse events associated with combination therapy tigecycline in renal transplant patients with CRGNB infections. Methods: This study retrospectively analyzed 40 Chinese patients with confirmed or suspected CRGNB infections who received tigecycline therapy. The patients' case features and clinical and microbiological data were analyzed. Results: A total of 40 renal transplant recipients received tigecycline therapy for a median duration of 9 (range, 3-25) days. CRGNB isolates were obtained from the organ preservation solution of the donor kidney in 28 patients, with confirmed transmission in 4 patients. Infections were detected in the bloodstream, urinary tract, sputum, and wound. The most prevalent isolates were Klebsiella pneumoniae (75%, 30/40), Acinetobacter baumannii (15%, 6/40), and Escherichia coli (10%, 4/40). A clinical response was observed in 32 (80%) patients. The 28-day all-cause mortality rate was 7.5% (3/40), while the one-year all-cause mortality rate was 2.5% (1/40). While one patient died owing to severe pancreatitis, no serious adverse events related to tigecycline therapy were reported. However, multiple indices of liver function and pancreatitis precursors increased after treatment with tigecycline compared to before treatment. Conclusion: Tigecycline therapy appears to be well tolerated in renal transplant recipients with multidrug-resistant bacterial infections. Nevertheless, attention should be paid to adverse reactions related to tigecycline therapy, especially gastrointestinal reactions, and the related laboratory tests should be closely monitored.


Subject(s)
Gram-Negative Bacterial Infections , Kidney Transplantation , Pancreatitis , Humans , Tigecycline/therapeutic use , Tigecycline/pharmacology , Carbapenems/therapeutic use , Carbapenems/pharmacology , Anti-Bacterial Agents/adverse effects , Kidney Transplantation/adverse effects , Retrospective Studies , Gram-Negative Bacteria , Gram-Negative Bacterial Infections/drug therapy , Microbial Sensitivity Tests
15.
Int Immunopharmacol ; 117: 109997, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36940554

ABSTRACT

BACKGROUND: Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease. It is well known that the formation of positive feedback between synovial hyperplasia and inflammatory infiltration is intimately associated with the occurrence and development of RA. However, the exact mechanisms still remain unknown, making the early diagnosis and therapy of RA difficult. This study was designed to identify prospective diagnostic and therapeutic biomarkers, as well as their-mediated biological mechanisms in RA. METHODS: Three microarray datasets (GSE36700, GSE77298 and GSE153015) and two RNA-sequencing datasets (GSE89408 and GSE112656) of synovial tissues, as well as three other microarray datasets (GSE101193, GSE134087 and GSE94519) of peripheral blood were downloaded for integrated analysis. The differently expressed genes (DEGs) were identified by "limma" package of R software. Then, weight gene co-expression analysis and gene set enrichment analysis were performed to investigate synovial tissue-specific genes and their-mediated biological mechanisms in RA. The expression of candidate genes and their diagnostic value for RA were verified by quantitative real-time PCR and receiver operating characteristic (ROC) curve, respectively. Relevant biological mechanisms were explored through cell proliferation and colony formation assay. The suggestive anti-RA compounds were discovered by CMap analysis. RESULTS: We identified a total of 266 DEGs, which were mainly enriched in cellular proliferation and migration, infection and inflammatory immune signaling pathways. Bioinformatics analysis and molecular validation revealed 5 synovial tissue-specific genes, which exhibited excellent diagnostic value for RA. The infiltration level of immune cells in RA synovial tissue was significantly higher than that in control individuals. Moreover, preliminary molecular experiments suggested that these characteristic genes may be responsible for the high proliferation potential of RA fibroblast-like synoviocytes (FLSs). Finally, 8 small molecular compounds with anti-RA potential were obtained. CONCLUSIONS: We have proposed 5 potential diagnostic and therapeutic biomarkers (CDK1, TTK, HMMR, DLGAP5, and SKA3) in synovial tissues that may contribute to the pathogenesis of RA. These findings may shed light on the early diagnosis and therapy of RA.


Subject(s)
Arthritis, Rheumatoid , Synoviocytes , Humans , Prospective Studies , Synovial Membrane/pathology , Synoviocytes/metabolism , Biomarkers/metabolism , Fibroblasts/metabolism , Microtubule-Associated Proteins/metabolism , Cell Cycle Proteins/metabolism
16.
Life Sci ; 312: 121205, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36410410

ABSTRACT

AIMS: The present study aimed to investigate how Schizophrenia (SCZ)-specific long non-coding RNAs (lncRNAs) served as competing endogenous RNAs (ceRNAs) to modulate the biological functions and pathways involved in the pathogenesis of SCZ. MAIN METHODS: Microarray dataset (GSE54913) was obtained from Gene Expression Omnibus (GEO) database. Differently expressed (DE) lncRNAs and mRNAs were identified by "limma" package. The binding miRNAs of lncRNAs and target mRNAs of shared miRNAs were predicted by miRcode, miRDB, miRTarbase and targetscan databases. Following the ceRNAs theory, interaction network was established and visualized with the cytoscape. Functional enrichment analysis uncovered the concentrated functions and signaling pathways that may be associated with SCZ progression. Protein-protein interaction (PPI) analysis was utilized to determine hub genes. Quantitative real-time PCR (qRT-PCR) and receiver operating characteristic curve (ROC) were performed to evaluate the expression and diagnostic value of ceRNAs members, respectively. KEY FINDINGS: DElncRNAs and DEmRNAs were initially screened from GSE54913 to construct the SCZ-related ceRNAs network with 42 nodes and 53 edges. Functional enrichment analysis revealed that ceRNAs members appeared to be highly correlated with transcription factor activation, cell replication and tumor-related pathways. Once validated, a significant ceRNAs subnetwork was proposed as being implicated in the pathogenesis of SCZ. ROC analysis indicated that SCZ-related ceRNAs members may be sensitive diagnostic biomarkers for SCZ. SIGNIFICANCE: The significant SCZ-related ceRNAs subnetworks (lncRNA-C2orf48A/hsa-miR-20b-5p,-17-5p/KIF23, FOXJ2) may represent promising predictive and diagnostic biomarkers and provide novel insights into the mechanism by which lncRNAs act as microRNA sponges and contribute to the pathogenesis of SCZ.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Schizophrenia , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Gene Regulatory Networks , Schizophrenia/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Computational Biology , Biomarkers , Forkhead Transcription Factors/genetics
17.
J Ethnopharmacol ; 317: 116852, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37390879

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Rheumatoid arthritis (RA) is a common difficult disease with a high disability rate. Siegesbeckia orientalis L. (SO), a Chinese medicinal herb that is commonly used for treating RA in clinical practice. While, the anti-RA effect and the mechanisms of action of SO, as well as its active compound(s) have not been elucidated clearly. AIM OF THE STUDY: We aim to explore the molecular mechanism of SO against RA by using network pharmacology analysis, as well as the in vitro and in vivo experimental validations, and to explore the potential bioactive compound(s) in SO. METHODS: Network pharmacology is an advanced technology that provides us an efficient way to study the therapeutic actions of herbs with the underlying mechanisms of action delineated. Here, we used this approach to explore the anti-RA effects of SO, and then the molecular biological approaches were used to verify the prediction. We first established a drug-ingredient-target-disease network and a protein-protein interaction (PPI) network of SO-related RA targets, followed by the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Further, we used lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages and vascular endothelial growth factor-A (VEGFA)-induced human umbilical vein endothelial cell (HUVEC) models, as well as adjuvant-induced arthritis (AIA) rat model to validate the anti-RA effects of SO. The chemical profile of SO was also determined by using the UHPLC-TOF-MS/MS analysis. RESULTS: Network pharmacology analysis highlighted inflammatory- and angiogenesis-related signaling pathways as promising pathways that mediate the anti-RA effects of SO. Further, in both in vivo and in vitro models, we found that the anti-RA effect of SO is at least partially due to the inhibition of toll like receptor 4 (TLR4) signaling. Molecular docking analysis revealed that luteolin, an active compound in SO, shows the highest degree of connections in compound-target network; moreover, it has a direct binding to the TLR4/MD-2 complex, which is confirmed in cell models. Besides, more than forty compounds including luteolin, darutoside and kaempferol corresponding to their individual peaks were identified tentatively via matching with the empirical molecular formulae and their mass fragments. CONCLUSION: We found that SO and its active compound luteolin exhibit anti-RA activities and potently inhibit TLR4 signaling both in vitro and in vivo. These findings not only indicate the advantage of network pharmacology in the discovery of herb-based therapeutics for treating diseases, but also suggest that SO and its active compound(s) could be developed as potential anti-RA therapeutic drugs.


Subject(s)
Arthritis, Rheumatoid , Asteraceae , Drugs, Chinese Herbal , Humans , Animals , Rats , Molecular Docking Simulation , Luteolin/pharmacology , Luteolin/therapeutic use , Sigesbeckia , Toll-Like Receptor 4 , Vascular Endothelial Growth Factor A , Network Pharmacology , Tandem Mass Spectrometry , Arthritis, Rheumatoid/drug therapy , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use
18.
J Anal Methods Chem ; 2023: 6067647, 2023.
Article in English | MEDLINE | ID: mdl-37305028

ABSTRACT

Fermented Fructus Aurantii (FFA) is widely used in South China for the treatment of functional dyspepsia. Naringin, neohesperidin, and other flavonoids are the main pharmacodynamic components of FFA. A new method is presented for the simultaneous determination of 10 flavonoids (including flavonoid glycosides and aglycones) in FFA using the quantitative analysis of multicomponents via a single marker (QAMS) approach and is used to investigate changes in flavonoids during fermentation. The viability and precision of QAMS were validated against the ultrahigh-performance liquid chromatography (UPLC), with various UPLC instruments and chromatographic conditions being evaluated. Differences between raw Fructus Aurantii (RFA) and FFA were examined using orthogonal partial least squares discrimination analysis (OPLS-DA) and content determination. The influence of various fermentation conditions on flavonoids was also investigated. There were no appreciable differences between the QAMS and the external standard method (ESM), demonstrating that QAMS is an improved method for the determination of FA and FFA. FFA and RFA can be readily distinguished based on OPLS-DA chemometric modelling and the corresponding chromatograms. In addition, the flavonoid changes after fermentation. Fermentation considerably reduced the contents of flavonoid glycosides, while increasing hesperidin-7-O-glucoside and flavonoid aglycones. Moreover, fermentation conditions impact multiple flavonoids in FA, so controlling these conditions is necessary for the quality control of fermented FA products. This QAMS approach is useful for detecting numerous components in RFA and FFA simply, quickly, and efficiently, thus strengthening the quality control of FA and its fermented products.

20.
Front Microbiol ; 14: 1303273, 2023.
Article in English | MEDLINE | ID: mdl-38029160

ABSTRACT

[This corrects the article DOI: 10.3389/fmicb.2022.1030516.].

SELECTION OF CITATIONS
SEARCH DETAIL