Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Environ Res ; 183: 109214, 2020 04.
Article in English | MEDLINE | ID: mdl-32044572

ABSTRACT

Uranium high-efficiency separation from seawater still has some obstacles such as slow sorption rate, poor selectivity and biofouling. Herein, we report a strategy for ultrafast and highly selective uranium extraction from seawater by positively charged conjugated microporous polymers (CMPs). The polymers are synthesized by Sonogashira-Hagihara cross-coupling reaction of 1,3-dibromo-5,5-dimethylhydantoin and 1,3,5-triethynylbenzene, and then modified with oxime and carboxyl via click reaction. The CMPs show an ultrafast sorption (0.46 mg g-1 day-1) for uranium, and possess an outstanding selectivity with a high sorption capacity ratio of U/V (8.4) in real seawater. The study of adsorption process and mechanism indicate that the CMPs skeleton exhibits high affinity for uranium and can accelerate the sorption, and uranium(VI) is adsorbed on the materials by the interaction of oxime/carboxyl ligands and hydantoin. Moreover, the material can be simply loaded onto the filter membrane, and shows remarkable antibiofouling properties against E. coli and S. aureus and excellent uptake capacity for uranium with low concentration in real seawater. This work may provide a promising approach to design adsorbents with fast adsorption rate, high selectivity and antibacterial activity, and expand the thinking over the development of novel and highly efficient adsorbents for uranium extraction from seawater.


Subject(s)
Biofouling , Polymers , Uranium , Biofouling/prevention & control , Escherichia coli , Seawater , Staphylococcus aureus
2.
Pharm Biol ; 55(1): 198-205, 2017 Dec.
Article in English | MEDLINE | ID: mdl-27927057

ABSTRACT

CONTEXT: Duck virus hepatitis (DVH) caused by duck hepatitis A virus type 1 (DHAV-1) is an acute and lethal disease of young ducklings. However, there is still no effective drug to treat DVH. OBJECTIVE: This study assessed the curative effect on DVH of a flavonoid prescription baicalin-linarin-icariin-notoginsenoside R1 (BLIN) as well as the hepatoprotective and antioxidative effects of BLIN. MATERIALS AND METHODS: MTT method was used to test the anti-DHAV-1 ability of BLIN in vitro. We then treated ducklings by BLIN (3 mg per duckling, once a day for 5 days) to evaluate the in vivo efficacy. To study the hepatoprotective and antioxidative roles of BLIN in its curative effect on DVH, we investigated the hepatic injury evaluation biomarkers and the oxidative stress evaluation indices of the ducklings. RESULTS: On duck embryonic hepatocytes, DHAV-1 inhibitory rate of BLIN at 20 µg/mL was 69.3%. The survival rate of ducklings treated by BLIN was about 35.5%, which was significantly higher than that of virus control (0.0%). After the treatment of BLIN, both the hepatic injury and the oxidative stress of infected ducklings alleviated. At the same time, a significant positive correlation (p < 0.05) existed between the hepatic injury indices and the oxidative stress indices. CONCLUSIONS: BLIN showed a significant curative effect on DVH. The antioxidative and hepatoprotective effects of BLIN made great contributions to the treatment of DVH. Furthermore, BLIN is expected to be exploited as a new drug for the clinical treatment of DVH.


Subject(s)
Antioxidants/pharmacology , Antiviral Agents/pharmacology , Ducks , Flavonoids/pharmacology , Hepatitis Virus, Duck/drug effects , Hepatitis, Animal/drug therapy , Hepatocytes/drug effects , Liver/drug effects , Oxidative Stress/drug effects , Poultry Diseases/drug therapy , Animals , Animals, Newborn , Biomarkers/metabolism , Cells, Cultured , Drug Combinations , Ginsenosides/pharmacology , Glycosides/pharmacology , Hepatitis Virus, Duck/pathogenicity , Hepatitis, Animal/metabolism , Hepatitis, Animal/pathology , Hepatitis, Animal/virology , Hepatocytes/metabolism , Hepatocytes/pathology , Hepatocytes/virology , Liver/metabolism , Liver/pathology , Liver/virology , Poultry Diseases/metabolism , Poultry Diseases/pathology , Poultry Diseases/virology , Time Factors
3.
Photosynth Res ; 127(3): 335-45, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26346903

ABSTRACT

Chlorophyll-a (Chl-a) was extracted from cyanobacterial cells and modified to methyl pyropheophorbide-a. The 3-vinyl-chlorin was transformed to zinc complex of the corresponding 3-acetyl-porphyrin. The zinc porphyrin was oxidized to give cis-7,8- and 17,18-dihydroxy-chlorins as well cis-7,8-cis-17,18-tetrahydroxybacteriochlorin. After zinc-demetallation, the isolated cis-7,8- and 17,18-diols were reduced at the 3-acetyl group and triply dehydrated under acidic conditions to afford two regioisomeric 3-vinyl-porphyrins, methyl divinyl-pyroprotopheophorbide-a possessing the 8-vinyl group and 17-propionate residue (one of the divinyl-protoChl-a derivatives) and methyl pyropheophorbide-c 1 possessing the 8-ethyl group and 17-acrylate residue (one of the Chl-c 1 derivatives), respectively. The resulting 7,8,17,18-tetrol was reduced and then acidically treated, giving five-fold dehydrated free base porphyrin, methyl pyropheophorbide-c 2 possessing the 3,8-divinyl groups and 17-acrylate residue (one of the Chl-c 2 derivatives). The visible absorption and fluorescence emission spectra of the three semi-synthetic 3-vinyl-porphyrins in dichloromethane were compared with those of the corresponding 8-ethyl-porphyrin bearing the 17-propionate residue, methyl pyroprotopheophorbide-a (one of the protoChl-a derivatives). The Soret and Qy absorption maxima were shifted to longer wavelengths with an increase of π-conjugation in a molecule: protoChl-a (8-CH2CH3/17-CH2CH2COOCH3) < divinyl-protoChl-a (8-CH=CH2/17-CH2CH2COOCH3) < Chl-c 1 (8-CH2CH3/17-CH=CHCOOCH3) < Chl-c 2 derivatives (8-CH=CH2/17-CH=CHCOOCH3). The 17(1),17(2)-dehydrogenation broadened the absorption bands. The emission maxima were bathochromically shifted in the same order. The reaction mechanism of the present dehydration indicates that the biosynthetic pathway of Chls-c would include the hydroxylation of the 17-propionate reside at the 17(1)-position and successive dehydration to the 17-acrylate residue.


Subject(s)
Chlorophyll/biosynthesis , Chlorophyll/metabolism , Acrylates/metabolism , Biosynthetic Pathways , Chlorophyll/analogs & derivatives , Chlorophyll/chemistry , Chlorophyll A , Optical Phenomena , Spectrometry, Fluorescence
4.
Bioorg Med Chem Lett ; 24(16): 3997-4000, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-24998380

ABSTRACT

A methyl group at the 2-position of methyl mesopyropheophorbide-a was transformed to the 2-formyl group to give methyl mesopyropheophorbide-f, one of the chlorophyll-f analogs. The 2-formylation moved the redmost electronic absorption band in a solution to a longer wavelength and the bathochromic shift was comparable to that by the 3-formylation. Zinc complex of the synthetic compound in solutions showed similar visible absorption spectra as those of naturally occurring chlorophyll-f.


Subject(s)
Chlorophyll/chemical synthesis , Chlorophyll/analogs & derivatives , Chlorophyll/chemistry , Molecular Conformation
5.
Bioorg Med Chem Lett ; 23(8): 2377-9, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23489618

ABSTRACT

When a pyridine solution of zinc methyl 8-vinyl-mesopyropheophorbide-a was irradiated with visible light in the presence of ethanol, ascorbic acid and diazabicylo[2.2.2]octane under nitrogen at room temperature, zinc (7R/S,8E)-8-ethylidene-bacteriochlorin was obtained via 1,4-hydrogenation. The 1,4-photoreduction is similar to the enzymatic reduction of 8-vinyl-chlorophyllides to (E)-8-ethylidene-bacteriochlorins in anoxygenic photosynthetic bacteria producing bacteriochlorophylls-b/g. The resulting zinc 8-ethylidene-bacteriochlorin was readily isomerized to the chemically more stable 8-ethyl-chlorin by further illumination. As a by-product, zinc 8-vinyl-7,8-cis-bacteriochlorin was slightly formed by photoinduced 1,2-hydrogenation of zinc 8-vinyl-chlorin.


Subject(s)
Bacteriochlorophylls/chemistry , Chlorophyll/analogs & derivatives , Vinyl Compounds/chemistry , Zinc/chemistry , Bacteriochlorophylls/metabolism , Chlorophyll/chemistry , Chlorophyll/metabolism , Coordination Complexes/chemistry , Magnesium/chemistry , Photochemical Processes , Vinyl Compounds/metabolism
6.
Talanta ; 257: 124369, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36801756

ABSTRACT

Trace iodine (I2) radioisotopes are commonly regarded as an indicator in nuclear security early warnings. Herein, we develop a visualized I2 real-time monitoring system using electrochemiluminescence (ECL) imaging technology for the first time. In detail, the polymers based on poly [(9,9-dioctylfluorene-alkenyl-2,7-diyl)-alt-co-(1,4-benzo-{2,1',3}-thiadiazole)] are synthesized for iodine detection. An ultra-low limit of detection (0.01 ppt) to iodine can be achieved by adding the modification ratio of tertiary amine onto PFBT as a co-reactive group, which is the lowest detection limit in known iodine vapor sensors. This result can be attributed to the co-reactive group poisoning response mechanism. Considering to the strong ECL behavior of this polymer dots, P-3 Pdots with ultra-low detection limit for iodine is combined with ECL imaging technology to realize the visualized rapid I2 vapor response with high selectivity. ECL imaging component based on ITO electrode can make iodine monitoring system more convenient and suitable for real-time detection in early warning of nuclear emergency. The detection result cannot be affected by vapor of organic compounds, humidity and temperature, indicating a good selectivity to iodine. This work provides a strategy for nuclear emergency early warning, showing its significance in environmental and nuclear security fields.

7.
ACS Appl Mater Interfaces ; 15(26): 31421-31429, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37349266

ABSTRACT

The capture of radioiodine is crucial for nuclear security and environmental protection due to its volatility and superior environmental fluidity. Herein, we propose a strategy of "temperature-dependent gate" based on a swellable conjugated microporous polymer (SCMP) to significantly improve the capture of volatile iodine. The SCMP is constructed via the Buchwald-Hartwig coupling reaction of building monomers containing amines. It possesses a hierarchical pore structure with restricted pores, which can be "opened" and "closed" by changing the temperature. By virtue of the thermal-responsive pore structure, it reaches adsorption equilibrium for iodine in 2 h with a capacity of 4.3 g g-1 at 90 °C and retains 92.8% adsorbed iodine at room temperature. The SCMP also exhibits a high adsorption capacity up to 3.5 g g-1 for dissolved iodine within 10 min, as well as good radiation resistance and high selectivity for iodine against moisture, VOCs, and HNO3 vapor. The mechanism is clarified for effective iodine capture and caging based on the relationship between temperature and the pore structure. This work develops not only a strategy to enhance the capture of gaseous and dissolved iodine but also a new adsorption mechanism for iodine capture, which can be extended to the separation and caging of resources or volatile pollutants in other fields.

8.
J Hazard Mater ; 458: 131912, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37356173

ABSTRACT

Efficient separation and enrichment of uranium from radioactive effluents is of strategic significance for sustainable development of nuclear energy and environmental protection. Macropore structure of adsorbent is conducive to accessibility of the pore and transport of the adsorbate during dynamic adsorption. However, the low specific surface area results in fewer ligand sites and subsequently reduces the adsorption capacity. Herein, we present a novel strategy for efficient dynamic uranium enrichment using polyphosphonate-segmented macroporous organosilicon frameworks (PMOFs). PMOFs are constructed through the copolymerization of diethyl vinylphosphonate and triethoxyvinylsilane, followed by hydrolysis and condensation of the oligomers. The introduction of polyphosphonate segments into the frameworks endows PMOFs with a macroporous structure (31 µm) and a high ligand content (up to 72 wt%). Consequently, the optimized PMOF-3 demonstrated an ultrahigh dynamic adsorption capacity of 114.8 mg/g among covalently conjugated silicon-based materials. Additionally, PMOF-3 achieves a high enrichment factor (120) in the dynamic enrichment of uranium on a fixed bed column, which can be in-situ regenerated with 1 M NaHCO3 as the eluent. This work presents a new strategy for efficient dynamic enrichment of nuclides, which can be extended to the separation of other specific pollutants, shedding new light on adsorbent design and technical innovation.

9.
J Hazard Mater ; 453: 131449, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37086673

ABSTRACT

The World Health Organization has reported radioactive Rn gas as the second leading cause of lung cancer and gives an extreme limit to indoor Radon (Rn) concentration as 100 Bq/m3. To realize rapid and accurate Rn monitoring, we report an efficient visualized electrochemiluminescence (ECL) device for Rn detection with the lowest limit of detection (0.9 Bq/m3/3.6 Bq h m-3) compared to known Rn detection methods and the shortest measurement time (less than 5 h) among non-pump methods. In detail, an efficient Rn probe is prepared by Au nanoparticles, Pb2+ aptamer, as well as NH2-ssDNA co-reactant and then modified on ITO electrodes to obtain Rn detection devices. With tris(2,2'-bipyridyl)ruthenium(II)chloride (Ru(bpy)3Cl2) as an ECL emitter, the devices can exhibit ultra-high sensitivity and selectivity to trace Rn in environment via the ECL quenching caused by 210Pb, the relatively stable decay product of Rn. Furthermore, ECL imaging technology can be applied to realize the visualized Rn detection. An efficient up-response ECL detector was also invented to support this detection device to achieve accurate Rn detection in environment. This work reports noble gas ECL detection for the first time and provides an efficient strategy for rapid and accurate monitoring of trace Rn in environment.

10.
Bioengineered ; 13(4): 10564-10577, 2022 04.
Article in English | MEDLINE | ID: mdl-35442158

ABSTRACT

Endoplasmic reticulum stress (ER stress) is a double-edged sword in the occurrence and development of malignant cancer. The aim of this study was to explore the roles of ER stress in metastasis and epithelial-mesenchymal transitionin triple-negative breast cancer (TNBC) and potential mechanisms. In this study, 4-PBA was administrated to inhibit the ER stress. Cell viability was evaluated using a cell counting kit-8 assay. Cell migration and invasion were identified by wound healing and transwell assay, respectively. Levels of MMP2 and MMP9 were measured by enzyme-linked immunosorbent assay and immunohistochemical staining. Western blot assay was used to assess the levels of ER stress-related proteins, Syndecan-1 (SDC-1)/Syntenin-1 (SDCBP-1)/SRY-related HMG-box 4 (SOX4) signaling and Wnt/ß-catenin signaling. Moreover, a xenograft mice model was conducted to confirm the role of ER stress in TNBC. The data indicate that the ability of viability and metastasis of breast cancer cells were stronger than normal mammary epithelial cells. More aggressiveness was manifested in TNBC cells than that in non-TNBC cells. 4-PBA significantly suppressed the viability, migration, and invasion in BC cells and inhibited the SDC/SDCBP/SOX4 axis and Wnt/ß-catenin signaling. Furthermore, heat shock protein A4 (HSPA4) overexpression stimulated ER stress and activated the SDC-1/SDCBP-1/SOX4 pathway and Wnt/ß-catenin signaling. Animal experiments showed similar results that 4-PBA repressed tumor growth and inactivated the two pathways, while HSPA4 overexpression reversed the effects of 4-PBA. In summary, inhibition of ER stress inhibited TNBC viability, migration, and invasion by Syntenin/SOX4/Wnt/ß-catenin pathway via regulation of HSPA4 in vivo and in vitro.


Subject(s)
HSP110 Heat-Shock Proteins , Triple Negative Breast Neoplasms , Wnt Signaling Pathway , Animals , Cell Line, Tumor , Cell Movement , Cell Proliferation , Cell Survival , Endoplasmic Reticulum Stress , HSP110 Heat-Shock Proteins/genetics , Humans , Mice , SOXC Transcription Factors/metabolism , Syntenins/metabolism , Triple Negative Breast Neoplasms/pathology , beta Catenin/metabolism
11.
ACS Appl Mater Interfaces ; 14(7): 9408-9417, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35147033

ABSTRACT

Uranium extraction is highly challenging because of low uranium concentration, high salinity, and a large number of competing ions in different environments. The template strategy is developed to address the defect of poor selectivity, but the adsorption capacity is limited by cavity blocking during the preparation of materials. Herein, a two-dimensional (2D) imprinting strategy is adopted to design 2D imprinted networks with specific nanotraps for effective uranium capture. The imprinted networks are established through the condensation polymerization of uranyl complexes, which are formed by aromatic building units coordinating with uranyl ions on the equatorial plane. Different from traditional imprinting materials that contain many invalid cavities (buried cavities or unreleased cavities), the as-prepared adsorbents possess tailored 2D nanotraps, which are open and specific to uranyl. Thus, the optimized networks not only show excellent selectivity for uranium (Kd = 964,500 mL/g in multi-ion solution) and slight disturbance of high salinity but also possess an ultrahigh adsorption capacity of 1365.7 mg/g. In addition, this adsorbent shows a high extraction efficiency for uranium under a wide range of pH conditions and exhibits good regeneration performance. This work proposes a pioneering strategy of 2D imprinting networks to capture uranium specifically with high capacity and can be applied to material design in many other fields.

12.
ACS Appl Mater Interfaces ; 14(6): 7826-7835, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35107248

ABSTRACT

A booming demand for energy highlights the importance of an emergency cleanup system in the nuclear industry or hydrogen-energy sector to reduce the risk of hydrogen explosion and decrease tritium emission. The properties of the catalyst determine the efficiency of hydrogen isotope enrichment and removal in the emergency cleanup system. However, the aggregation behavior of Pt, deactivation effect of water vapor, and isotope effect induce a continuous decrease in the catalytic activity of the Pt catalyst. Herein, a de novo design of a Pt nanocatalyst is proposed for catalytic oxidation of the hydrogen isotope via modification of a conjugated microporous polymer onto honeycomb cordierite as a Pt support. The conjugated microporous polymer creates a microporous and hydrophobic environment to attenuate the deactivation effect of water vapor and shape Pt nanoparticles with a diameter of around 2.4 nm. Thus, the as-prepared catalysts exhibit excellent catalytic performance in the range of 25-65 °C and high space velocity (≤30 000 h-1) and a stable and high catalytic activity during 487 h of continuous and intermittent operation. Importantly, the charge of the Pt nanoparticles is redistributed by the conjugated skeletons, leading to a decreased energy barrier in the rate-limiting step of hydrogen isotope oxidation and a reduced isotope effect.

13.
Nanotechnology ; 22(6): 065501, 2011 Feb 11.
Article in English | MEDLINE | ID: mdl-21212478

ABSTRACT

A fluorescence resonance energy transfer (FRET) based ratiometric sensing system for mercury ions is built in nano-sized core/corona micelles formed by a poly(ethylene oxide)-b-polystyrene diblock copolymer. For this system, a hydrophobic fluorescein derivative (FLS-C12), which serves as the energy transfer donor, is incorporated into the micelle core during the micelle formation; and a spirolactam-rhodamine derivative (RhB-CS) as a probe for mercury ions is located at the micelle core/corona interface. An efficient ring-opening reaction of RhB-CS induced by mercury ions generates the long-wavelength rhodamine B fluorophore which can act as the energy acceptor, affording the micelle nanoparticles the water-dispersible FRET-based ratiometric detection system for mercury ions, with a detection limit of 0.1 µM in water. The donor and the probe fluorophores, with their structure being appropriately modified, can strongly bind (non-covalently) to the specific sites of the micelles and form a stable ratiometric sensor in water and in some biological fluids. In addition, with the water-soluble and biocompatible poly(ethylene oxide) (PEO) as the corona of the micelles, the nano-sized sensing system can readily permeate through cell membrane and detect intracellular Hg(2+) level changes.


Subject(s)
Biosensing Techniques/methods , Fluorescence Resonance Energy Transfer/methods , Mercury/analysis , Micelles , Nanoparticles/chemistry , Animals , Cattle , Cell Proliferation/drug effects , Cell Survival/drug effects , Female , Fluorescein/analysis , Fluorescein/chemistry , Fluorescein/pharmacology , HeLa Cells , Humans , Intracellular Space/chemistry , Mercury/blood , Mercury/chemistry , Mercury/urine , Mice , Nuclear Magnetic Resonance, Biomolecular , Sensitivity and Specificity , Water/chemistry
14.
ACS Appl Mater Interfaces ; 13(5): 6322-6330, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33508932

ABSTRACT

Separation of uranium and cesium from low-level radioactive effluents (LLRE) is of great significance for sustainable development of the nuclear industry and for the environment. However, high salinity and massive coexisting ions of LLRE are giant challenges for the separation. To address the challenges, we report a strategy for efficient and simultaneous separation of uranium and cesium from a high-salt environment by dual ion-imprinted mesoporous silica based on multiple interactions. The as-prepared adsorbents can reach equilibrium for uranium and cesium within 1 h with a maximum capacity of 221.7 mg U g-1 and 34.5 mg Cs g-1. The sorption mechanism demonstrates that the highly active phenolic hydroxyl groups of imprinted cavities can extract uranium and cesium effectively through multiple interactions, including coulomb attraction, redox, ion exchange, and complexation. The synergism of multiple interactions and imprinted cavity endows the sorbent with good selectivity for uranium and cesium over other cations and with excellent salt tolerance. This work demonstrates a new strategy of selective extraction of nuclides by multifunction adsorbent through multiple interactions.

15.
Langmuir ; 26(22): 17764-71, 2010 Nov 16.
Article in English | MEDLINE | ID: mdl-20958017

ABSTRACT

The selective and sensitive detection methods for toxic transition-metal ions, which are rapid, facile, and applicable to the environmental and biological milieus, are of great importance. In this study, we designed a ß-CD-based ratiometric sensor for detecting mercury ions in aqueous media, some biological fluids, and live cells. In this sensing platform, the thiocarbamido-containing probe dye was covalently linked onto the hydrophilic ß-CD rim, which is conducive to complexing with metal ion, while the donor dye was anchored inside hydrophobic ß-CD cavity via the adamantyl moiety, which is good for avoiding self-aggregation and enhancing the quantum yield of the donor dye. Upon associating with mercury ion, the probe dye undergoes ring-opening process and serves as the energy acceptor and constitutes the FRET system with the donor dye; by this way ratiometric detection of mercury ion in water can be realized with the detection limit of 10 nM. The cyclodextrin plays a crucial role for the sensing system; it not only accommodates both the donor dye and the probe dye which can form FRET system upon addition of Hg(2+) but also makes the sensor water-soluble and cell membrane permeable. This nontoxic sensing platform can be used for mercury ion detection in aqueous medium, biological fluids, and live cells (L929 and Hela). We also found that, upon being taken up by L929 cells, the sensor exhibited no cytotoxicity, and the cell proliferation was not affected.


Subject(s)
Chemistry Techniques, Analytical/instrumentation , Mercury/analysis , Mercury/metabolism , Water/chemistry , beta-Cyclodextrins/chemistry , Adamantane/chemistry , Animals , Cattle , Cell Survival , Fluorescence Resonance Energy Transfer , Fluorescent Dyes/chemistry , HeLa Cells , Humans , Hydrophobic and Hydrophilic Interactions , Mercury/blood , Mercury/urine , Mice , Urea/chemistry
16.
Langmuir ; 26(6): 4529-34, 2010 Mar 16.
Article in English | MEDLINE | ID: mdl-19852476

ABSTRACT

Heightened concern for human health and environmental protection has stimulated active research on the potential impact of transition-metal ions and their toxic effects, thus it is very demanding to design transition-metal ion detection methods that are cost-effective, rapid, facile, and applicable to the environmental and biological milieus. In this study, we demonstrated an alternative strategy for constructing a water-soluble FRET-based ratiometric sensor for ferric ion detection by forming a supramolecular beta-cyclodextrin/dye complex. This water-soluble FRET system consists of a dansyl-linked beta-cyclodextrin (beta-CD-DNS) and a spirolactam rhodamine-linked adamantane (AD-SRhB). The dansyl moiety serves as the donor, and the spirolactam-rhodamine B derivative (SRhB) was chosen as a sensitive, selective chemosensor for Fe(III) ions and a very efficient ring-opening reaction induced by Fe(III) generates the long-wavelength rhodamine B fluorophore that can act as the energy acceptor. Moreover, the adamantyl (AD) group, which is known for its capability to form stable host-guest inclusion complexes with beta-CD derivatives, was covalently linked to the spirolactam rhodamine, thus the adamantyl moiety of the ion-recognition element can be anchored inside the CD cavity. In this way, the donor-acceptor separation can be kept within the critical Forster distance; accordingly, energy transfer can take place from the donor (dansyl) to the acceptor (rhodamine derivative/Fe(III) complex), and thus ratiometric detection for Fe(III) in an aqueous medium can be fulfilled. This FRET-based supramolecular sensor can be readily formed via an inclusion process using the donor part and the acceptor part, hence this strategy could afford a robust approach for constructing a wide range of FRET-based water-soluble sensing systems simply by assembling a specifically predesigned donor-linked CD and acceptor-linked adamantane.


Subject(s)
Cyclodextrins/chemistry , Ferric Compounds/analysis , Water/chemistry , Solubility
17.
Adv Healthc Mater ; 9(13): e1901778, 2020 07.
Article in English | MEDLINE | ID: mdl-32484315

ABSTRACT

High-dose ionizing radiation can lead to death from the unrecoverable damage of the gastrointestinal tract, especially the small intestine. Until now, the lack of predilection for the small intestine and rapid clearance by digestive fluids limit the effects of conventional radioprotective formulations. Herein, an innovative radioprotective strategy is developed for attenuating gastrointestinal syndrome by smart oral administration nanodrugs. The nanodrug is first engineered by encapsulating thalidomide into chitosan-based nanoparticles, and then coated with polydopamine. The behaviors of gastric acid-resistance, and pH-switchable controlled release in the small intestine enhance the oral bioavailability of the pyroptosis inhibitor thalidomide. In a mouse model, nanodrugs demonstrate prolonged small intestinal residence time and accessibility to the crypt region deep in the mucus. Furthermore, the nanodrugs ameliorate survival rates of C57BL/6J mice irradiated by 14 Gy of subtotal body irradiation and also maintain their epithelial integrity. This work may provide a promising new approach for efficiently attenuating lethal radiation-induced gastrointestinal syndrome and add insights into developing nanodrug-based therapies with improved efficacy and minimum side effects.


Subject(s)
Radiation-Protective Agents , Administration, Oral , Animals , Indoles , Mice , Mice, Inbred C57BL , Polymers
18.
J Hazard Mater ; 368: 214-220, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30677653

ABSTRACT

Porous aromatic frameworks with structural/pore controllability and rigid skeletons present a series of emerging materials for solid phase extraction. However, the complicated monomers or noble metal catalyst, and cumbersome synthetic strategies result in high-cost engineering application of porous aromatic frameworks. Herein, a simple synthetic strategy of porous aromatic frameworks with phosphonate is reported for efficient separation of uranium from radioactive effluents, and petroleum pitch, a low-cost and widely available material, was used as the building block. 4-Vinylbenzylphosphonic acid diethyl ester monomer is introduced to chelate uranium and to improve the aqueous dispersibility of sorbents. The phosphonate functionalized PPAFs take 40 min to achieve adsorption equilibrium, and the maximum sorption capacity reaches 147 mg U/g at pH 1.0. PPAFs exhibit good selectivity over various competing ions and excellent radioresistance in acidic solution. Besides, PPAFs remain almost 100% sorption efficiency and intact structure over 5 sorption-desorption cycles with alkaline eluent. This work not only applies a low-cost material for uranium extraction, but a new idea for the utilization of waste and recycling of resources.

19.
Colloids Surf B Biointerfaces ; 173: 842-850, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30551300

ABSTRACT

Multifunctional nanohybrids are attracting increasing attention for potential biomedical applications such as bioimaging and drug delivery due to their combined advantages of individual components. However, challenges in the improvement of their synthesis and colloidal stability to facilitate practical biomedical applications still remain. In this work, we report an efficient synthetic approach to fabricate magnetofluorescent nanohybrid (IO-PG-CD) comprising fluorescent carbon dots (CDs) and magnetic iron oxide nanoparticles (IOs) through polyglycerol (PG) mediated covalent linkage in aqueous media. CDs and IOs are first grafted with PG layer, and then functionalized with carboxyl and amino groups, respectively. The resulting CD-PG-COOH and IO-PG-NH2 handled as simple chemical compounds are integrated through EDC/NHS crosslinking to obtain the desired IO-PG-CD nanohybrid. The unprecedented hydrophilicity of PG layer endows IO-PG-CD nanohybrid with excellent colloidal stability in various physiological media, facilitating biomedical applications in vitro and in vivo. IO-PG-CD nanohybrid exhibits low cytotoxicity and its uptake by cells can be obviously enhanced by external magnetic attraction. The internalized IO-PG-CD nanohybrid emits multicolor fluorescence as observed by confocal fluorescence microscopy, demonstrating much better photostability than the nanoparticle labeled with organic dye. Taking advantage of enormous chelating carboxyl groups on the surface of IO-PG-CD nanohybrid, platinum-based anticancer drug was loaded on the surface (IO-PG-CD/Pt) through complexation and delivered into cancer cells in a magnetically enhanced manner, killing the cancer cells efficiently in vitro. Moreover, in vivo cancer therapy indicates that the external magnetic attraction also obviously improves the anticancer efficacy of IO-PG-CD/Pt in HeLa subcutaneous xenografts.


Subject(s)
Colloids/chemistry , Ferric Compounds/chemistry , Glycerol/chemistry , Nanoparticles/chemistry , Nanotubes, Carbon/chemistry , Neoplasms/therapy , Polymers/chemistry , Quantum Dots/chemistry , Animals , Antineoplastic Agents/chemistry , Carbon/chemistry , Cell Survival , Drug Delivery Systems , Fluorescent Dyes/chemistry , HeLa Cells , Human Umbilical Vein Endothelial Cells , Humans , Hydrodynamics , Magnetic Fields , Magnetics , Mice, Nude , Microwaves , Nanomedicine , Neoplasms/pathology , Particle Size , Powders , Spectroscopy, Fourier Transform Infrared , Surface Properties , Temperature , Xenograft Model Antitumor Assays
20.
J Mater Chem B ; 6(20): 3297-3304, 2018 May 28.
Article in English | MEDLINE | ID: mdl-32254387

ABSTRACT

With the rapid development and wide application of nuclear technology, radiation hazards present an enormous challenge for biological and medical safety. Currently, one of the major challenges in radiation protection is the discovery of more effective and less toxic radioprotectant agents. Herein, we present a strategy for high radioprotective activity via the assembly of the PprI protein with a reactive oxygen species (ROS)-sensitive polymeric carrier. The graft copolymer CS-CP5K-PEG is synthesized via the reaction of PEG-CP5K-NHS and CS, which is used for the assembly of the PprI protein. The assembly complex is less toxic to human cells and more stable to enzymatic cleavage than the PprI protein. The ROS degradability of the CS-CP5K-PEG polymer is confirmed via the SIN-1 mediated cleavage of CP5K peptide linkers through the shift in their GPC chromatogram. The radioprotection activity of the assembly complex is remarkably improved both in HUVECs and C57BL/6 mice compared to that of the PprI protein, showing more beneficial effects than the PprI protein. Thus, this work may provide a new approach for highly effective radioprotection.

SELECTION OF CITATIONS
SEARCH DETAIL