Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Nucleic Acids Res ; 50(4): 2051-2073, 2022 02 28.
Article in English | MEDLINE | ID: mdl-35100392

ABSTRACT

Conflicts between transcription and replication machinery are a potent source of replication stress and genome instability; however, no technique currently exists to identify endogenous genomic locations prone to transcription-replication interactions. Here, we report a novel method to identify genomic loci prone to transcription-replication interactions termed transcription-replication immunoprecipitation on nascent DNA sequencing, TRIPn-Seq. TRIPn-Seq employs the sequential immunoprecipitation of RNA polymerase 2 phosphorylated at serine 5 (RNAP2s5) followed by enrichment of nascent DNA previously labeled with bromodeoxyuridine. Using TRIPn-Seq, we mapped 1009 unique transcription-replication interactions (TRIs) in mouse primary B cells characterized by a bimodal pattern of RNAP2s5, bidirectional transcription, an enrichment of RNA:DNA hybrids, and a high probability of forming G-quadruplexes. TRIs are highly enriched at transcription start sites and map to early replicating regions. TRIs exhibit enhanced Replication Protein A association and TRI-associated genes exhibit higher replication fork termination than control transcription start sites, two marks of replication stress. TRIs colocalize with double-strand DNA breaks, are enriched for deletions, and accumulate mutations in tumors. We propose that replication stress at TRIs induces mutations potentially contributing to age-related disease, as well as tumor formation and development.


Subject(s)
B-Lymphocytes/metabolism , DNA Replication , Genomic Instability , Animals , DNA Breaks, Double-Stranded , DNA Repair , DNA Replication/genetics , Mice , Transcription, Genetic
2.
BMC Genomics ; 24(1): 750, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38057756

ABSTRACT

BACKGROUND: Improving the egg production of goose is a crucial goal of breeding, because genetics is the key factor affecting egg production. Thus, we sequenced the genomes of 55 Chinese indigenous geese from six breeds, which were divided into the high egg-laying group (ZE, HY, and SC) and low egg-laying group (ZD, LH, and ST). Based on the results of the inter-population selection signal analysis, we mined the selected genome regions in the high egg-laying germplasm population to identify the key candidate genes affecting the egg-laying traits. RESULTS: According to the whole-genome sequencing data, the average sequencing depth reached 11.75X. The genetic relationships among those six goose breeds coincided with the breed's geographical location. The six selective signal detection results revealed that the most selected regions were located on Chr2 and Chr12. In total, 12,051 single-nucleotide polymorphism (SNP) sites were selected in all six methods. Using the enrichment results of candidate genes, we detected some pathways involved in cell differentiation, proliferation, and female gonadal development that may cause differences in egg production. Examples of these pathways were the PI3K-Akt signaling pathway (IGF2, COMP, and FGFR4), animal organ morphogenesis (IGF2 and CDX4), and female gonad development (TGFB2). CONCLUSION: On analyzing the genetic background of six local goose breeds by using re-sequencing data, we found that the kinship was consistent with their geographic location. 107 egg-laying trait-associated candidate genes were mined through six selection signal analysis. Our study provides a critical reference for analyzing the molecular mechanism underlying differences in reproductive traits and molecular breeding of geese.


Subject(s)
Geese , Phosphatidylinositol 3-Kinases , Animals , Female , Geese/genetics , Phosphatidylinositol 3-Kinases/genetics , Oviposition , Genome , Polymorphism, Single Nucleotide
3.
Curr Issues Mol Biol ; 44(2): 483-497, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35723319

ABSTRACT

Sheep testes undergo a dramatic rate of development with structural changes during pre-sexual maturity, including the proliferation and maturation of somatic niche cells and the initiation of spermatogenesis. To explore this complex process, 12,843 testicular cells from three males at pre-sexual maturity (three-month-old) were sequenced using the 10× Genomics ChromiumTM single-cell RNA-seq (scRNA-seq) technology. Nine testicular somatic cell types (Sertoli cells, myoid cells, monocytes, macrophages, Leydig cells, dendritic cells, endothelial cells, smooth muscle cells, and leukocytes) and an unknown cell cluster were observed. In particular, five male germ cell types (including two types of undifferentiated spermatogonia (Apale and Adark), primary spermatocytes, secondary spermatocytes, and sperm cells) were identified. Interestingly, Apale and Adark were found to be two distinct states of undifferentiated spermatogonia. Further analysis identified specific marker genes, including UCHL1, DDX4, SOHLH1, KITLG, and PCNA, in the germ cells at different states of differentiation. The study revealed significant changes in germline stem cells at pre-sexual maturation, paving the way to explore the candidate factors and pathways for the regulation of germ and somatic cells, and to provide us with opportunities for the establishment of livestock stem cell breeding programs.

4.
BMC Genomics ; 22(1): 127, 2021 Feb 18.
Article in English | MEDLINE | ID: mdl-33602144

ABSTRACT

BACKGROUND: The quality and yield of wool determine the economic value of the fine-wool sheep. Therefore, discovering markers or genes relevant to wool traits is the cornerstone for the breeding of fine-wool sheep. In this study, we used the Illumina HiSeq X Ten platform to re-sequence 460 sheep belonging to four different fine-wool sheep breeds, namely, Alpine Merino sheep (AMS), Chinese Merino sheep (CMS), Aohan fine-wool sheep (AHS) and Qinghai fine-wool sheep (QHS). Eight wool traits, including fiber diameter (FD), fiber diameter coefficient of variance (FDCV), fiber diameter standard deviation (FDSD), staple length (SL), greasy fleece weight (GFW), clean wool rate (CWR), staple strength (SS) and staple elongation (SE) were examined. A genome-wide association study (GWAS) was performed to detect the candidate genes for the eight wool traits. RESULTS: A total of 8.222 Tb of raw data was generated, with an average of approximately 8.59X sequencing depth. After quality control, 12,561,225 SNPs were available for analysis. And a total of 57 genome-wide significant SNPs and 30 candidate genes were detected for the desired wool traits. Among them, 7 SNPs and 6 genes are related to wool fineness indicators (FD, FDCV and FDSD), 10 SNPs and 7 genes are related to staple length, 13 SNPs and 7 genes are related to wool production indicators (GFW and CWR), 27 SNPs and 10 genes associated with staple elongation. Among these candidate genes, UBE2E3 and RHPN2 associated with fiber diameter, were found to play an important role in keratinocyte differentiation and cell proliferation. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment results, revealed that multitude significant pathways are related to keratin and cell proliferation and differentiation, such as positive regulation of canonical Wnt signaling pathway (GO:0090263). CONCLUSION: This is the first GWAS on the wool traits by using re-sequencing data in Chinese fine-wool sheep. The newly detected significant SNPs in this study can be used in genome-selective breeding for the fine-wool sheep. And the new candidate genes would provide a good theoretical basis for the fine-wool sheep breeding.


Subject(s)
Genome-Wide Association Study , Wool , Animals , China , Phenotype , Sheep/genetics , Sheep, Domestic
5.
BMC Genomics ; 22(1): 78, 2021 Jan 23.
Article in English | MEDLINE | ID: mdl-33485316

ABSTRACT

BACKGROUND: Copy number variation (CNV) is an important source of genetic variation that has a significant influence on phenotypic diversity, economically important traits and the evolution of livestock species. In this study, the genome-wide CNV distribution characteristics of 32 fine-wool sheep from three breeds were analyzed using resequencing. RESULTS: A total of 1,747,604 CNVs were detected in this study, and 7228 CNV regions (CNVR) were obtained after merging overlapping CNVs; these regions accounted for 2.17% of the sheep reference genome. The average length of the CNVRs was 4307.17 bp. "Deletion" events took place more frequently than "duplication" or "both" events. The CNVRs obtained overlapped with previously reported sheep CNVRs to variable extents (4.39-55.46%). Functional enrichment analysis showed that the CNVR-harboring genes were mainly involved in sensory perception systems, nutrient metabolism processes, and growth and development processes. Furthermore, 1855 of the CNVRs were associated with 166 quantitative trait loci (QTL), including milk QTLs, carcass QTLs, and health-related QTLs, among others. In addition, the 32 fine-wool sheep were divided into horned and polled groups to analyze for the selective sweep of CNVRs, and it was found that the relaxin family peptide receptor 2 (RXFP2) gene was strongly influenced by selection. CONCLUSIONS: In summary, we constructed a genomic CNV map for Chinese indigenous fine-wool sheep using resequencing, thereby providing a valuable genetic variation resource for sheep genome research, which will contribute to the study of complex traits in sheep.


Subject(s)
DNA Copy Number Variations , Wool , Animals , China , Chromosome Mapping , Humans , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Sheep/genetics
6.
Nucleic Acids Res ; 47(8): 4124-4135, 2019 05 07.
Article in English | MEDLINE | ID: mdl-30783677

ABSTRACT

A proper DNA damage response (DDR) is essential to maintain genome integrity and prevent tumorigenesis. DNA double-strand breaks (DSBs) are the most toxic DNA lesion and their repair is orchestrated by the ATM kinase. ATM is activated via the MRE11-RAD50-NBS1 (MRN) complex along with its autophosphorylation at S1981 and acetylation at K3106. Activated ATM rapidly phosphorylates a vast number of substrates in local chromatin, providing a scaffold for the assembly of higher-order complexes that can repair damaged DNA. While reversible ubiquitination has an important role in the DSB response, modification of the newly identified ubiquitin-like protein ubiquitin-fold modifier 1 and the function of UFMylation in the DDR is largely unknown. Here, we found that MRE11 is UFMylated on K282 and this UFMylation is required for the MRN complex formation under unperturbed conditions and DSB-induced optimal ATM activation, homologous recombination-mediated repair and genome integrity. A pathogenic mutation MRE11(G285C) identified in uterine endometrioid carcinoma exhibited a similar cellular phenotype as the UFMylation-defective mutant MRE11(K282R). Taken together, MRE11 UFMylation promotes ATM activation, DSB repair and genome stability, and potentially serves as a therapeutic target.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/genetics , DNA, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , MRE11 Homologue Protein/genetics , Protein Processing, Post-Translational , Proteins/genetics , Recombinational DNA Repair , A549 Cells , Acetylation , Acid Anhydride Hydrolases , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Chromatin/metabolism , Chromatin/pathology , DNA Breaks, Double-Stranded , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , DNA, Neoplasm/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , HEK293 Cells , Humans , MRE11 Homologue Protein/antagonists & inhibitors , MRE11 Homologue Protein/metabolism , Mutation , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Osteoblasts/metabolism , Osteoblasts/pathology , Phosphorylation , Protein Binding , Proteins/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Ubiquitination
7.
Proc Natl Acad Sci U S A ; 115(35): 8793-8798, 2018 08 28.
Article in English | MEDLINE | ID: mdl-30104346

ABSTRACT

Collapsed replication forks, which are a major source of DNA double-strand breaks (DSBs), are repaired by sister chromatid recombination (SCR). The Mre11-Rad50-Nbs1 (MRN) protein complex, assisted by CtIP/Sae2/Ctp1, initiates SCR by nucleolytically resecting the single-ended DSB (seDSB) at the collapsed fork. The molecular architecture of the MRN intercomplex, in which zinc hooks at the apices of long Rad50 coiled-coils connect two Mre112-Rad502 complexes, suggests that MRN also structurally assists SCR. Here, Rad50 ChIP assays in Schizosaccharomyces pombe show that MRN sequentially localizes with the seDSB and sister chromatid at a collapsed replication fork. Ctp1, which has multivalent DNA-binding and DNA-bridging activities, has the same DNA interaction pattern. Provision of an intrachromosomal repair template alleviates the nonnucleolytic requirement for MRN to repair the broken fork. Mutations of zinc-coordinating cysteines in the Rad50 hook severely impair SCR. These data suggest that the MRN complex facilitates SCR by linking the seDSB and sister chromatid.


Subject(s)
Chromatids/metabolism , Chromosomes, Fungal/metabolism , DNA Repair/physiology , DNA, Fungal/metabolism , Exodeoxyribonucleases/metabolism , Multiprotein Complexes/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/metabolism , Chromatids/genetics , Chromosomes, Fungal/genetics , DNA Replication/physiology , DNA, Fungal/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Exodeoxyribonucleases/genetics , Multiprotein Complexes/genetics , Mutation , Schizosaccharomyces/genetics , Schizosaccharomyces pombe Proteins/genetics
8.
EMBO Rep ; 19(5)2018 05.
Article in English | MEDLINE | ID: mdl-29622660

ABSTRACT

In Saccharomyces cerevisiae, genome stability depends on RNases H1 and H2, which remove ribonucleotides from DNA and eliminate RNA-DNA hybrids (R-loops). In Schizosaccharomyces pombe, RNase H enzymes were reported to process RNA-DNA hybrids produced at a double-strand break (DSB) generated by I-PpoI meganuclease. However, it is unclear if RNase H is generally required for efficient DSB repair in fission yeast, or whether it has other genome protection roles. Here, we show that S. pombe rnh1∆ rnh201∆ cells, which lack the RNase H enzymes, accumulate R-loops and activate DNA damage checkpoints. Their viability requires critical DSB repair proteins and Mus81, which resolves DNA junctions formed during repair of broken replication forks. "Dirty" DSBs generated by ionizing radiation, as well as a "clean" DSB at a broken replication fork, are efficiently repaired in the absence of RNase H. RNA-DNA hybrids are not detected at a reparable DSB formed by fork collapse. We conclude that unprocessed R-loops collapse replication forks in rnh1∆ rnh201∆ cells, but RNase H is not generally required for efficient DSB repair.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair , DNA Replication , Genomic Instability , Ribonuclease H/genetics , Schizosaccharomyces/genetics , DNA, Fungal/genetics , RNA/metabolism , Saccharomyces cerevisiae/genetics
9.
Nucleic Acids Res ; 43(12): 5936-47, 2015 Jul 13.
Article in English | MEDLINE | ID: mdl-25999347

ABSTRACT

Proper DNA damage response is essential for the maintenance of genome integrity. The E3 ligase RNF168 deficiency fully prevents both the initial recruitment and retention of 53BP1 at sites of DNA damage. In response to DNA damage, RNF168-dependent recruitment of the lysine-specific demethylase LSD1 to the site of DNA damage promotes local H3K4me2 demethylation and ubiquitination of H2A/H2AX, facilitating 53BP1 recruitment to sites of DNA damage. Alternatively, RNF168-mediated K63-linked ubiquitylation of 53BP1 is required for the initial recruitment of 53BP1 to sites of DNA damage and for its function in repair. We demonstrated here that phosphorylation and dephosphorylation of LSD1 at S131 and S137 was mediated by casein kinase 2 (CK2) and wild-type p53-induced phosphatase 1 (WIP1), respectively. LSD1, RNF168 and 53BP1 interacted with each other directly. CK2-mediated phosphorylation of LSD1 exhibited no impact on its interaction with 53BP1, but promoted its interaction with RNF168 and RNF168-dependent 53BP1 ubiquitination and subsequent recruitment to the DNA damage sites. Furthermore, overexpression of phosphorylation-defective mutants failed to restore LSD1 depletion-induced cellular sensitivity to DNA damage. Taken together, our results suggest that LSD1 phosphorylation modulated by CK2/WIP1 regulates RNF168-dependent 53BP1 recruitment directly in response to DNA damage and cellular sensitivity to DNA damaging agents.


Subject(s)
Casein Kinase II/metabolism , DNA Damage , Histone Demethylases/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Phosphoprotein Phosphatases/metabolism , Ubiquitin-Protein Ligases/metabolism , Cell Line , Cell Proliferation , Cell Survival , Humans , Phosphorylation , Protein Phosphatase 2C , Tumor Suppressor p53-Binding Protein 1 , Ubiquitination
10.
Nucleic Acids Res ; 42(21): 13074-81, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25326330

ABSTRACT

CLASPIN is an essential mediator in the DNA replication checkpoint, responsible for ATR (ataxia telangiectasia and Rad3-related protein)-dependent activation of CHK1 (checkpoint kinase 1). Here we found a dynamic signaling pathway that regulates CLASPIN turn over. Under unperturbed conditions, the E3 ubiquitin ligase HERC2 regulates the stability of the deubiquitinating enzyme USP20 by promoting ubiquitination-mediated proteasomal degradation. Under replication stress, ATR-mediated phosphorylation of USP20 results in the disassociation of HERC2 from USP20. USP20 in turn deubiquitinates K48-linked-polyubiquitinated CLASPIN, stabilizing CLASPIN and ultimately promoting CHK1 phosphorylation and CHK1-directed checkpoint activation. Inhibition of USP20 expression promotes chromosome instability and xenograft tumor growth. Taken together, our findings demonstrated a novel function of HERC2/USP20 in coordinating CHK1 activation by modulating CLASPIN stability, which ultimately promotes genome stability and suppresses tumor growth.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Protein Kinases/metabolism , Ubiquitin Thiolesterase/metabolism , Animals , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Line, Tumor , Checkpoint Kinase 1 , DNA Replication , Enzyme Activation , Female , HEK293 Cells , Humans , Mice, Inbred BALB C , Mice, Nude , Neoplasms/pathology , Phosphorylation , Protein Stability , Stress, Physiological , Ubiquitin-Protein Ligases , Ultraviolet Rays
11.
Biochem Biophys Res Commun ; 447(4): 702-6, 2014 May 16.
Article in English | MEDLINE | ID: mdl-24769206

ABSTRACT

Methylenetetrahydrofolate reductase (MTHFR), a key enzyme in the folate cycle, catalyzes the reduction of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, a co-substrate for homocysteine remethylation to methionine. Methionine serves as the precursor of the active methyl donor S-adenosylmethionine, which provides methyl groups for many biological methylations. It has been reported that MTHFR is highly phosphorylated under unperturbed conditions and T34 is the priming phosphorylation site. In this report, we generated a phospho-specific antibody that recognized T34-phosphorylated form of MTHFR and revealed that MTHFR was phosphorylated at T34 in vivo and this phosphorylation peaked during mitosis. We further demonstrated that the cyclin-dependent kinase 1 (CDK1)/Cyclin B1 complex is the kinase that mediates MTHFR phosphorylation at T34 and the MTHFR immunocomplex purified from mitotic cells exhibited lower enzymatic activity. Inhibition of MTHFR expression resulted in a decrease of H3K9me3 levels, and an increase of transcription of the centromeric heterochromatin markers. Taken together, our results demonstrated that CDK1/Cyclin B1 phosphorylates MTHFR on T34 and MTHFR plays a role in the heterochromatin maintenance at the centromeric region.


Subject(s)
Heterochromatin/genetics , Heterochromatin/metabolism , Methylenetetrahydrofolate Reductase (NADPH2)/metabolism , Antibody Specificity , Binding Sites , CDC2 Protein Kinase/metabolism , Cell Line , Centromere/genetics , Centromere/metabolism , Cyclin B1/metabolism , Genomic Instability , HEK293 Cells , HT29 Cells , HeLa Cells , Humans , Methylenetetrahydrofolate Reductase (NADPH2)/chemistry , Methylenetetrahydrofolate Reductase (NADPH2)/immunology , Mitosis/physiology , Phosphorylation
12.
Nucleic Acids Res ; 40(9): 3898-912, 2012 May.
Article in English | MEDLINE | ID: mdl-22234877

ABSTRACT

MDC1 is a key mediator of the DNA-damage response in mammals with several phosphorylation-dependent protein interaction domains. The function of its N-terminal forkhead-associated (FHA) domain remains elusive. Here, we show with structural, biochemical and cellular data that the FHA domain mediates phosphorylation-dependent dimerization of MDC1 in response to DNA damage. Crystal structures of the FHA domain reveal a face-to-face dimer with pseudo-dyad symmetry. We found that the FHA domain recognizes phosphothreonine 4 (pT4) at the N-terminus of MDC1 and determined its crystal structure in complex with a pT4 peptide. Biochemical analysis further revealed that in the dimer, the FHA domain binds in trans to pT4 from the other subunit, which greatly stabilizes the otherwise unstable dimer. We show that T4 is phosphorylated primarily by ATM upon DNA damage. MDC1 mutants with the FHA domain deleted or impaired in its ability to dimerize formed fewer foci at DNA-damage sites, but the localization defect was largely rescued by an artificial dimerization module, suggesting that dimerization is the primary function of the MDC1 FHA domain. Our results suggest a novel mechanism for the regulation of MDC1 function through T4 phosphorylation and FHA-mediated dimerization.


Subject(s)
Intracellular Signaling Peptides and Proteins/chemistry , Nuclear Proteins/chemistry , Phosphothreonine/chemistry , Ataxia Telangiectasia Mutated Proteins , Cell Cycle Proteins/metabolism , Cell Line, Tumor , DNA Damage , DNA-Binding Proteins/metabolism , Dimerization , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Models, Molecular , Mutation , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Phosphorylation , Phosphothreonine/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein Structure, Tertiary , Tumor Suppressor Proteins/metabolism
13.
Int J Mol Sci ; 15(4): 6096-110, 2014 Apr 10.
Article in English | MEDLINE | ID: mdl-24727377

ABSTRACT

The therapeutic methods for chronic hepatitis B are limited. The shortage of organ donors and hepatitis B virus (HBV) reinfection obstruct the clinical application of orthotopic liver transplantation (OLT). In the present study, adipose-derived mesenchymal stem cells (AD-MSCs) and bone marrow-derived mesenchymal stem cells (BM-MSCs) were isolated from chronic hepatitis B patients and characterized for morphology, growth potency, surface phenotype and the differentiation potential. The results showed that both MSCs had adipogenic, osteogenic and neuron differentiation potential, and nearly all MSCs expressed CD105, CD44 and CD29. Compared with AD-MSCs, BM-MSCs of chronic hepatitis B patients proliferated defectively. In addition, the ability of AD-MSCs to differentiate into hepatocyte was evaluated and the susceptibility to HBV infection were assessed. AD-MSCs could differentiate into functional hepatocyte-like cells. These cells express the hepatic-specific markers and have glycogen production and albumin secretion function. AD-MSCs and hepatic differentiation AD-MSCs were not susceptible to infection by HBV in vitro. Compared with BM-MSCs, AD-MSCs may be alternative stem cells for chronic hepatitis B patients.


Subject(s)
Adipose Tissue/cytology , Hepatitis B virus/physiology , Mesenchymal Stem Cells/cytology , Adipogenesis , Bone Marrow Cells/cytology , Cell Differentiation , Cells, Cultured , Glycogen/metabolism , Hep G2 Cells , Hepatitis B/pathology , Hepatocytes/cytology , Hepatocytes/metabolism , Hepatocytes/virology , Humans , Immunohistochemistry , Mesenchymal Stem Cells/metabolism , Osteogenesis , Serum Albumin/metabolism
14.
Medicine (Baltimore) ; 103(28): e38897, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38996166

ABSTRACT

Myelodysplastic syndrome (MDS) frequently transforms into acute myeloid leukemia (AML). Predicting the risk of its transformation will help to make the treatment plan. Levels of expression of N6-methyladenosine (m6A) regulators is difference in patients with AML, MDS, and MDS transformed into AML. Seven machine learning algorithms were established based on all of 26 m6A or main differentially expressed m6A regulator genes, and attempted to establish a risk assessment method to distinguish AML from MDS and predict the transformation of MDS into AML. In collective of m6A regulators sets, support vector machine (SVM) and neural network (NNK) model best distinguished AML or MDS from control, with area under the ROC curve (AUROC) 0.966 and 0.785 respectively. The SVM model best distinguished MDS from AML, with AUROC 0.943, sensitivity 0.862, specificity 0.864, and accuracy 0.864. In differentially expressed gene sets, SVM and logistic regression (LR) model best distinguished AML or MDS from control, with AUROC 0.945 and 0.801 respectively. The random forest (RF) model best distinguished between MDS and AML, with AUROC 0.928, sensitivity 0.725, specificity 0.898, and accuracy 0.818. For predictive capacity of MDS transformed into AML, SVM model showed the best predicted in collective m6A regulators sets, with AUROC 0.781 and accuracy 0.740. The LR model showed the best predicted in differential expression m6A regulators sets, with AUROC 0.820 and accuracy 0.760. All results suggested that machine learning model established by m6A regulators can be used to distinguished AML or MDS from control, distinguished AML from MDS and predicted the transformation of MDS into AML.


Subject(s)
Adenosine , Leukemia, Myeloid, Acute , Machine Learning , Myelodysplastic Syndromes , Myelodysplastic Syndromes/genetics , Humans , Leukemia, Myeloid, Acute/genetics , Adenosine/analogs & derivatives , Adenosine/metabolism , Support Vector Machine , Middle Aged , Female , ROC Curve , Male , Risk Assessment/methods , Aged , Adult
15.
Int Immunopharmacol ; 132: 111900, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38531200

ABSTRACT

The precise mechanism of ferroptosis as a regulatory cell death in intestinal ischemia injury induced by vascular intestinal obstruction (Vio) remains to be elucidated. Here, we evaluated iron levels, glutathione peroxidase 4 (GPX4) and Acyl-CoA synthetase long-chain family member 4 (ACSL4) changes after intestinal ischemia injury to validate ferroptosis. As an enzyme for Fe3+ reduction to Fe2+, Ferric Chelate Reductase 1 (FRRS1) is involved in the electron transport chain and the tricarboxylic acid (TCA) cycle in mitochondria. However, whether it is involved in ferroptosis and its role in intestinal ischemia injury need to be clarified. In the present study, FRRS1 was overexpressed in vivo and in vitro. The results showed that overexpression of FRRS1 prevented ischemia-induced iron levels, reactive oxygen species (ROS) production, lipid peroxidation, inflammatory responses, and cell death. Meanwhile, FRRS1 overexpression promoted GPX4 expression and suppressed ACSL4 levels. Further studies revealed that FRRS1 overexpression inhibited the activity of large tumor suppressor 1 (LATS1) / Yes-associated protein (YAP) / transcriptional co-activator with PDZ-binding motif (TAZ), a key component of Hippo signaling. In conclusion, this study demonstrates that FRRS1 is intimately involved in the inhibition of ferroptosis and thus protection of the intestine from intestinal ischemia injury, its downstream mechanism was related to Hippo signaling. These data provide new sight for the prevention and treatment of intestinal ischemia injury.


Subject(s)
Coenzyme A Ligases , Ferroptosis , Hippo Signaling Pathway , Intestines , Mice, Inbred C57BL , Protein Serine-Threonine Kinases , Signal Transduction , Animals , Mice , Male , Coenzyme A Ligases/metabolism , Coenzyme A Ligases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Intestines/pathology , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Ischemia/metabolism , YAP-Signaling Proteins/metabolism , Reactive Oxygen Species/metabolism , Humans
16.
Sci Data ; 11(1): 741, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38972874

ABSTRACT

Our study presents the assembly of a high-quality Taihu goose genome at the Telomere-to-Telomere (T2T) level. By employing advanced sequencing technologies, including Pacific Biosciences HiFi reads, Oxford Nanopore long reads, Illumina short reads, and chromatin conformation capture (Hi-C), we achieved an exceptional assembly. The T2T assembly encompasses a total length of 1,197,991,206 bp, with contigs N50 reaching 33,928,929 bp and scaffold N50 attaining 81,007,908 bp. It consists of 73 scaffolds, including 38 autosomes and one pair of Z/W sex chromosomes. Importantly, 33 autosomes were assembled without any gap, resulting in a contiguous representation. Furthermore, gene annotation efforts identified 34,898 genes, including 436,162 RNA transcripts, encompassing 806,158 exons, 743,910 introns, 651,148 coding sequences (CDS), and 135,622 untranslated regions (UTR). The T2T-level chromosome-scale goose genome assembly provides a vital foundation for future genetic improvement and understanding the genetic mechanisms underlying important traits in geese.


Subject(s)
Geese , Genome , Telomere , Animals , Geese/genetics , Telomere/genetics , Molecular Sequence Annotation
17.
Bio Protoc ; 13(19): e4835, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37817907

ABSTRACT

B cells play a critical role in host defense, producing antibodies in response to microbial infection. An inability to produce an effective antibody response leaves affected individuals prone to serious infection; therefore, proper B-cell development is essential to human health. B-cell development begins in the bone marrow and progresses through various stages until maturation occurs in the spleen. This process involves several sequential, complex events, starting with pre- and pro-B cells, which rearrange the heavy and light chain genes responsible for producing clonally diverse immunoglobulin (Ig) molecules. These cells then differentiate into immature B cells, followed by mature B cells. The bone marrow is a complex ecological niche of supporting stromal cells, extracellular matrix components, macrophages, and hematopoietic precursor cells influencing B-cell development, maturation, and differentiation. Once fully mature, B cells circulate in peripheral lymphoid organs and can respond to antigenic stimuli. As specific cell surface markers are expressed during each stage of B-cell development, researchers use flow cytometry as a powerful tool to evaluate developmental progression. In this protocol, we provide a step-by-step method for bone marrow isolation, cell staining, and data analysis. This tool will help researchers gain a deeper understanding of the progression of B-cell development and provide a pertinent flow gating strategy.

18.
Front Endocrinol (Lausanne) ; 14: 1144258, 2023.
Article in English | MEDLINE | ID: mdl-37008941

ABSTRACT

Background: Osteoarthritis (OA) is one of the most prevalent chronic diseases, leading to degeneration of joints, chronic pain, and disability in the elderly. Little is known about the role of immune-related genes (IRGs) and immune cells in OA. Method: Hub IRGs of OA were identified by differential expression analysis and filtered by three machine learning strategies, including random forest (RF), least absolute shrinkage and selection operator (LASSO), and support vector machine (SVM). A diagnostic nomogram model was then constructed by using these hub IRGs, with receiver operating characteristic (ROC) curve, decision curve analysis (DCA), and clinical impact curve analysis (CICA) estimating its performance and clinical impact. Hierarchical clustering analysis was then conducted by setting the hub IRGs as input information. Differences in immune cell infiltration and activities of immune pathways were revealed between different immune subtypes. Result: Five hub IRGs of OA were identified, including TNFSF11, SCD1, PGF, EDNRB, and IL1R1. Of them, TNFSF11 and SCD1 contributed the most to the diagnostic nomogram model with area under the curve (AUC) values of 0.904 and 0.864, respectively. Two immune subtypes were characterized. The immune over-activated subtype showed excessively activated cellular immunity with a higher proportion of activated B cells and activated CD8 T cells. The two phenotypes were also seen in two validation cohorts. Conclusion: The present study comprehensively investigated the role of immune genes and immune cells in OA. Five hub IRGs and two immune subtypes were identified. These findings will provide novel insights into the diagnosis and treatment of OA.


Subject(s)
Chronic Pain , Osteoarthritis , Humans , Osteoarthritis/diagnosis , Osteoarthritis/genetics , Area Under Curve , B-Lymphocytes , Cluster Analysis
19.
Front Immunol ; 13: 1076784, 2022.
Article in English | MEDLINE | ID: mdl-36591232

ABSTRACT

As the first barrier of host defense, innate immunity sets up the parclose to keep out external microbial or virus attacks. Depending on the type of pathogens, several cytoplasm pattern recognition receptors exist to sense the attacks from either foreign or host origins, triggering the immune response to battle with the infections. Among them, cGAS-STING is the major pathway that mainly responds to microbial DNA, DNA virus infections, or self-DNA, which mainly comes from genome instability by-product or released DNA from the mitochondria. cGAS was initially found functional in the cytoplasm, although intriguing evidence indicates that cGAS exists in the nucleus where it is involved in the DNA damage repair process. Because the close connection between DNA damage response and immune response and cGAS recognizes DNA in length-dependent but DNA sequence-independent manners, it is urgent to clear the function balance of cGAS in the nucleus versus cytoplasm and how it is shielded from recognizing the host origin DNA. Here, we outline the current conception of immune response and the regulation mechanism of cGAS in the nucleus. Furthermore, we will shed light on the potential mechanisms that are restricted to be taken away from self-DNA recognition, especially how post-translational modification regulates cGAS functions.


Subject(s)
Immunity, Innate , Signal Transduction , Nucleotidyltransferases/metabolism , DNA , DNA Damage
20.
Materials (Basel) ; 15(8)2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35454540

ABSTRACT

The precipitation and growth mechanism of the Laves phase and the coarsening behaviors of Laves phase, M23C6 and MX carbonitrides have been emphatically investigated in P91 steel at 625 °C under different aging conditions. After long-term aging at 625 °C (>1500 h), it was observed that the Laves phase grew rapidly in the region near the M23C6 carbide once precipitated, and further gradually completed the engulfment process until the M23C6 carbide particles disappeared. Furthermore, a new crystallographic orientation relationship between M23C6 carbides and Laves phase has been observed at 625 °C for 5000 h, which is {0001}Laves∥{111}M23C6, <112¯1>Laves∥ <011>M23C6. The coarsening behaviors of Laves phase, M23C6 carbides and MX carbonitrides have been emphatically investigated, conforming to the existing ripening model of multicomponent alloys. The coarsening rates for the Laves phase, M23C6 and MX have values of ~32.2 (≥5000 h), 5.3 and 0.6 nm/h1/3, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL