Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39.695
Filter
Add more filters

Publication year range
1.
Cell ; 187(7): 1719-1732.e14, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38513663

ABSTRACT

The glycine transporter 1 (GlyT1) plays a crucial role in the regulation of both inhibitory and excitatory neurotransmission by removing glycine from the synaptic cleft. Given its close association with glutamate/glycine co-activated NMDA receptors (NMDARs), GlyT1 has emerged as a central target for the treatment of schizophrenia, which is often linked to hypofunctional NMDARs. Here, we report the cryo-EM structures of GlyT1 bound with substrate glycine and drugs ALX-5407, SSR504734, and PF-03463275. These structures, captured at three fundamental states of the transport cycle-outward-facing, occluded, and inward-facing-enable us to illustrate a comprehensive blueprint of the conformational change associated with glycine reuptake. Additionally, we identified three specific pockets accommodating drugs, providing clear insights into the structural basis of their inhibitory mechanism and selectivity. Collectively, these structures offer significant insights into the transport mechanism and recognition of substrate and anti-schizophrenia drugs, thus providing a platform to design small molecules to treat schizophrenia.


Subject(s)
Glycine Plasma Membrane Transport Proteins , Humans , Biological Transport , Glycine/metabolism , Glycine Plasma Membrane Transport Proteins/chemistry , Glycine Plasma Membrane Transport Proteins/metabolism , Glycine Plasma Membrane Transport Proteins/ultrastructure , Receptors, N-Methyl-D-Aspartate/metabolism , Schizophrenia/metabolism , Synaptic Transmission , Imidazoles/chemistry , Sarcosine/analogs & derivatives , Piperidines/chemistry
2.
Cell ; 180(1): 122-134.e10, 2020 01 09.
Article in English | MEDLINE | ID: mdl-31866066

ABSTRACT

Voltage-gated sodium channel Nav1.5 generates cardiac action potentials and initiates the heartbeat. Here, we report structures of NaV1.5 at 3.2-3.5 Å resolution. NaV1.5 is distinguished from other sodium channels by a unique glycosyl moiety and loss of disulfide-bonding capability at the NaVß subunit-interaction sites. The antiarrhythmic drug flecainide specifically targets the central cavity of the pore. The voltage sensors are partially activated, and the fast-inactivation gate is partially closed. Activation of the voltage sensor of Domain III allows binding of the isoleucine-phenylalanine-methionine (IFM) motif to the inactivation-gate receptor. Asp and Ala, in the selectivity motif DEKA, line the walls of the ion-selectivity filter, whereas Glu and Lys are in positions to accept and release Na+ ions via a charge-delocalization network. Arrhythmia mutation sites undergo large translocations during gating, providing a potential mechanism for pathogenic effects. Our results provide detailed insights into Nav1.5 structure, pharmacology, activation, inactivation, ion selectivity, and arrhythmias.


Subject(s)
NAV1.5 Voltage-Gated Sodium Channel/genetics , NAV1.5 Voltage-Gated Sodium Channel/metabolism , NAV1.5 Voltage-Gated Sodium Channel/ultrastructure , Animals , Cell Line , HEK293 Cells , Heart/physiology , Humans , Ion Channel Gating/physiology , Membrane Potentials/physiology , Patch-Clamp Techniques/methods , Rats , Sodium/metabolism , Sodium Channels/chemistry , Structure-Activity Relationship , Voltage-Gated Sodium Channels/metabolism , Voltage-Gated Sodium Channels/ultrastructure
3.
Cell ; 181(7): 1518-1532.e14, 2020 06 25.
Article in English | MEDLINE | ID: mdl-32497502

ABSTRACT

The rise of antibiotic resistance and declining discovery of new antibiotics has created a global health crisis. Of particular concern, no new antibiotic classes have been approved for treating Gram-negative pathogens in decades. Here, we characterize a compound, SCH-79797, that kills both Gram-negative and Gram-positive bacteria through a unique dual-targeting mechanism of action (MoA) with undetectably low resistance frequencies. To characterize its MoA, we combined quantitative imaging, proteomic, genetic, metabolomic, and cell-based assays. This pipeline demonstrates that SCH-79797 has two independent cellular targets, folate metabolism and bacterial membrane integrity, and outperforms combination treatments in killing methicillin-resistant Staphylococcus aureus (MRSA) persisters. Building on the molecular core of SCH-79797, we developed a derivative, Irresistin-16, with increased potency and showed its efficacy against Neisseria gonorrhoeae in a mouse vaginal infection model. This promising antibiotic lead suggests that combining multiple MoAs onto a single chemical scaffold may be an underappreciated approach to targeting challenging bacterial pathogens.


Subject(s)
Gram-Negative Bacteria/drug effects , Pyrroles/metabolism , Pyrroles/pharmacology , Quinazolines/metabolism , Quinazolines/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Cell Membrane/drug effects , Cell Membrane/metabolism , Drug Resistance, Bacterial/drug effects , Drug Resistance, Bacterial/genetics , Female , Folic Acid/metabolism , Gram-Positive Bacteria/drug effects , HEK293 Cells , Humans , Male , Methicillin-Resistant Staphylococcus aureus/drug effects , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , Ovariectomy , Proteomics , Pseudomonas aeruginosa/drug effects
4.
Cell ; 172(1-2): 41-54.e19, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29249361

ABSTRACT

Natural genetic variation in the human genome is a cause of individual differences in responses to medications and is an underappreciated burden on public health. Although 108 G-protein-coupled receptors (GPCRs) are the targets of 475 (∼34%) Food and Drug Administration (FDA)-approved drugs and account for a global sales volume of over 180 billion US dollars annually, the prevalence of genetic variation among GPCRs targeted by drugs is unknown. By analyzing data from 68,496 individuals, we find that GPCRs targeted by drugs show genetic variation within functional regions such as drug- and effector-binding sites in the human population. We experimentally show that certain variants of µ-opioid and Cholecystokinin-A receptors could lead to altered or adverse drug response. By analyzing UK National Health Service drug prescription and sales data, we suggest that characterizing GPCR variants could increase prescription precision, improving patients' quality of life, and relieve the economic and societal burden due to variable drug responsiveness. VIDEO ABSTRACT.


Subject(s)
Pharmacogenetics/methods , Pharmacogenomic Variants , Receptors, G-Protein-Coupled/genetics , Software , Binding Sites , Drug Prescriptions/standards , HEK293 Cells , Humans , Protein Binding , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism
5.
Immunity ; 55(6): 1082-1095.e5, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35588739

ABSTRACT

Nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit cyclooxygenase (COX) enzymes and are ubiquitously used for their anti-inflammatory properties. However, COX inhibition alone fails to explain numerous clinical outcomes of NSAID usage. Screening commonly used NSAIDs in primary human and murine myeloid cells demonstrated that NSAIDs could be differentiated by their ability to induce growth/differentiation factor 15 (GDF15), independent of COX specificity. Using genetic and pharmacologic approaches, NSAID-mediated GDF15 induction was dependent on the activation of nuclear factor erythroid 2-related factor 2 (NRF2) in myeloid cells. Sensing by Cysteine 151 of the NRF2 chaperone, Kelch-like ECH-associated protein 1 (KEAP1) was required for NSAID activation of NRF2 and subsequent anti-inflammatory effects both in vitro and in vivo. Myeloid-specific deletion of NRF2 abolished NSAID-mediated tissue protection in murine models of gout and endotoxemia. This highlights a noncanonical NRF2-dependent mechanism of action for the anti-inflammatory activity of a subset of commonly used NSAIDs.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , NF-E2-Related Factor 2 , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Humans , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Mice , NF-E2-Related Factor 2/genetics , Prescriptions , Prostaglandin-Endoperoxide Synthases
6.
CA Cancer J Clin ; 74(3): 286-313, 2024.
Article in English | MEDLINE | ID: mdl-38108561

ABSTRACT

Pain is one of the most burdensome symptoms in people with cancer, and opioid analgesics are considered the mainstay of cancer pain management. For this review, the authors evaluated the efficacy and toxicities of opioid analgesics compared with placebo, other opioids, nonopioid analgesics, and nonpharmacologic treatments for background cancer pain (continuous and relatively constant pain present at rest), and breakthrough cancer pain (transient exacerbation of pain despite stable and adequately controlled background pain). They found a paucity of placebo-controlled trials for background cancer pain, although tapentadol or codeine may be more efficacious than placebo (moderate-certainty to low-certainty evidence). Nonsteroidal anti-inflammatory drugs including aspirin, piroxicam, diclofenac, ketorolac, and the antidepressant medicine imipramine, may be at least as efficacious as opioids for moderate-to-severe background cancer pain. For breakthrough cancer pain, oral transmucosal, buccal, sublingual, or intranasal fentanyl preparations were identified as more efficacious than placebo but were more commonly associated with toxicities, including constipation and nausea. Despite being recommended worldwide for the treatment of cancer pain, morphine was generally not superior to other opioids, nor did it have a more favorable toxicity profile. The interpretation of study results, however, was complicated by the heterogeneity in the study populations evaluated. Given the limited quality and quantity of research, there is a need to reappraise the clinical utility of opioids in people with cancer pain, particularly those who are not at the end of life, and to further explore the effects of opioids on immune system function and quality of life in these individuals.


Subject(s)
Analgesics, Opioid , Cancer Pain , Humans , Analgesics, Opioid/therapeutic use , Analgesics, Opioid/adverse effects , Cancer Pain/drug therapy , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Nociceptive Pain/drug therapy , Neoplasms/complications , Pain Management/methods
7.
CA Cancer J Clin ; 73(4): 376-424, 2023.
Article in English | MEDLINE | ID: mdl-36512337

ABSTRACT

Cancer development is driven by the accumulation of alterations affecting the structure and function of the genome. Whereas genetic changes disrupt the DNA sequence, epigenetic alterations contribute to the acquisition of hallmark tumor capabilities by regulating gene expression programs that promote tumorigenesis. Shifts in DNA methylation and histone mark patterns, the two main epigenetic modifications, orchestrate tumor progression and metastasis. These cancer-specific events have been exploited as useful tools for diagnosis, monitoring, and treatment choice to aid clinical decision making. Moreover, the reversibility of epigenetic modifications, in contrast to the irreversibility of genetic changes, has made the epigenetic machinery an attractive target for drug development. This review summarizes the most advanced applications of epigenetic biomarkers and epigenetic drugs in the clinical setting, highlighting commercially available DNA methylation-based assays and epigenetic drugs already approved by the US Food and Drug Administration.


Subject(s)
Epigenesis, Genetic , Neoplasms , Humans , Neoplasms/therapy , Neoplasms/drug therapy , DNA Methylation , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology
8.
Trends Biochem Sci ; 49(5): 445-456, 2024 May.
Article in English | MEDLINE | ID: mdl-38433044

ABSTRACT

TrkB (neuronal receptor tyrosine kinase-2, NTRK2) is the receptor for brain-derived neurotrophic factor (BDNF) and is a critical regulator of activity-dependent neuronal plasticity. The past few years have witnessed an increasing understanding of the structure and function of TrkB, including its transmembrane domain (TMD). TrkB interacts with membrane cholesterol, which bidirectionally regulates TrkB signaling. Additionally, TrkB has recently been recognized as a binding target of antidepressant drugs. A variety of different antidepressants, including typical and rapid-acting antidepressants, as well as psychedelic compounds, act as allosteric potentiators of BDNF signaling through TrkB. This suggests that TrkB is the common target of different antidepressant compounds. Although more research is needed, current knowledge suggests that TrkB is a promising target for further drug development.


Subject(s)
Membrane Glycoproteins , Receptor, trkB , Humans , Receptor, trkB/metabolism , Receptor, trkB/chemistry , Animals , Protein Domains , Signal Transduction , Antidepressive Agents/therapeutic use , Antidepressive Agents/pharmacology , Antidepressive Agents/chemistry , Antidepressive Agents/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/chemistry
9.
Annu Rev Microbiol ; 77: 403-425, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37713457

ABSTRACT

Fungal-mediated disease progression and antifungal drug efficacy are significantly impacted by the dynamic infection microenvironment. At the site of infection, oxygen often becomes limiting and induces a hypoxia response in both the fungal pathogen and host cells. The fungal hypoxia response impacts several important aspects of fungal biology that contribute to pathogenesis, virulence, antifungal drug susceptibility, and ultimately infection outcomes. In this review, we summarize recent advances in understanding the molecular mechanisms of the hypoxia response in the most common human fungal pathogens, discuss potential therapeutic opportunities, and highlight important areas for future research.


Subject(s)
Antifungal Agents , Hypoxia , Humans , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Virulence , Disease Progression
10.
Annu Rev Microbiol ; 77: 541-560, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37406344

ABSTRACT

Apicomplexan parasites constitute more than 6,000 species infecting a wide range of hosts. These include important pathogens such as those causing malaria and toxoplasmosis. Their evolutionary emergence coincided with the dawn of animals. Mitochondrial genomes of apicomplexan parasites have undergone dramatic reduction in their coding capacity, with genes for only three proteins and ribosomal RNA genes present in scrambled fragments originating from both strands. Different branches of the apicomplexans have undergone rearrangements of these genes, with Toxoplasma having massive variations in gene arrangements spread over multiple copies. The vast evolutionary distance between the parasite and the host mitochondria has been exploited for the development of antiparasitic drugs, especially those used to treat malaria, wherein inhibition of the parasite mitochondrial respiratory chain is selectively targeted with little toxicity to the host mitochondria. We describe additional unique characteristics of the parasite mitochondria that are being investigated and provide greater insights into these deep-branching eukaryotic pathogens.


Subject(s)
Malaria , Toxoplasma , Animals , Mitochondria/genetics , Mitochondria/metabolism , Toxoplasma/metabolism , Biological Evolution
11.
Mol Cell ; 79(5): 710-727, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32853546

ABSTRACT

The coronavirus disease 2019 (COVID-19) that is wreaking havoc on worldwide public health and economies has heightened awareness about the lack of effective antiviral treatments for human coronaviruses (CoVs). Many current antivirals, notably nucleoside analogs (NAs), exert their effect by incorporation into viral genomes and subsequent disruption of viral replication and fidelity. The development of anti-CoV drugs has long been hindered by the capacity of CoVs to proofread and remove mismatched nucleotides during genome replication and transcription. Here, we review the molecular basis of the CoV proofreading complex and evaluate its potential as a drug target. We also consider existing nucleoside analogs and novel genomic techniques as potential anti-CoV therapeutics that could be used individually or in combination to target the proofreading mechanism.


Subject(s)
Antiviral Agents/therapeutic use , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Coronavirus Infections/epidemiology , Genome, Viral , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/epidemiology , RNA, Viral/genetics , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/therapeutic use , Alanine/analogs & derivatives , Alanine/chemistry , Alanine/therapeutic use , Amides/chemistry , Amides/therapeutic use , Antiviral Agents/chemistry , Betacoronavirus/genetics , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/virology , Cytidine/analogs & derivatives , Humans , Hydroxylamines , Molecular Targeted Therapy/methods , Mutation , Pneumonia, Viral/virology , Pyrazines/chemistry , Pyrazines/therapeutic use , RNA, Viral/antagonists & inhibitors , RNA, Viral/metabolism , Ribonucleosides/chemistry , Ribonucleosides/therapeutic use , SARS-CoV-2 , Severity of Illness Index , Transcription, Genetic , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects
12.
Annu Rev Pharmacol Toxicol ; 64: 481-506, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-37722722

ABSTRACT

The exponential rise in the prevalence of allergic diseases since the mid-twentieth century has led to a genuine public health emergency and has also fostered major progress in research on the underlying mechanisms and potential treatments. The management of allergic diseases benefits from the biological revolution, with an array of novel immunomodulatory therapeutic and investigational tools targeting players of allergic inflammation at distinct pathophysiological steps. Prominent examples include therapeutic monoclonal antibodies against cytokines, alarmins, and their receptors, as well as small-molecule modifiers of signal transduction mainly mediated by Janus kinases and Bruton's tyrosine kinases. However, the first-line therapeutic options have yet to switch from symptomatic to disease-modifying interventions. Here we present an overview of available drugs in the context of our current understanding of allergy pathophysiology, identify potential therapeutic targets, and conclude by providing a selection of candidate immunopharmacological molecules under investigation for potential future use in allergic diseases.


Subject(s)
Hypersensitivity , Humans , Hypersensitivity/drug therapy , Antibodies, Monoclonal , Cytokines , Inflammation , Signal Transduction
13.
Proc Natl Acad Sci U S A ; 121(4): e2313737121, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38241438

ABSTRACT

Nuclear import and uncoating of the viral capsid are critical steps in the HIV-1 life cycle that serve to transport and release genomic material into the nucleus. Viral core import involves translocating the HIV-1 capsid at the nuclear pore complex (NPC). Notably, the central channel of the NPC appears to often accommodate and allow passage of intact HIV-1 capsid, though mechanistic details of the process remain to be fully understood. Here, we investigate the molecular interactions that operate in concert between the HIV-1 capsid and the NPC that regulate capsid translocation through the central channel. To this end, we develop a "bottom-up" coarse-grained (CG) model of the human NPC from recently released cryo-electron tomography structure and then construct composite membrane-embedded CG NPC models. We find that successful translocation from the cytoplasmic side to the NPC central channel is contingent on the compatibility of the capsid morphology and channel dimension and the proper orientation of the capsid approach to the channel from the cytoplasmic side. The translocation dynamics is driven by maximizing the contacts between phenylalanine-glycine nucleoporins at the central channel and the capsid. For the docked intact capsids, structural analysis reveals correlated striated patterns of lattice disorder likely related to the intrinsic capsid elasticity. Uncondensed genomic material inside the docked capsid augments the overall lattice disorder of the capsid. Our results suggest that the intrinsic "elasticity" can also aid the capsid to adapt to the stress and remain structurally intact during translocation.


Subject(s)
Capsid , HIV-1 , Humans , Capsid/metabolism , HIV-1/genetics , Nuclear Pore/metabolism , Capsid Proteins/genetics , Active Transport, Cell Nucleus , Nuclear Pore Complex Proteins/metabolism , Translocation, Genetic , Elasticity
14.
Annu Rev Pharmacol Toxicol ; 63: 187-209, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-35914767

ABSTRACT

Synthetic cannabinoids (SCs) are a chemically diverse group of new psychoactive substances (NPSs) that target the endocannabinoid system, triggering a plethora of actions (e.g., elevated mood sensation, relaxation, appetite stimulation) that resemble, but are more intense than, those induced by cannabis. Although some of these effects have been explored for therapeutic applications, anticipated stronger psychoactive effects than cannabis and reduced risk perception have increased the recreational use of SCs, which have dominated the NPS market in the United States and Europe over the past decade. However, rising SC-related intoxications and deaths represent a major public health concern and embody a major challenge for policy makers. Here, we review the pharmacology and toxicology of SCs. A thorough characterization of SCs' pharmacodynamics and toxicodynamics is important to better understand the main mechanisms underlying acute and chronic effects of SCs, interpret the clinical/pathological findings related to SC use, and improve SC risk awareness.


Subject(s)
Cannabinoids , Humans , Cannabinoids/pharmacology , Cannabinoid Receptor Agonists/pharmacology , Endocannabinoids
15.
Annu Rev Pharmacol Toxicol ; 63: 471-489, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36151050

ABSTRACT

While there is not a wide range of pregnancy-specific drugs, there are some very specific high-risk areas of obstetric care for which unique pharmacological approaches have been established. In preterm birth, labor induction and augmentation, and the management of postpartum hemorrhage, these pharmacological approaches have become the bedrock in managing some of the most common and problematic areas of antenatal and intrapartum care. In this review, we summarize the existing established and emerging evidence that supports and broadens these pharmacological approaches to obstetric management and its impact on clinical practice. It is clear that existing therapeutics are limited. They have largely been developed from our knowledge of the physiology of the myometrium and act on hormonal receptors and their signaling pathways or on ion channels influencing excitability. Newer drugs in development are mostly refinements of these two approaches, but novel agents from plants and improved formulations are also discussed.


Subject(s)
Delivery, Obstetric , Labor, Obstetric , Postpartum Hemorrhage , Premature Birth , Female , Humans , Infant, Newborn , Pregnancy , Uterine Contraction/drug effects , Postpartum Hemorrhage/drug therapy , Labor, Obstetric/drug effects
16.
Annu Rev Med ; 75: 443-457, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-37738507

ABSTRACT

Resistant hypertension (RH) is a severe form of hypertension associated with increased cardiovascular risk. Although true RH affects less than 10% of the patients receiving antihypertensive therapy, the absolute number is high and continues to increase. The workup of these patients requires screening for secondary hypertension and pseudoresistance, including poor adherence to prescribed medicines and the white-coat phenomenon. The treatment of RH consists of lifestyle modifications and pharmacological therapies. Lifestyle modifications include dietary adjustments, weight loss, physical activity, and limiting alcohol consumption; pharmacological therapies include diuretics, mineralocorticoid receptor antagonists, beta blockers, angiotensin receptor-neprilysin inhibitors, and others. Over the last 15 years, interventional approaches have emerged as adjunct treatment options; we highlight catheter-based renal denervation. This review summarizes the rationales and latest clinical evidence and, based thereon, proposes an updated algorithm for the management of RH.


Subject(s)
Antihypertensive Agents , Hypertension , Humans , Antihypertensive Agents/therapeutic use , Hypertension/drug therapy , Life Style
17.
EMBO J ; 41(15): e110721, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35730718

ABSTRACT

ΔfosB is an alternatively spliced product of the FosB gene that is essential for dopamine-induced reward pathways and that acts as a master switch for addiction. However, the molecular mechanisms of its generation and regulation by dopamine signaling are unknown. Here, we report that dopamine D1 receptor signaling synergizes with the activin/ALK4/Smad3 pathway to potentiate the generation of ΔFosB mRNA in medium spiny neurons (MSNs) of the nucleus accumbens (NAc) via activation of the RNA-binding protein PCBP1, a regulator of mRNA splicing. Concurrent activation of PCBP1 and Smad3 by D1 and ALK4 signaling induced their interaction, nuclear translocation, and binding to sequences in exon-4 and intron-4 of FosB mRNA. Ablation of either ALK4 or PCBP1 in MSNs impaired ΔFosB mRNA induction and nuclear translocation of ΔFosB protein in response to repeated co-stimulation of D1 and ALK4 receptors. Finally, ALK4 is required in NAc MSNs of adult mice for behavioral sensitization to cocaine. These findings uncover an unexpected mechanism for ΔFosB generation and drug-induced sensitization through convergent dopamine and ALK4 signaling.


Subject(s)
Cocaine , DNA-Binding Proteins/metabolism , RNA-Binding Proteins/metabolism , Activin Receptors, Type I/metabolism , Alternative Splicing , Animals , Cocaine/metabolism , Cocaine/pharmacology , Dopamine/metabolism , Mice , Mice, Inbred C57BL , Nucleus Accumbens , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , RNA, Messenger/metabolism , Receptors, Dopamine D1/genetics , Receptors, Dopamine D1/metabolism
18.
J Cell Sci ; 137(12)2024 06 15.
Article in English | MEDLINE | ID: mdl-38940347

ABSTRACT

Some chemotherapy drugs modulate the formation of stress granules (SGs), which are RNA-containing cytoplasmic foci contributing to stress response pathways. How SGs mechanistically contribute to pro-survival or pro-apoptotic functions must be better defined. The chemotherapy drug lomustine promotes SG formation by activating the stress-sensing eIF2α kinase HRI (encoded by the EIF2AK1 gene). Here, we applied a DNA microarray-based transcriptome analysis to determine the genes modulated by lomustine-induced stress and suggest roles for SGs in this process. We found that the expression of the pro-apoptotic EGR1 gene was specifically regulated in cells upon lomustine treatment. The appearance of EGR1-encoding mRNA in SGs correlated with a decrease in EGR1 mRNA translation. Specifically, EGR1 mRNA was sequestered to SGs upon lomustine treatment, probably preventing its ribosome translation and consequently limiting the degree of apoptosis. Our data support the model where SGs can selectively sequester specific mRNAs in a stress-specific manner, modulate their availability for translation, and thus determine the fate of a stressed cell.


Subject(s)
Early Growth Response Protein 1 , Lomustine , RNA, Messenger , Humans , RNA, Messenger/metabolism , RNA, Messenger/genetics , Early Growth Response Protein 1/metabolism , Early Growth Response Protein 1/genetics , Lomustine/pharmacology , Stress Granules/metabolism , Stress Granules/genetics , Apoptosis/drug effects , Antineoplastic Agents, Alkylating/pharmacology
19.
Brief Bioinform ; 25(4)2024 May 23.
Article in English | MEDLINE | ID: mdl-39038937

ABSTRACT

Peptide drugs are becoming star drug agents with high efficiency and selectivity which open up new therapeutic avenues for various diseases. However, the sensitivity to hydrolase and the relatively short half-life have severely hindered their development. In this study, a new generation artificial intelligence-based system for accurate prediction of peptide half-life was proposed, which realized the half-life prediction of both natural and modified peptides and successfully bridged the evaluation possibility between two important species (human, mouse) and two organs (blood, intestine). To achieve this, enzymatic cleavage descriptors were integrated with traditional peptide descriptors to construct a better representation. Then, robust models with accurate performance were established by comparing traditional machine learning and transfer learning, systematically. Results indicated that enzymatic cleavage features could certainly enhance model performance. The deep learning model integrating transfer learning significantly improved predictive accuracy, achieving remarkable R2 values: 0.84 for natural peptides and 0.90 for modified peptides in human blood, 0.984 for natural peptides and 0.93 for modified peptides in mouse blood, and 0.94 for modified peptides in mouse intestine on the test set, respectively. These models not only successfully composed the above-mentioned system but also improved by approximately 15% in terms of correlation compared to related works. This study is expected to provide powerful solutions for peptide half-life evaluation and boost peptide drug development.


Subject(s)
Peptides , Animals , Half-Life , Humans , Mice , Peptides/metabolism , Peptides/chemistry , Deep Learning , Machine Learning
20.
Mol Cell Proteomics ; 23(3): 100737, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38354979

ABSTRACT

Personalized medicine can reduce adverse effects, enhance drug efficacy, and optimize treatment outcomes, which represents the essence of personalized medicine in the pharmacy field. Protein drugs are crucial in the field of personalized drug therapy and are currently the mainstay, which possess higher target specificity and biological activity than small-molecule chemical drugs, making them efficient in regulating disease-related biological processes, and have significant potential in the development of personalized drugs. Currently, protein drugs are designed and developed for specific protein targets based on patient-specific protein data. However, due to the rapid development of two-dimensional gel electrophoresis and mass spectrometry, it is now widely recognized that a canonical protein actually includes multiple proteoforms, and the differences between these proteoforms will result in varying responses to drugs. The variation in the effects of different proteoforms can be significant and the impact can even alter the intended benefit of a drug, potentially making it harmful instead of lifesaving. As a result, we propose that protein drugs should shift from being targeted through the lens of protein (proteomics) to being targeted through the lens of proteoform (proteoformics). This will enable the development of personalized protein drugs that are better equipped to meet patients' specific needs and disease characteristics. With further development in the field of proteoformics, individualized drug therapy, especially personalized protein drugs aimed at proteoforms as a drug target, will improve the understanding of disease mechanisms, discovery of new drug targets and signaling pathways, provide a theoretical basis for the development of new drugs, aid doctors in conducting health risk assessments and making more cost-effective targeted prevention strategies conducted by artificial intelligence/machine learning, promote technological innovation, and provide more convenient treatment tailored to individualized patient profile, which will benefit the affected individuals and society at large.


Subject(s)
Artificial Intelligence , Proteomics , Humans , Proteomics/methods , Precision Medicine , Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL