Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Fish Biol ; 99(6): 1798-1803, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34405404

ABSTRACT

MicroRNAs (miRNAs) are being extensively studied as they function as key metabolic regulators which play a role in the heat stress response. However, the role of miRNAs in heat stress remains uncertain and many new miRNAs have not yet been discovered. In a previous study, we performed high-throughput sequencing of differentially expressed miRNAs identified on exposing rainbow trout (Oncorhynchus mykiss) to heat stress (18 vs. 24°C), which led to the identification of two novel miRNAs, temporarily named novel miR-434 and -242. The differential expression level of these miRNAs was extremely significant (P < 0.01); we analysed target gene mRNA transcripts by bioinformatics software (miRanda). We found novel miR-434 and -242 were predicted to regulate the transcripts of heat shock 70-kDa protein 4-like (HSPA4L) and calreticulin (CRT), respectively, by bioinformatics software. Here our core objective was to validate if HSPA4L and CRT are indeed the target genes of novel miR-434 and -242, respectively, and for this purpose we used the dual-luciferase reporter assay system. Target gene sequences were synthesized and cloned into a dual-luciferase vector. To better understand the function of the target genes, we combined the previous sequencing results of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. We found that novel miR-434 regulated HSPA4L expression by binding to a putative binding site in the 3'-UTR of HSPA4L, and luciferase activity inhibition was observed. In contrast, novel miR-242 was not involved in regulating CRT expression. To conclude, we believe our results should serve as a foundation for future studies aiming to comprehensively understand the mechanisms used by rainbow trout to cope with heat stress.


Subject(s)
Heat-Shock Response , MicroRNAs , Oncorhynchus mykiss , Animals , Gene Expression Profiling , Heat-Shock Response/genetics , High-Throughput Nucleotide Sequencing , MicroRNAs/genetics , Oncorhynchus mykiss/genetics , RNA, Messenger
2.
Am J Hum Genet ; 101(5): 789-802, 2017 Nov 02.
Article in English | MEDLINE | ID: mdl-29100090

ABSTRACT

Renal agenesis and hypodysplasia (RHD) are major causes of pediatric chronic kidney disease and are highly genetically heterogeneous. We conducted whole-exome sequencing in 202 case subjects with RHD and identified diagnostic mutations in genes known to be associated with RHD in 7/202 case subjects. In an additional affected individual with RHD and a congenital heart defect, we found a homozygous loss-of-function (LOF) variant in SLIT3, recapitulating phenotypes reported with Slit3 inactivation in the mouse. To identify genes associated with RHD, we performed an exome-wide association study with 195 unresolved case subjects and 6,905 control subjects. The top signal resided in GREB1L, a gene implicated previously in Hoxb1 and Shha signaling in zebrafish. The significance of the association, which was p = 2.0 × 10-5 for novel LOF, increased to p = 4.1 × 10-6 for LOF and deleterious missense variants combined, and augmented further after accounting for segregation and de novo inheritance of rare variants (joint p = 2.3 × 10-7). Finally, CRISPR/Cas9 disruption or knockdown of greb1l in zebrafish caused specific pronephric defects, which were rescued by wild-type human GREB1L mRNA, but not mRNA containing alleles identified in case subjects. Together, our study provides insight into the genetic landscape of kidney malformations in humans, presents multiple candidates, and identifies SLIT3 and GREB1L as genes implicated in the pathogenesis of RHD.


Subject(s)
Congenital Abnormalities/genetics , Exome/genetics , Kidney Diseases/congenital , Kidney/abnormalities , Mutation/genetics , Neoplasm Proteins/genetics , Alleles , Animals , Case-Control Studies , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Female , Genetic Heterogeneity , Genome-Wide Association Study/methods , Genotype , Heredity/genetics , Homozygote , Humans , Kidney Diseases/genetics , Male , Membrane Proteins/genetics , Mice , Phenotype , RNA, Long Noncoding/genetics , Urinary Tract/abnormalities , Urogenital Abnormalities/genetics , Zebrafish
3.
Mol Reprod Dev ; 86(4): 379-386, 2019 04.
Article in English | MEDLINE | ID: mdl-30637842

ABSTRACT

Heat shock protein A4L (HSPA4L), which is highly expressed in the testis, is correlated with male fertility. However, the relationship between HSPA4L expression and sperm quality remains unknown. In the present study, a systematic characterization of HSPA4L expression on spermatozoa was performed. HSPA4L is highly expressed in the human testis, characterized by abundant localization in testicular spermatocytes and round spermatids. Compared with the testis from young adults (aged 27-36 years old), downregulated expression of HSPA4L in the testis from elderly adults (aged 78-82 years old) was observed. Immunofluorescence quantification demonstrated the localization of HSPA4L in the middle piece of sperm. Compared with mature spermatozoa, a similar lower intensity and localization percentage of HSPA4L in immature and asthenozoospermic spermatozoa were observed, and the consistently decreased expression of HSPA4L in immature and asthenozoospermic spermatozoa was validated by western blot analysis. Functional analysis revealed a correlation between HSPA4L and sperm motility by Spearman correlation analysis and its involvement in sperm-oocyte penetration by the human sperm-hamster egg penetration test. The current study demonstrates that HSPA4L is a promising marker for the assessment of sperm quality and provides clues for exploring biomarkers for the molecular diagnosis and treatment of male infertility.


Subject(s)
Asthenozoospermia/metabolism , HSP70 Heat-Shock Proteins/metabolism , Sperm Motility , Spermatozoa/metabolism , Adult , Aged, 80 and over , Animals , Asthenozoospermia/pathology , Cricetinae , Female , Humans , Male , Sperm-Ovum Interactions , Spermatozoa/pathology
4.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 47(6): 869-873, 2016 Nov.
Article in Zh | MEDLINE | ID: mdl-28598115

ABSTRACT

OBJECTIVES: To investigate the expression of miR-429 and its target gene heat shock protein A4L (HSPA4L) in sperms from asthenospermia patients. METHODS: Twenty semen samples from healthy and fertile adults and 20 semen samples from asthenospermia patients were collected,and normal sperm parameters were defined according to World Health Organization criteria.The expression levels of miR-429 and HSPA4L mRNA were determined by qRT-PCR,and the bioinformatics tool (Targetscan) was used to predict the target of miR-429.Luciferase reporter assay and transfection study were performed to confirm target gene of miR-429.The expression levels of HSPA4L mRNA and protein were further determined by qRT-CPR and Western blot,respectively. RESULTS: The motility and viability of sperms from asthenospermia patients were lower than that in control group,and miR-429 was up-regulated in sperms from asthenospermia patients.Bioinformatics analysis revealed that HSPA4L was a target of miR-429.Luciferase reporter assay and transfection study further confirmed that miR-429 suppresses the expressions of HSPA4L mRNA and protein via directly targeting HSPA4L 3'UTR.Results from clinical samples also demonstrated that HSPA4L mRNA and protein were down-regulated in sperms from asthenospermia patients and the expression level of miR-429 was inversely correlated with the expression level of HSPA4L mRNA (r=-0.725, P<0.05). CONCLUSIONS: miR-429 is up-regulated in sperms from asthenospermia patients,and it may modulate the motility and viability of sperms via suppressing the expression of HSPA4L.


Subject(s)
Asthenozoospermia/metabolism , HSP70 Heat-Shock Proteins/metabolism , MicroRNAs/metabolism , Spermatozoa/metabolism , Adult , Case-Control Studies , Cell Line, Tumor , Humans , Male , RNA, Messenger/metabolism , Sperm Motility , Transfection , Up-Regulation
5.
Mutat Res ; 755(2): 148-55, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23827780

ABSTRACT

This paper investigates the mechanism of action of heavy ion radiation (HIR) on mouse testes. The testes of male mice subjected to whole body irradiation with carbon ion beam (0.5 and 4Gy) were analyzed at 7days after irradiation. A two-dimensional gel electrophoresis approach was employed to investigate the alteration of protein expression in the testes. Spot detection and matching were performed using the PDQuest 8.0 software. A difference of more than threefold in protein quantity (normalized spot volume) is the standard for detecting differentially expressed protein spots. A total of 11 differentially expressed proteins were found. Protein identification was performed using matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF-TOF). Nine specific proteins were identified by searching the protein sequence database of the National Center for Biotechnology Information. These proteins were found involved in molecular chaperones, metabolic enzymes, oxidative stress, sperm function, and spermatogenic cell proliferation. HIR decreased glutathione activity and increased malondialdehyde content in the testes. Given that Pin1 is related to the cell cycle and that proliferation is affected by spermatogenesis, we analyzed testicular histological changes and Pin1 protein expression through immunoblotting and immunofluorescence. Alterations of multiple pathways may be associated with HIR toxicity to the testes. Our findings are essential for studies on the development, biology, and pathology of mouse testes after HIR in space or radiotherapy.


Subject(s)
Carbon/toxicity , Gene Expression Profiling/methods , Heavy Ions/adverse effects , Protein Biosynthesis/radiation effects , Proteomics/methods , Testis/radiation effects , Animals , Cell Cycle Proteins/biosynthesis , Cell Cycle Proteins/genetics , Cell Differentiation/radiation effects , Dose-Response Relationship, Radiation , Electrophoresis, Gel, Two-Dimensional , Glutathione/analysis , Lipid Peroxidation/radiation effects , Male , Malondialdehyde/analysis , Mice , Microscopy, Fluorescence , Molecular Chaperones/biosynthesis , Molecular Chaperones/genetics , NIMA-Interacting Peptidylprolyl Isomerase , Oxidative Stress/genetics , Oxidative Stress/radiation effects , Peptidylprolyl Isomerase/biosynthesis , Peptidylprolyl Isomerase/genetics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spermatogenesis/genetics , Subtraction Technique , Testis/metabolism , Testis/ultrastructure , Whole-Body Irradiation
SELECTION OF CITATIONS
SEARCH DETAIL