Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Clin Infect Dis ; 66(4): 554-563, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29028973

ABSTRACT

Background: Vaccination of human immunodeficiency virus (HIV)-infected infants with bacille Calmette-Guérin (BCG) is contraindicated. HIV-exposed newborns need a new tuberculosis vaccination strategy that protects against tuberculosis early in life and avoids the potential risk of BCG disease until after HIV infection has been excluded. Methods: This double-blind, randomized, controlled trial compared newborn MVA85A prime vaccination (1 × 108 PFU) vs Candin® control, followed by selective, deferred BCG vaccination at age 8 weeks for HIV-uninfected infants and 12 months follow-up for safety and immunogenicity. Results: A total of 248 HIV-exposed infants were enrolled. More frequent mild-moderate reactogenicity events were seen after newborn MVA85A vaccination. However, no significant difference was observed in the rate of severe or serious adverse events, HIV acquisition (n = 1 per arm), or incident tuberculosis disease (n = 5 MVA85A; n = 3 control) compared to the control arm. MVA85A vaccination induced modest but significantly higher Ag85A-specific interferon gamma (IFNγ)+ CD4+ T cells compared to control at weeks 4 and 8 (P < .0001). BCG did not further boost this response in MVA85A vaccinees. The BCG-induced Ag85A-specific IFNγ+ CD4+ T-cell response at weeks 16 and 52 was of similar magnitude in the control arm compared to the MVA85A arm at all time points. Proliferative capacity, functional profiles, and memory phenotype of BCG-specific CD4 responses were similar across study arms. Conclusions: MVA85A prime vaccination of HIV-exposed newborns was safe and induced an early modest antigen-specific immune response that did not interfere with, or enhance, immunogenicity of subsequent BCG vaccination. New protein-subunit and viral-vectored tuberculosis vaccine candidates should be tested in HIV-exposed newborns. Clinical Trials Registration: NCT01650389.


Subject(s)
BCG Vaccine/therapeutic use , HIV Infections/immunology , Immunogenicity, Vaccine , Tuberculosis Vaccines/therapeutic use , Tuberculosis/prevention & control , Adult , Anti-Retroviral Agents/therapeutic use , Antigens, Bacterial/immunology , BCG Vaccine/adverse effects , CD4 Lymphocyte Count , CD4-Positive T-Lymphocytes/immunology , Double-Blind Method , Female , HIV Infections/drug therapy , Humans , Infant , Infant, Newborn , Interferon-gamma/immunology , Male , Mothers , Mycobacterium tuberculosis , Tuberculin Test , Tuberculosis Vaccines/adverse effects , Vaccination , Vaccines, DNA
2.
J Infect Dis ; 209(8): 1259-68, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24273174

ABSTRACT

BACKGROUND: A new vaccine is urgently needed to combat tuberculosis. However, without a correlate of protection, selection of the vaccines to take forward into large-scale efficacy trials is difficult. Use of bacille Calmette-Guérin (BCG) as a surrogate for human Mycobacterium tuberculosis challenge is a novel model that could aid selection. METHODS: Healthy adults were assigned to groups A and B (BCG-naive) or groups C and D (BCG-vaccinated). Groups B and D received candidate tuberculosis vaccine MVA85A. Participants were challenged with intradermal BCG 4 weeks after those who received MVA85A. Skin biopsies of the challenge site were taken 2 weeks post challenge and BCG load quantified by culture and quantitative polymerase chain reaction (qPCR). RESULTS: Volunteers with a history of BCG showed some degree of protective immunity to challenge, having lower BCG loads compared with volunteers without prior BCG, regardless of MVA85A status. There was a significant inverse correlation between antimycobacterial immunity at peak response after MVA85A and BCG load detected by qPCR. CONCLUSION: Our results support previous findings that this BCG challenge model is able to detect differences in antimycobacterial immunity induced by vaccination and could aid in the selection of candidate tuberculosis vaccines for field efficacy testing.


Subject(s)
BCG Vaccine/administration & dosage , Mycobacterium tuberculosis/immunology , Tuberculosis Vaccines/administration & dosage , Tuberculosis/immunology , Tuberculosis/prevention & control , Adolescent , Adult , BCG Vaccine/genetics , DNA, Bacterial/analysis , Enzyme-Linked Immunospot Assay , Female , Humans , Male , Middle Aged , Mycobacterium tuberculosis/isolation & purification , Real-Time Polymerase Chain Reaction , Skin/microbiology , Tuberculin Test , Tuberculosis Vaccines/genetics , Vaccines, DNA , Young Adult
3.
Eur J Immunol ; 43(9): 2409-20, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23737382

ABSTRACT

Heterologous prime-boost strategies hold promise for vaccination against tuberculosis. However, the T-cell characteristics required for protection are not known. We proposed that boost vaccines should induce long-lived functional and phenotypic changes to T cells primed by Bacille Calmette Guerin (BCG) and/or natural exposure to mycobacteria. We characterized changes among specific CD4(+) T cells after vaccination with the MVA85A vaccine in adults, adolescents, and children. CD4(+) T cells identified with Ag85A peptide-bearing HLA class II tetramers were characterized by flow cytometry. We also measured proliferative potential and cytokine expression of Ag85A-specific CD4(+) T cells. During the effector phase, MVA85A-induced specific CD4(+) T cells coexpressed IFN-γ and IL-2, skin homing integrins, and the activation marker CD38. This was followed by contraction and a transition to predominantly IL-2-expressing, CD45RA(-) CCR7(+) CD27(+) or CD45RA(+) CCR7(+) CD27(+) specific CD4(+) T cells. These surface phenotypes were similar to Ag85A-specific T cells prior to MVA85A. However, functional differences were observed postvaccination: specific proliferative capacity was markedly higher after 6-12 months than before vaccination. Our data suggest that MVA85A vaccination may modulate Ag85A-specific CD4(+) T-cell function, resulting in greater recall potential. Importantly, surface phenotypes commonly used as proxies for memory T-cell function did not associate with functional effects of vaccination.


Subject(s)
Acyltransferases/immunology , Antigens, Bacterial/immunology , CD4-Positive T-Lymphocytes/immunology , Immunologic Memory , Tuberculosis Vaccines/immunology , Tuberculosis/prevention & control , Viral Vaccines/immunology , ADP-ribosyl Cyclase 1/biosynthesis , Adolescent , Adult , Cell Proliferation , Child , Child, Preschool , Female , Humans , Interferon-gamma/biosynthesis , Interleukin-2/biosynthesis , Leukocyte Common Antigens/metabolism , Lymphocyte Activation , Male , Middle Aged , Mycobacterium tuberculosis/immunology , Receptors, CCR7/metabolism , Tuberculosis/immunology , Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism , Vaccines, DNA , Young Adult
4.
Vaccine ; 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38880691

ABSTRACT

Vaccination is the best strategy to control Paratuberculosis (PTB), which is a significant disease in cattle and sheep. Previously we showed the humoral and cellular immune response induced by a novel vaccine candidate against PTB based on the Argentinian Mycobacterium avium subspecies paratuberculosis (Map) 6611 strain. To improve 6611 immunogenicity and efficacy, we evaluated this vaccine candidate in mice with two different adjuvants and a heterologous boost with a recombinant modified vaccinia Ankara virus (MVA) expressing the antigen 85A (MVA85A). We observed that boosting with MVA85A did not improve total IgG or specific isotypes in serum induced by one or two doses of 6611 formulated with incomplete Freund's adjuvant (IFA). However, when 6611 was formulated with ISA201 adjuvant, MVA85A boost enhanced the production of IFNγ, Th1/Th17 cytokines (IL-2, TNF, IL-17A) and IL-6, IL-4 and IL-10. Also, this group showed the highest levels of IgG2b and IgG3 isotypes, both important for better protection against Map infection in the murine model. Finally, the heterologous scheme elicited the highest levels of protection after Map challenge (lowest CFU count and liver lesion score). In conclusion, our results encourage further evaluation of 6611 strain + ISA201 prime and MVA85A boost in bovines.

5.
Vaccines (Basel) ; 9(4)2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33923628

ABSTRACT

The immunogenicity of the candidate tuberculosis (TB) vaccine MVA85A may be enhanced by aerosol delivery. Intradermal administration was shown to be safe in adults with latent TB infection (LTBI), but data are lacking for aerosol-delivered candidate TB vaccines in this population. We carried out a Phase I trial to evaluate the safety and immunogenicity of MVA85A delivered by aerosol in UK adults with LTBI (NCT02532036). Two volunteers were recruited, and the vaccine was well-tolerated with no safety concerns. Aerosolised vaccination with MVA85A induced mycobacterium- and vector-specific IFN-γ in blood and mycobacterium-specific Th1 cytokines in bronchoalveolar lavage. We identified several important barriers that could hamper recruitment into clinical trials in this patient population. The trial did not show any safety concerns in the aerosol delivery of a candidate viral-vectored TB vaccine to two UK adults with Mycobacterium tuberculosis (M.tb) infection. It also systemically and mucosally demonstrated inducible immune responses following aerosol vaccination. A further trial in a country with higher incidence of LTBI would confirm these findings.

6.
Vaccine ; 38(4): 779-789, 2020 01 22.
Article in English | MEDLINE | ID: mdl-31735500

ABSTRACT

BACKGROUND: This phase I trial evaluated the safety and immunogenicity of a candidate tuberculosis vaccination regimen, ChAdOx1 85A prime-MVA85A boost, previously demonstrated to be protective in animal studies, in healthy UK adults. METHODS: We enrolled 42 healthy, BCG-vaccinated adults into 4 groups: low dose Starter Group (n = 6; ChAdOx1 85A alone), high dose groups; Group A (n = 12; ChAdOx1 85A), Group B (n = 12; ChAdOx1 85A prime - MVA85A boost) or Group C (n = 12; ChAdOx1 85A - ChAdOx1 85A prime - MVA85A boost). Safety was determined by collection of solicited and unsolicited vaccine-related adverse events (AEs). Immunogenicity was measured by antigen-specific ex-vivo IFN-γ ELISpot, IgG serum ELISA, and antigen-specific intracellular IFN-γ, TNF-α, IL-2 and IL-17. RESULTS: AEs were mostly mild/moderate, with no Serious Adverse Events. ChAdOx1 85A induced Ag85A-specific ELISpot and intracellular cytokine CD4+ and CD8+ T cell responses, which were not boosted by a second dose, but were boosted with MVA85A. Polyfunctional CD4+ T cells (IFN-γ, TNF-α and IL-2) and IFN-γ+, TNF-α+ CD8+ T cells were induced by ChAdOx1 85A and boosted by MVA85A. ChAdOx1 85A induced serum Ag85A IgG responses which were boosted by MVA85A. CONCLUSION: A ChAdOx1 85A prime - MVA85A boost is well tolerated and immunogenic in healthy UK adults.


Subject(s)
BCG Vaccine/administration & dosage , Tuberculosis Vaccines/administration & dosage , Tuberculosis/prevention & control , Vaccination/methods , Adult , BCG Vaccine/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cytokines/immunology , Follow-Up Studies , Humans , Immunization, Secondary , Immunogenicity, Vaccine , Tuberculosis/immunology , Tuberculosis Vaccines/adverse effects , Tuberculosis Vaccines/immunology , United Kingdom , Vaccination/adverse effects , Vaccines, DNA
7.
Front Immunol ; 11: 1806, 2020.
Article in English | MEDLINE | ID: mdl-33133057

ABSTRACT

Background: Tuberculosis (TB) is a severe infectious disease with devastating effects on global public health. No TB vaccine has yet been approved for use on latent TB infections and healthy adults. In this study, we performed a systematic review and meta-analysis to evaluate the immunogenicity and safety of the M72/AS01E and MVA85A subunit vaccines. The M72/AS01E is a novel peptide-based vaccine currently in progress, which may increase the protection level against TB infection. The MVA85A was a viral vector-based TB subunit vaccine being used in the clinical trials. The vaccines mentioned above have been studied in various phase I/II clinical trials. Immunogenicity and safety is the first consideration for TB vaccine development. Methods: The PubMed, Embase, and Cochrane Library databases were searched for published studies (until October 2019) to find out information on the M72/AS01E and MVA85A candidate vaccines. The meta-analysis was conducted by applying the standard methods and processes established by the Cochrane Collaboration. Results: Five eligible randomized clinical trials (RCTs) were selected for the meta-analysis of M72/AS01E candidate vaccines. The analysis revealed that the M72/AS01E subunit vaccine had an abundance of polyfunctional M72-specific CD4+ T cells [standardized mean difference (SMD) = 2.37] in the vaccine group versus the control group, the highest seropositivity rate [relative risk (RR) = 5.09]. The M72/AS01E vaccinated group were found to be at high risk of local injection site redness (RR = 2.64), headache (RR = 1.59), malaise (RR = 3.55), myalgia (RR = 2.27), fatigue (RR = 2.16), pain (RR = 3.99), swelling (RR = 5.09), and fever (RR = 2.04) compared to the control groups. The incidences of common adverse events of M72/AS01E were local injection site redness, headache, malaise, myalgia, fatigue, pain, swelling, fever, etc. Six eligible RCTs were selected for the meta-analysis on MVA85A candidate vaccines. The analysis revealed that the subunit vaccine MVA85A had a higher abundance of overall pooled proportion polyfunctional MVA85A-specific CD4+ T cells SMD = 2.41 in the vaccine group vs. the control group, with the highest seropositivity rate [estimation rate (ER) = 0.55]. The MVA85A vaccinated group were found to be at high risk of local injection site redness (ER = 0.55), headache (ER = 0.40), malaise (ER = 0.29), pain (ER = 0.54), myalgia (ER = 0.31), and fever (ER = 0.20). The incidences of common adverse events of MVA85A were local injection site redness, headache, malaise, pain, myalgia, fever, etc. Conclusion: The M72/AS01E and MVA85A vaccines against TB are safe and had immunogenicity in diverse clinical trials. The M72/AS01E and MVA85A vaccines are associated with a mild adverse reaction. The meta-analysis on immunogenicity and safety of M72/AS01E and MVA85A vaccines provides useful information for the evaluation of available subunit vaccines in the clinic.


Subject(s)
Immunogenicity, Vaccine , Mycobacterium tuberculosis/immunology , Tuberculosis Vaccines/therapeutic use , Tuberculosis/prevention & control , Adolescent , Adult , Female , Host-Pathogen Interactions , Humans , Infant , Male , Middle Aged , Mycobacterium tuberculosis/pathogenicity , Patient Safety , Randomized Controlled Trials as Topic , Treatment Outcome , Tuberculosis/immunology , Tuberculosis/microbiology , Tuberculosis Vaccines/adverse effects , Vaccines, DNA , Vaccines, Subunit/therapeutic use , Young Adult
8.
Vaccine ; 34(11): 1412-21, 2016 Mar 08.
Article in English | MEDLINE | ID: mdl-26854906

ABSTRACT

INTRODUCTION: There is an urgent need for a new and effective tuberculosis vaccine because BCG does not sufficiently prevent pulmonary disease. IMX313 is a novel carrier protein designed to improve cellular and humoral immunity. MVA85A-IMX313 is a novel vaccine candidate designed to boost immunity primed by bacillus Calmette-Guérin (BCG) that has been immunogenic in pre-clinical studies. This is the first evaluation of IMX313 delivered as MVA85A-IMX313 in humans. METHODS: In this phase 1, open-label first-in-human trial, 30 healthy previously BCG-vaccinated adults were enrolled into three treatment groups and vaccinated with low dose MVA85A-IMX313 (group A), standard dose MVA85A-IMX313 (group B), or MVA85A (group C). Volunteers were followed up for 6 months for safety and immunogenicity assessment. RESULTS: The majority of adverse events were mild and there were no vaccine-related serious AEs. Both MVA85A-IMX313 and MVA85A induced a significant increase in IFN-γ ELISpot responses. There were no significant differences between the Ag85A ELISpot and intracellular cytokine responses between the two study groups B (MVA85A-IMX313) and C (MVA85A) at any time point post-vaccination. CONCLUSION: MVA85A-IMX313 was well tolerated and immunogenic. There was no significant difference in the number of vaccine-related, local or systemic adverse reactions between MVA85A and MVA85A-IMX313 groups. The mycobacteria-specific cellular immune responses induced by MVA85A-IMX313 were not significantly different to those detected in the MVA85A group. In light of this encouraging safety data, further work to improve the potency of molecular adjuvants like IMX313 is merited. This trial was registered on clinicatrials.gov ref. NCT01879163.


Subject(s)
Tuberculosis Vaccines/immunology , Tuberculosis/prevention & control , Adult , Antibodies, Bacterial/blood , BCG Vaccine/administration & dosage , Cytokines/immunology , Enzyme-Linked Immunosorbent Assay , Enzyme-Linked Immunospot Assay , Female , Humans , Immunity, Cellular , Immunoglobulin G/blood , Male , Middle Aged , Tuberculosis Vaccines/administration & dosage , Tuberculosis Vaccines/adverse effects , Vaccines, DNA , Young Adult
9.
Hum Vaccin Immunother ; 12(5): 1177-87, 2016 05 03.
Article in English | MEDLINE | ID: mdl-26810964

ABSTRACT

While much progress has been made in the fight against the scourge of tuberculosis (TB), we are still some way from reaching the ambitious targets of eliminating it as a global public health problem by the mid twenty-first century. A new and effective vaccine that protects against pulmonary TB disease will be an essential element of any control strategy. Over a dozen vaccines are currently in development, but recent efficacy trial data from one of the most advanced candidates have been disappointing. Limitations of current preclinical animal models exist, together with a lack of a complete understanding of host immunity to TB or robust correlates of disease risk and protection. Therefore, in the context of such obstacles, we discuss the lessons identified from recent efficacy trials, current concepts of biomarkers and correlates of protection, the potential of innovative clinical models such as human challenge and conducting trials in high-incidence settings to evaluate TB vaccines in humans, and the use of systems vaccinology and novel technologies including transcriptomics and metabolomics, that may facilitate their utility.


Subject(s)
BCG Vaccine , Tuberculosis Vaccines , Tuberculosis/immunology , Tuberculosis/prevention & control , Animals , BCG Vaccine/immunology , Biomarkers , Clinical Trials as Topic , Disease Models, Animal , Drug Design , Gene Expression Profiling , Humans , Metabolomics , Mycobacterium tuberculosis/immunology , Tuberculosis/microbiology , Tuberculosis Vaccines/immunology , Tuberculosis, Pulmonary/microbiology , Tuberculosis, Pulmonary/prevention & control , Vaccination , Vaccines, DNA
10.
Tuberculosis (Edinb) ; 94(2): 105-10, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24369986

ABSTRACT

There is an urgent need for an improved TB vaccine. Vaccine development is hindered by the lack of immune correlates and uncertain predictive value of preclinical animal models. As data become available from human efficacy trials, there is an opportunity to evaluate the predictive value of the criteria used to select candidate vaccines. Here we review the efficacy in animal models of the MVA85A candidate vaccine in light of recent human efficacy data and propose refinements to the preclinical models with the aim of increasing their predictive value for human efficacy.


Subject(s)
Mycobacterium tuberculosis/immunology , Tuberculosis Vaccines/pharmacology , Tuberculosis/prevention & control , Animals , BCG Vaccine/pharmacology , Cattle , Drug Design , Drug Evaluation, Preclinical , Guinea Pigs , Humans , Mice , Models, Animal , Practice Guidelines as Topic , Primates , Vaccines, DNA
11.
Vaccine ; 32(6): 712-6, 2014 Feb 03.
Article in English | MEDLINE | ID: mdl-24300592

ABSTRACT

Tuberculosis remains a great health threat to the world among infectious diseases particularly with the advent of human immunodeficiency virus and emergence of drug resistant strains. In the light of the inconsistent efficacy imparted by the only currently available pre-exposure vaccine bacillus Calmette-Guerin BCG, the development of an improved TB vaccine is a very high international research priority. Vaccine candidates currently in clinical trials are also pre-exposure vaccines that aim to prevent active tuberculosis during an individual's lifetime. According to World Health Organization approximately a third of the world's population is latently infected with Mycobacterium tuberculosis. Dormancy or latency of Mycobacteria is associated with the formation of granuloma with poorly perfused interior leading to expression of genes which help them survive in this hostile environment. A group of about 50 genes belonging to the DosR regulon also known as latency antigens are expressed by Mycobacteria when they are persisting in the immuno-competent host. An understanding of the immunological effects produced by products of these latency induced genes may help in making a more potent vaccine. Incorporation of latency antigens into improved (live or subunit) vaccines may enhance the impact of these vaccines in which BCG priming can be followed by multisubunit protein boosting. These vaccines could act as post exposure vaccines for containment and prevention of latent TB activation. This heterologous boosting of BCG-primed immunity will be able to stimulate the known immune correlates of protective immunity against M. tuberculosis i.e. TH1 cells (CD4(+) and CD8(+) T cells) mediated immune responses with cytokines such as IFN-γ and TNF-α⋅ In our review we have analysed and compared the immunogenic potential of various latency-associated antigens of the DosR regulon in line with the current strategy of developing a recombinant post exposure booster vaccine.


Subject(s)
Antigens, Bacterial/immunology , Latent Tuberculosis/immunology , Tuberculosis Vaccines/immunology , Tuberculosis/prevention & control , Animals , Antigens, Bacterial/genetics , Bacterial Proteins/genetics , Bacterial Proteins/immunology , DNA-Binding Proteins , Humans , Mycobacterium tuberculosis , Protein Kinases/genetics , Protein Kinases/immunology , Regulon , Vaccines, Synthetic/immunology
SELECTION OF CITATIONS
SEARCH DETAIL