Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
Cell ; 167(3): 643-656.e17, 2016 Oct 20.
Article in English | MEDLINE | ID: mdl-27768888

ABSTRACT

Humans differ in the outcome that follows exposure to life-threatening pathogens, yet the extent of population differences in immune responses and their genetic and evolutionary determinants remain undefined. Here, we characterized, using RNA sequencing, the transcriptional response of primary monocytes from Africans and Europeans to bacterial and viral stimuli-ligands activating Toll-like receptor pathways (TLR1/2, TLR4, and TLR7/8) and influenza virus-and mapped expression quantitative trait loci (eQTLs). We identify numerous cis-eQTLs that contribute to the marked differences in immune responses detected within and between populations and a strong trans-eQTL hotspot at TLR1 that decreases expression of pro-inflammatory genes in Europeans only. We find that immune-responsive regulatory variants are enriched in population-specific signals of natural selection and show that admixture with Neandertals introduced regulatory variants into European genomes, affecting preferentially responses to viral challenges. Together, our study uncovers evolutionarily important determinants of differences in host immune responsiveness between human populations.


Subject(s)
Adaptation, Physiological/genetics , Adaptation, Physiological/immunology , Adaptive Immunity , Neanderthals/genetics , Neanderthals/immunology , Adaptive Immunity/genetics , Alleles , Animals , Bacterial Infections/genetics , Bacterial Infections/immunology , Base Sequence , Biological Evolution , Black People/genetics , Gene Expression Regulation , Genetic Variation , Humans , Immune System , Quantitative Trait Loci , RNA/genetics , Selection, Genetic , Sequence Analysis, RNA , Toll-Like Receptors/genetics , Transcription, Genetic , Virus Diseases/genetics , Virus Diseases/immunology , White People/genetics
2.
Mol Biol Evol ; 38(11): 5156-5174, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34254144

ABSTRACT

Neandertal DNA makes up 2-3% of the genomes of all non-African individuals. The patterns of Neandertal ancestry in modern humans have been used to estimate that this is the result of gene flow that occurred during the expansion of modern humans into Eurasia, but the precise dates of this event remain largely unknown. Here, we introduce an extended admixture pulse model that allows joint estimation of the timing and duration of gene flow. This model leads to simple expressions for both the admixture segment distribution and the decay curve of ancestry linkage disequilibrium, and we show that these two statistics are closely related. In simulations, we find that estimates of the mean time of admixture are largely robust to details in gene flow models, but that the duration of the gene flow can only be recovered if gene flow is very recent and the exact recombination map is known. These results imply that gene flow from Neandertals into modern humans could have happened over hundreds of generations. Ancient genomes from the time around the admixture event are thus likely required to resolve the question when, where, and for how long humans and Neandertals interacted.


Subject(s)
Neanderthals , Animals , DNA/genetics , Gene Flow , Genome , Humans , Neanderthals/genetics
3.
Genome Biol Evol ; 13(1)2021 01 07.
Article in English | MEDLINE | ID: mdl-33247712

ABSTRACT

Since the discovery of admixture between modern humans and Neandertals, multiple studies investigated the effect of Neandertal-derived DNA on human disease and nondisease phenotypes. These studies have linked Neandertal ancestry to skin- and hair-related phenotypes, immunity, neurological, and behavioral traits. However, these inferences have so far been limited to cohorts with participants of European ancestry. Here, I analyze summary statistics from 40 disease GWAS (genome-wide association study) cohorts of ∼212,000 individuals provided by the Biobank Japan Project for phenotypic effects of Neandertal DNA. I show that Neandertal DNA is associated with autoimmune diseases, prostate cancer and type 2 diabetes. Many of these disease associations are linked to population-specific Neandertal DNA, highlighting the importance of studying a wider range of ancestries to characterize the phenotypic legacy of Neandertals in people today.


Subject(s)
Disease/genetics , Genome, Human , Genome-Wide Association Study , Neanderthals/genetics , Alleles , Animals , Diabetes Mellitus, Type 2/genetics , Evolution, Molecular , Female , Fossils , Genetic Variation , Humans , Japan , Male , Phenotype , Polymorphism, Single Nucleotide , White People/genetics
SELECTION OF CITATIONS
SEARCH DETAIL