Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 295
Filter
Add more filters

Publication year range
1.
Cell ; 187(13): 3249-3261.e14, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38781968

ABSTRACT

Thermostable clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas9) enzymes could improve genome-editing efficiency and delivery due to extended protein lifetimes. However, initial experimentation demonstrated Geobacillus stearothermophilus Cas9 (GeoCas9) to be virtually inactive when used in cultured human cells. Laboratory-evolved variants of GeoCas9 overcome this natural limitation by acquiring mutations in the wedge (WED) domain that produce >100-fold-higher genome-editing levels. Cryoelectron microscopy (cryo-EM) structures of the wild-type and improved GeoCas9 (iGeoCas9) enzymes reveal extended contacts between the WED domain of iGeoCas9 and DNA substrates. Biochemical analysis shows that iGeoCas9 accelerates DNA unwinding to capture substrates under the magnesium-restricted conditions typical of mammalian but not bacterial cells. These findings enabled rational engineering of other Cas9 orthologs to enhance genome-editing levels, pointing to a general strategy for editing enzyme improvement. Together, these results uncover a new role for the Cas9 WED domain in DNA unwinding and demonstrate how accelerated target unwinding dramatically improves Cas9-induced genome-editing activity.


Subject(s)
CRISPR-Associated Protein 9 , CRISPR-Cas Systems , Cryoelectron Microscopy , DNA , Gene Editing , Humans , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , CRISPR-Associated Protein 9/metabolism , CRISPR-Associated Protein 9/genetics , CRISPR-Cas Systems/genetics , DNA/metabolism , DNA/genetics , Gene Editing/methods , Geobacillus stearothermophilus/genetics , Geobacillus stearothermophilus/metabolism , HEK293 Cells , Protein Domains , Genome, Human , Models, Molecular , Protein Structure, Tertiary , Nucleic Acid Conformation , Biocatalysis , Magnesium/chemistry , Magnesium/metabolism
2.
Cell ; 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39208796

ABSTRACT

Fanzor (Fz) is an ωRNA-guided endonuclease extensively found throughout the eukaryotic domain with unique gene editing potential. Here, we describe the structures of Fzs from three different organisms. We find that Fzs share a common ωRNA interaction interface, regardless of the length of the ωRNA, which varies considerably across species. The analysis also reveals Fz's mode of DNA recognition and unwinding capabilities as well as the presence of a non-canonical catalytic site. The structures demonstrate how protein conformations of Fz shift to allow the binding of double-stranded DNA to the active site within the R-loop. Mechanistically, examination of structures in different states shows that the conformation of the lid loop on the RuvC domain is controlled by the formation of the guide/DNA heteroduplex, regulating the activation of nuclease and DNA double-stranded displacement at the single cleavage site. Our findings clarify the mechanism of Fz, establishing a foundation for engineering efforts.

3.
Cell ; 186(12): 2593-2609.e18, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37209683

ABSTRACT

Here, we describe an approach to correct the genetic defect in fragile X syndrome (FXS) via recruitment of endogenous repair mechanisms. A leading cause of autism spectrum disorders, FXS results from epigenetic silencing of FMR1 due to a congenital trinucleotide (CGG) repeat expansion. By investigating conditions favorable to FMR1 reactivation, we find MEK and BRAF inhibitors that induce a strong repeat contraction and full FMR1 reactivation in cellular models. We trace the mechanism to DNA demethylation and site-specific R-loops, which are necessary and sufficient for repeat contraction. A positive feedback cycle comprising demethylation, de novo FMR1 transcription, and R-loop formation results in the recruitment of endogenous DNA repair mechanisms that then drive excision of the long CGG repeat. Repeat contraction is specific to FMR1 and restores the production of FMRP protein. Our study therefore identifies a potential method of treating FXS in the future.


Subject(s)
Fragile X Syndrome , Trinucleotide Repeat Expansion , Humans , R-Loop Structures , DNA Methylation , Fragile X Syndrome/genetics , Epigenesis, Genetic , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism
4.
Cell ; 175(2): 558-570.e11, 2018 10 04.
Article in English | MEDLINE | ID: mdl-30245011

ABSTRACT

Given that genomic DNA exerts its function by being transcribed, it is critical for the maintenance of homeostasis that DNA damage, such as double-strand breaks (DSBs), within transcriptionally active regions undergoes accurate repair. However, it remains unclear how this is achieved. Here, we describe a mechanism for transcription-associated homologous recombination repair (TA-HRR) in human cells. The process is initiated by R-loops formed upon DSB induction. We identify Rad52, which is recruited to the DSB site in a DNA-RNA-hybrid-dependent manner, as playing pivotal roles in promoting XPG-mediated R-loop processing and initiating subsequent repair by HRR. Importantly, dysfunction of TA-HRR promotes DSB repair via non-homologous end joining, leading to a striking increase in genomic aberrations. Thus, our data suggest that the presence of R-loops around DSBs within transcriptionally active regions promotes accurate repair of DSBs via processing by Rad52 and XPG to protect genomic information in these critical regions from gene alterations.


Subject(s)
DNA-Binding Proteins/metabolism , Endonucleases/metabolism , Nuclear Proteins/metabolism , Rad52 DNA Repair and Recombination Protein/metabolism , Recombinational DNA Repair/physiology , Transcription Factors/metabolism , Cell Line , DNA/genetics , DNA Breaks, Double-Stranded , DNA Damage , DNA End-Joining Repair , DNA Repair , DNA-Binding Proteins/physiology , Endonucleases/physiology , Homologous Recombination , Humans , Nuclear Proteins/genetics , Nuclear Proteins/physiology , RNA/genetics , Rad52 DNA Repair and Recombination Protein/genetics , Transcription Factors/physiology
5.
Cell ; 169(6): 1105-1118.e15, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28575672

ABSTRACT

Mutations truncating a single copy of the tumor suppressor, BRCA2, cause cancer susceptibility. In cells bearing such heterozygous mutations, we find that a cellular metabolite and ubiquitous environmental toxin, formaldehyde, stalls and destabilizes DNA replication forks, engendering structural chromosomal aberrations. Formaldehyde selectively depletes BRCA2 via proteasomal degradation, a mechanism of toxicity that affects very few additional cellular proteins. Heterozygous BRCA2 truncations, by lowering pre-existing BRCA2 expression, sensitize to BRCA2 haploinsufficiency induced by transient exposure to natural concentrations of formaldehyde. Acetaldehyde, an alcohol catabolite detoxified by ALDH2, precipitates similar effects. Ribonuclease H1 ameliorates replication fork instability and chromosomal aberrations provoked by aldehyde-induced BRCA2 haploinsufficiency, suggesting that BRCA2 inactivation triggers spontaneous mutagenesis during DNA replication via aberrant RNA-DNA hybrids (R-loops). These findings suggest a model wherein carcinogenesis in BRCA2 mutation carriers can be incited by compounds found pervasively in the environment and generated endogenously in certain tissues with implications for public health.


Subject(s)
BRCA2 Protein/genetics , Chromosome Aberrations/drug effects , Formaldehyde/toxicity , Genomic Instability/drug effects , Toxins, Biological/toxicity , DNA Damage , DNA Replication/drug effects , DNA-Binding Proteins/metabolism , Haploinsufficiency , HeLa Cells , Humans , MRE11 Homologue Protein , Proteome , Ribonuclease H/metabolism
6.
Cell ; 170(1): 72-85.e14, 2017 Jun 29.
Article in English | MEDLINE | ID: mdl-28666126

ABSTRACT

Maintenance of a minimal telomere length is essential to prevent cellular senescence. When critically short telomeres arise in the absence of telomerase, they can be repaired by homology-directed repair (HDR) to prevent premature senescence onset. It is unclear why specifically the shortest telomeres are targeted for HDR. We demonstrate that the non-coding RNA TERRA accumulates as HDR-promoting RNA-DNA hybrids (R-loops) preferentially at very short telomeres. The increased level of TERRA and R-loops, exclusively at short telomeres, is due to a local defect in RNA degradation by the Rat1 and RNase H2 nucleases, respectively. Consequently, the coordination of TERRA degradation with telomere replication is altered at shortened telomeres. R-loop persistence at short telomeres contributes to activation of the DNA damage response (DDR) and promotes recruitment of the Rad51 recombinase. Thus, the telomere length-dependent regulation of TERRA and TERRA R-loops is a critical determinant of the rate of replicative senescence.


Subject(s)
Cell Cycle , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Telomere/metabolism , Cellular Senescence , DNA Damage , Exoribonucleases/metabolism , Nucleic Acid Hybridization , Recombinational DNA Repair , Repressor Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/metabolism , Telomere/chemistry , Telomere-Binding Proteins/metabolism
7.
Cell ; 170(1): 48-60.e11, 2017 Jun 29.
Article in English | MEDLINE | ID: mdl-28666122

ABSTRACT

Type I CRISPR systems feature a sequential dsDNA target searching and degradation process, by crRNA-displaying Cascade and nuclease-helicase fusion enzyme Cas3, respectively. Here we present two cryo-EM snapshots of the Thermobifida fusca type I-E Cascade: (1) unwinding 11 bp of dsDNA at the seed-sequence region to scout for sequence complementarity, and (2) further unwinding of the entire protospacer to form a full R-loop. These structures provide the much-needed temporal and spatial resolution to resolve key mechanistic steps leading to Cas3 recruitment. In the early steps, PAM recognition causes severe DNA bending, leading to spontaneous DNA unwinding to form a seed-bubble. The full R-loop formation triggers conformational changes in Cascade, licensing Cas3 to bind. The same process also generates a bulge in the non-target DNA strand, enabling its handover to Cas3 for cleavage. The combination of both negative and positive checkpoints ensures stringent yet efficient target degradation in type I CRISPR-Cas systems.


Subject(s)
Actinobacteria/genetics , Actinobacteria/ultrastructure , CRISPR-Cas Systems , Nucleic Acid Hybridization , Actinobacteria/chemistry , Actinobacteria/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/ultrastructure , Base Sequence , CRISPR-Associated Proteins/chemistry , CRISPR-Associated Proteins/metabolism , CRISPR-Associated Proteins/ultrastructure , Cryoelectron Microscopy , Models, Molecular , RNA, Bacterial/chemistry , RNA, Bacterial/metabolism , RNA, Small Untranslated/chemistry , RNA, Small Untranslated/metabolism
8.
Mol Cell ; 84(16): 3141-3153.e5, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39047725

ABSTRACT

The metagenome-derived type I-E and type I-F variant CRISPR-associated complex for antiviral defense (Cascade) complexes, fused with HNH domains, precisely cleave target DNA, representing recently identified genome editing tools. However, the underlying working mechanisms remain unknown. Here, structures of type I-FHNH and I-EHNH Cascade complexes at different states are reported. In type I-FHNH Cascade, Cas8fHNH loosely attaches to Cascade head and is adjacent to the 5' end of the target single-stranded DNA (ssDNA). Formation of the full R-loop drives the Cascade head to move outward, allowing Cas8fHNH to detach and rotate ∼150° to accommodate target ssDNA for cleavage. In type I-EHNH Cascade, Cas5eHNH domain is adjacent to the 5' end of the target ssDNA. Full crRNA-target pairing drives the lift of the Cascade head, widening the substrate channel for target ssDNA entrance. Altogether, these analyses into both complexes revealed that crRNA-guided positioning of target DNA and target DNA-induced HNH unlocking are two key factors for their site-specific cleavage of target DNA.


Subject(s)
CRISPR-Associated Proteins , CRISPR-Cas Systems , DNA Cleavage , DNA, Single-Stranded , Gene Editing , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/genetics , CRISPR-Associated Proteins/metabolism , CRISPR-Associated Proteins/genetics , Gene Editing/methods , R-Loop Structures/genetics , Cryoelectron Microscopy
9.
Mol Cell ; 84(14): 2717-2731.e6, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38955179

ABSTRACT

The specific nature of CRISPR-Cas12a makes it a desirable RNA-guided endonuclease for biotechnology and therapeutic applications. To understand how R-loop formation within the compact Cas12a enables target recognition and nuclease activation, we used cryo-electron microscopy to capture wild-type Acidaminococcus sp. Cas12a R-loop intermediates and DNA delivery into the RuvC active site. Stages of Cas12a R-loop formation-starting from a 5-bp seed-are marked by distinct REC domain arrangements. Dramatic domain flexibility limits contacts until nearly complete R-loop formation, when the non-target strand is pulled across the RuvC nuclease and coordinated domain docking promotes efficient cleavage. Next, substantial domain movements enable target strand repositioning into the RuvC active site. Between cleavage events, the RuvC lid conformationally resets to occlude the active site, requiring re-activation. These snapshots build a structural model depicting Cas12a DNA targeting that rationalizes observed specificity and highlights mechanistic comparisons to other class 2 effectors.


Subject(s)
Acidaminococcus , Bacterial Proteins , CRISPR-Associated Proteins , CRISPR-Cas Systems , Catalytic Domain , Cryoelectron Microscopy , CRISPR-Associated Proteins/metabolism , CRISPR-Associated Proteins/chemistry , CRISPR-Associated Proteins/genetics , Acidaminococcus/enzymology , Acidaminococcus/genetics , Acidaminococcus/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , R-Loop Structures/genetics , Endodeoxyribonucleases/metabolism , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/chemistry , RNA, Guide, CRISPR-Cas Systems/metabolism , RNA, Guide, CRISPR-Cas Systems/genetics , Models, Molecular , Protein Domains , Structure-Activity Relationship , Protein Binding
10.
Mol Cell ; 83(16): 2856-2871.e8, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37536339

ABSTRACT

Cohesin and CCCTC-binding factor (CTCF) are key regulatory proteins of three-dimensional (3D) genome organization. Cohesin extrudes DNA loops that are anchored by CTCF in a polar orientation. Here, we present direct evidence that CTCF binding polarity controls cohesin-mediated DNA looping. Using single-molecule imaging, we demonstrate that a critical N-terminal motif of CTCF blocks cohesin translocation and DNA looping. The cryo-EM structure of the cohesin-CTCF complex reveals that this CTCF motif ahead of zinc fingers can only reach its binding site on the STAG1 cohesin subunit when the N terminus of CTCF faces cohesin. Remarkably, a C-terminally oriented CTCF accelerates DNA compaction by cohesin. DNA-bound Cas9 and Cas12a ribonucleoproteins are also polar cohesin barriers, indicating that stalling may be intrinsic to cohesin itself. Finally, we show that RNA-DNA hybrids (R-loops) block cohesin-mediated DNA compaction in vitro and are enriched with cohesin subunits in vivo, likely forming TAD boundaries.


Subject(s)
Chromatin , R-Loop Structures , CCCTC-Binding Factor/genetics , CCCTC-Binding Factor/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , DNA/genetics , DNA/metabolism , Cohesins
11.
Mol Cell ; 83(20): 3692-3706.e5, 2023 10 19.
Article in English | MEDLINE | ID: mdl-37832548

ABSTRACT

The senataxin (SETX, Sen1 in yeasts) RNA-DNA hybrid resolving helicase regulates multiple nuclear transactions, including DNA replication, transcription, and DNA repair, but the molecular basis for Sen1 activities is ill defined. Here, Sen1 cryoelectron microscopy (cryo-EM) reconstructions reveal an elongated inchworm-like architecture. Sen1 is composed of an amino terminal helical repeat Sen1 N-terminal (Sen1N) regulatory domain that is flexibly linked to its C-terminal SF1B helicase motor core (Sen1Hel) via an intrinsically disordered tether. In an autoinhibited state, the Sen1Sen1N domain regulates substrate engagement by promoting occlusion of the RNA substrate-binding cleft. The X-ray structure of an activated Sen1Hel engaging single-stranded RNA and ADP-SO4 shows that the enzyme encircles RNA and implicates a single-nucleotide power stroke in the Sen1 RNA translocation mechanism. Together, our data unveil dynamic protein-protein and protein-RNA interfaces underpinning helicase regulation and inactivation of human SETX activity by RNA-binding-deficient mutants in ataxia with oculomotor apraxia 2 neurodegenerative disease.


Subject(s)
Neurodegenerative Diseases , RNA , Humans , RNA/genetics , Cryoelectron Microscopy , RNA Helicases/genetics , RNA Helicases/chemistry , Multifunctional Enzymes/genetics , DNA/genetics , Homeostasis , DNA Helicases/genetics
12.
Mol Cell ; 83(13): 2357-2366.e8, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37295432

ABSTRACT

DNA replication preferentially initiates close to active transcription start sites (TSSs) in the human genome. Transcription proceeds discontinuously with an accumulation of RNA polymerase II (RNAPII) in a paused state near the TSS. Consequently, replication forks inevitably encounter paused RNAPII soon after replication initiates. Hence, dedicated machinery may be needed to remove RNAPII and facilitate unperturbed fork progression. In this study, we discovered that Integrator, a transcription termination machinery involved in the processing of RNAPII transcripts, interacts with the replicative helicase at active forks and promotes the removal of RNAPII from the path of the replication fork. Integrator-deficient cells have impaired replication fork progression and accumulate hallmarks of genome instability including chromosome breaks and micronuclei. The Integrator complex resolves co-directional transcription-replication conflicts to facilitate faithful DNA replication.


Subject(s)
DNA Replication , RNA Polymerase II , Humans , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Transcription, Genetic , DNA Helicases/genetics , DNA Helicases/metabolism , Genomic Instability
13.
Mol Cell ; 83(11): 1827-1838.e6, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37267904

ABSTRACT

CRISPR-associated transposons (CASTs) are natural RNA-directed transposition systems. We demonstrate that transposon protein TniQ plays a central role in promoting R-loop formation by RNA-guided DNA-targeting modules. TniQ residues, proximal to CRISPR RNA (crRNA), are required for recognizing different crRNA categories, revealing an unappreciated role of TniQ to direct transposition into different classes of crRNA targets. To investigate adaptations allowing CAST elements to utilize attachment sites inaccessible to CRISPR-Cas surveillance complexes, we compared and contrasted PAM sequence requirements in both I-F3b CAST and I-F1 CRISPR-Cas systems. We identify specific amino acids that enable a wider range of PAM sequences to be accommodated in I-F3b CAST elements compared with I-F1 CRISPR-Cas, enabling CAST elements to access attachment sites as sequences drift and evade host surveillance. Together, this evidence points to the central role of TniQ in facilitating the acquisition of CRISPR effector complexes for RNA-guided DNA transposition.


Subject(s)
CRISPR-Associated Proteins , RNA , DNA/genetics , CRISPR-Cas Systems , CRISPR-Associated Proteins/genetics
14.
Mol Cell ; 83(14): 2493-2508.e5, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37343553

ABSTRACT

Type IV CRISPR-Cas systems, which are primarily found on plasmids and exhibit a strong plasmid-targeting preference, are the only one of the six known CRISPR-Cas types for which the mechanistic details of their function remain unknown. Here, we provide high-resolution functional snapshots of type IV-A Csf complexes before and after target dsDNA binding, either in the absence or presence of CasDinG, revealing the mechanisms underlying CsfcrRNA complex assembly, "DWN" PAM-dependent dsDNA targeting, R-loop formation, and CasDinG recruitment. Furthermore, we establish that CasDinG, a signature DinG family helicase, harbors ssDNA-stimulated ATPase activity and ATP-dependent 5'-3' DNA helicase activity. In addition, we show that CasDinG unwinds the non-target strand (NTS) and target strand (TS) of target dsDNA from the CsfcrRNA complex. These molecular details advance our mechanistic understanding of type IV-A CRISPR-Csf function and should enable Csf complexes to be harnessed as genome-engineering tools for biotechnological applications.


Subject(s)
CRISPR-Associated Proteins , DNA , DNA/genetics , DNA, Single-Stranded/genetics , CRISPR-Cas Systems , CRISPR-Associated Proteins/metabolism
15.
Mol Cell ; 82(19): 3580-3597.e9, 2022 10 06.
Article in English | MEDLINE | ID: mdl-36206738

ABSTRACT

Maintenance of appropriate cell states involves epigenetic mechanisms, including Polycomb-group (PcG)-mediated transcriptional repression. While PcG proteins are known to induce chromatin compaction, how PcG proteins gain access to DNA in compact chromatin to achieve long-term silencing is poorly understood. Here, we show that the p300/CREB-binding protein (CBP) co-activator is associated with two-thirds of PcG regions and required for PcG occupancy at many of these in Drosophila and mouse cells. CBP stabilizes RNA polymerase II (Pol II) at PcG-bound repressive sites and promotes Pol II pausing independently of its histone acetyltransferase activity. CBP and Pol II pausing are necessary for RNA-DNA hybrid (R-loop) formation and nucleosome depletion at Polycomb Response Elements (PREs), whereas transcription beyond the pause region is not. These results suggest that non-enzymatic activities of the CBP co-activator have been repurposed to support PcG-mediated silencing, revealing how chromatin regulator interplay maintains transcriptional states.


Subject(s)
Drosophila Proteins , Nucleosomes , Animals , CREB-Binding Protein/genetics , CREB-Binding Protein/metabolism , Chromatin/genetics , Chromatin/metabolism , DNA/metabolism , Drosophila/genetics , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Mice , Nucleosomes/genetics , Nucleosomes/metabolism , Polycomb Repressive Complex 1/genetics , Polycomb-Group Proteins/metabolism , Protein Binding , RNA/metabolism , RNA Polymerase II/genetics , RNA Polymerase II/metabolism
16.
Mol Cell ; 82(12): 2267-2297, 2022 06 16.
Article in English | MEDLINE | ID: mdl-35508167

ABSTRACT

Although transcription is an essential cellular process, it is paradoxically also a well-recognized cause of genomic instability. R-loops, non-B DNA structures formed when nascent RNA hybridizes to DNA to displace the non-template strand as single-stranded DNA (ssDNA), are partially responsible for this instability. Yet, recent work has begun to elucidate regulatory roles for R-loops in maintaining the genome. In this review, we discuss the cellular contexts in which R-loops contribute to genomic instability, particularly during DNA replication and double-strand break (DSB) repair. We also summarize the evidence that R-loops participate as an intermediate during repair and may influence pathway choice to preserve genomic integrity. Finally, we discuss the immunogenic potential of R-loops and highlight their links to disease should they become pathogenic.


Subject(s)
R-Loop Structures , Transcription, Genetic , DNA/metabolism , DNA Repair , DNA Replication , DNA, Single-Stranded/genetics , Genomic Instability , Humans , R-Loop Structures/genetics
17.
Mol Cell ; 82(21): 3985-4000.e4, 2022 11 03.
Article in English | MEDLINE | ID: mdl-36265486

ABSTRACT

Alternative lengthening of telomeres (ALT), a telomerase-independent process maintaining telomeres, is mediated by break-induced replication (BIR). RAD52 promotes ALT by facilitating D-loop formation, but ALT also occurs through a RAD52-independent BIR pathway. Here, we show that the telomere non-coding RNA TERRA forms dynamic telomeric R-loops and contributes to ALT activity in RAD52 knockout cells. TERRA forms R-loops in vitro and at telomeres in a RAD51AP1-dependent manner. The formation of R-loops by TERRA increases G-quadruplexes (G4s) at telomeres. G4 stabilization enhances ALT even when TERRA is depleted, suggesting that G4s act downstream of R-loops to promote BIR. In vitro, the telomeric R-loops assembled by TERRA and RAD51AP1 generate G4s, which persist after R-loop resolution and allow formation of telomeric D-loops without RAD52. Thus, the dynamic telomeric R-loops formed by TERRA and RAD51AP1 enable the RAD52-independent ALT pathway, and G4s orchestrate an R- to D-loop switch at telomeres to stimulate BIR.


Subject(s)
RNA, Long Noncoding , Telomerase , Telomere Homeostasis , Telomere/genetics , Telomere/metabolism , Telomerase/genetics , Telomerase/metabolism , R-Loop Structures/genetics , DNA Repair
18.
Genes Dev ; 35(23-24): 1579-1594, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34819354

ABSTRACT

The nucleolus is an important cellular compartment in which ribosomal RNAs (rRNAs) are transcribed and where certain stress pathways that are crucial for cell growth are coordinated. Here we report novel functions of the DNA replication and repair factor replication protein A (RPA) in control of nucleolar homeostasis. We show that loss of the DNA:RNA helicase senataxin (SETX) promotes RPA nucleolar localization, and that this relocalization is dependent on the presence of R loops. Notably, this nucleolar RPA phenotype was also observed in the presence of camptothecin (CPT)-induced genotoxic stress, as well as in SETX-deficient AOA2 patient fibroblasts. Extending these results, we found that RPA is recruited to rDNA following CPT treatment, where RPA prevents R-loop-induced DNA double-strand breaks. Furthermore, we show that loss of RPA significantly decreased 47S pre-rRNA levels, which was accompanied by increased expression of both RNAP II-mediated "promoter and pre-rRNA antisense" RNA as well as RNAP I-transcribed intragenic spacer RNAs. Finally, and likely reflecting the above, we found that loss of RPA promoted nucleolar structural disorganization, characterized by the appearance of reduced size nucleoli. Our findings both indicate new roles for RPA in nucleoli through pre-rRNA transcriptional control and also emphasize that RPA function in nucleolar homeostasis is linked to R-loop resolution under both physiological and pathological conditions.


Subject(s)
R-Loop Structures , Replication Protein A , Cell Nucleolus/metabolism , DNA Helicases/genetics , DNA Helicases/metabolism , DNA, Ribosomal/genetics , DNA, Ribosomal/metabolism , Humans , Multifunctional Enzymes , RNA Helicases/metabolism , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , Replication Protein A/genetics , Replication Protein A/metabolism , Transcription, Genetic
19.
Genes Dev ; 35(19-20): 1383-1394, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34531317

ABSTRACT

Enhancers generate bidirectional noncoding enhancer RNAs (eRNAs) that may regulate gene expression. At present, the eRNA function remains enigmatic. Here, we report a 5' capped antisense eRNA PEARL (Pcdh eRNA associated with R-loop formation) that is transcribed from the protocadherin (Pcdh) α HS5-1 enhancer region. Through loss- and gain-of-function experiments with CRISPR/Cas9 DNA fragment editing, CRISPRi, and CRISPRa, as well as locked nucleic acid strategies, in conjunction with ChIRP, MeDIP, DRIP, QHR-4C, and HiChIP experiments, we found that PEARL regulates Pcdhα gene expression by forming local RNA-DNA duplexes (R-loops) in situ within the HS5-1 enhancer region to promote long-distance chromatin interactions between distal enhancers and target promoters. In particular, increased levels of eRNA PEARL via perturbing transcription elongation factor SPT6 lead to strengthened local three-dimensional chromatin organization within the Pcdh superTAD. These findings have important implications regarding molecular mechanisms by which the HS5-1 enhancer regulates stochastic Pcdhα promoter choice in single cells in the brain.


Subject(s)
Enhancer Elements, Genetic , Protocadherins , Chromatin , Enhancer Elements, Genetic/genetics , Gene Expression Regulation , Promoter Regions, Genetic/genetics , RNA , Transcription, Genetic
20.
EMBO J ; 43(14): 3044-3071, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38858601

ABSTRACT

MCM8 has emerged as a core gene in reproductive aging and is crucial for meiotic homologous recombination repair. It also safeguards genome stability by coordinating the replication stress response during mitosis, but its function in mitotic germ cells remains elusive. Here we found that disabling MCM8 in mice resulted in proliferation defects of primordial germ cells (PGCs) and ultimately impaired fertility. We further demonstrated that MCM8 interacted with two known helicases DDX5 and DHX9, and loss of MCM8 led to R-loop accumulation by reducing the retention of these helicases at R-loops, thus inducing genome instability. Cells expressing premature ovarian insufficiency-causative mutants of MCM8 with decreased interaction with DDX5 displayed increased R-loop levels. These results show MCM8 interacts with R-loop-resolving factors to prevent R-loop-induced DNA damage, which may contribute to the maintenance of genome integrity of PGCs and reproductive reserve establishment. Our findings thus reveal an essential role for MCM8 in PGC development and improve our understanding of reproductive aging caused by genome instability in mitotic germ cells.


Subject(s)
DEAD-box RNA Helicases , Genomic Instability , Minichromosome Maintenance Proteins , R-Loop Structures , Animals , Female , Humans , Male , Mice , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , DNA Damage , Germ Cells/metabolism , Minichromosome Maintenance Proteins/metabolism , Minichromosome Maintenance Proteins/genetics , R-Loop Structures/genetics
SELECTION OF CITATIONS
SEARCH DETAIL