Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 425
Filter
Add more filters

Publication year range
1.
Cell ; 185(20): 3739-3752.e18, 2022 09 29.
Article in English | MEDLINE | ID: mdl-36113465

ABSTRACT

Lysosomal amino acid efflux by proton-driven transporters is essential for lysosomal homeostasis, amino acid recycling, mTOR signaling, and maintaining lysosomal pH. To unravel the mechanisms of these transporters, we focus on cystinosin, a prototypical lysosomal amino acid transporter that exports cystine to the cytosol, where its reduction to cysteine supplies this limiting amino acid for diverse fundamental processes and controlling nutrient adaptation. Cystinosin mutations cause cystinosis, a devastating lysosomal storage disease. Here, we present structures of human cystinosin in lumen-open, cytosol-open, and cystine-bound states, which uncover the cystine recognition mechanism and capture the key conformational states of the transport cycle. Our structures, along with functional studies and double electron-electron resonance spectroscopic investigations, reveal the molecular basis for the transporter's conformational transitions and protonation switch, show conformation-dependent Ragulator-Rag complex engagement, and demonstrate an unexpected activation mechanism. These findings provide molecular insights into lysosomal amino acid efflux and a potential therapeutic strategy.


Subject(s)
Cystine , Protons , Amino Acid Transport Systems/metabolism , Cysteine/metabolism , Cystine/metabolism , Humans , Lysosomes/metabolism , TOR Serine-Threonine Kinases/metabolism
2.
Cell ; 174(1): 102-116.e14, 2018 06 28.
Article in English | MEDLINE | ID: mdl-29804837

ABSTRACT

RAG endonuclease initiates antibody heavy chain variable region exon assembly from V, D, and J segments within a chromosomal V(D)J recombination center (RC) by cleaving between paired gene segments and flanking recombination signal sequences (RSSs). The IGCR1 control region promotes DJH intermediate formation by isolating Ds, JHs, and RCs from upstream VHs in a chromatin loop anchored by CTCF-binding elements (CBEs). How VHs access the DJHRC for VH to DJH rearrangement was unknown. We report that CBEs immediately downstream of frequently rearranged VH-RSSs increase recombination potential of their associated VH far beyond that provided by RSSs alone. This CBE activity becomes particularly striking upon IGCR1 inactivation, which allows RAG, likely via loop extrusion, to linearly scan chromatin far upstream. VH-associated CBEs stabilize interactions of D-proximal VHs first encountered by the DJHRC during linear RAG scanning and thereby promote dominant rearrangement of these VHs by an unanticipated chromatin accessibility-enhancing CBE function.


Subject(s)
CCCTC-Binding Factor/metabolism , Chromatin/metabolism , Homeodomain Proteins/metabolism , V(D)J Recombination , Animals , Cell Line , DNA, Intergenic/genetics , DNA, Intergenic/metabolism , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/genetics , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/metabolism , Immunoglobulin Variable Region/genetics , Immunoglobulin Variable Region/metabolism , Mice , Mice, Inbred C57BL , Models, Molecular , Mutagenesis , Protein Sorting Signals , RNA, Guide, Kinetoplastida/metabolism , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism
3.
Mol Cell ; 84(3): 552-569.e11, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38103557

ABSTRACT

Autophagy, an important quality control and recycling process vital for cellular homeostasis, is tightly regulated. The mTORC1 signaling pathway regulates autophagy under conditions of nutrient availability and scarcity. However, how mTORC1 activity is fine-tuned during nutrient availability to allow basal autophagy is unclear. Here, we report that the WD-domain repeat protein MORG1 facilitates basal constitutive autophagy by inhibiting mTORC1 signaling through Rag GTPases. Mechanistically, MORG1 interacts with active Rag GTPase complex inhibiting the Rag GTPase-mediated recruitment of mTORC1 to the lysosome. MORG1 depletion in HeLa cells increases mTORC1 activity and decreases autophagy. The autophagy receptor p62/SQSTM1 binds to MORG1, but MORG1 is not an autophagy substrate. However, p62/SQSTM1 binding to MORG1 upon re-addition of amino acids following amino acid's depletion precludes MORG1 from inhibiting the Rag GTPases, allowing mTORC1 activation. MORG1 depletion increases cell proliferation and migration. Low expression of MORG1 correlates with poor survival in several important cancers.


Subject(s)
GTP Phosphohydrolases , Monomeric GTP-Binding Proteins , Humans , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , HeLa Cells , Sequestosome-1 Protein/metabolism , Signal Transduction , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Lysosomes/metabolism , Monomeric GTP-Binding Proteins/genetics , Monomeric GTP-Binding Proteins/metabolism
4.
Mol Cell ; 83(1): 57-73.e9, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36608670

ABSTRACT

The TFE3 and MITF master transcription factors maintain metabolic homeostasis by regulating lysosomal, melanocytic, and autophagy genes. Previous studies posited that their cytosolic retention by 14-3-3, mediated by the Rag GTPases-mTORC1, was key for suppressing transcriptional activity in the presence of nutrients. Here, we demonstrate using mammalian cells that regulated protein stability plays a fundamental role in their control. Amino acids promote the recruitment of TFE3 and MITF to the lysosomal surface via the Rag GTPases, activating an evolutionarily conserved phospho-degron and leading to ubiquitination by CUL1ß-TrCP and degradation. Elucidation of the minimal functional degron revealed a conserved alpha-helix required for interaction with RagA, illuminating the molecular basis for a severe neurodevelopmental syndrome caused by missense mutations in TFE3 within the RagA-TFE3 interface. Additionally, the phospho-degron is recurrently lost in TFE3 genomic translocations that cause kidney cancer. Therefore, two divergent pathologies converge on the loss of protein stability regulation by nutrients.


Subject(s)
Amino Acids , Microphthalmia-Associated Transcription Factor , Animals , Mechanistic Target of Rapamycin Complex 1/metabolism , Microphthalmia-Associated Transcription Factor/genetics , Microphthalmia-Associated Transcription Factor/metabolism , Amino Acids/metabolism , Nutrients , Protein Stability , Lysosomes/genetics , Lysosomes/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Mammals/metabolism
5.
Mol Cell ; 82(10): 1836-1849.e5, 2022 05 19.
Article in English | MEDLINE | ID: mdl-35338845

ABSTRACT

mTORC1 controls cellular metabolic processes in response to nutrient availability. Amino acid signals are transmitted to mTORC1 through the Rag GTPases, which are localized on the lysosomal surface by the Ragulator complex. The Rag GTPases receive amino acid signals from multiple upstream regulators. One negative regulator, GATOR1, is a GTPase activating protein (GAP) for RagA. GATOR1 binds to the Rag GTPases via two modes: an inhibitory mode and a GAP mode. How these two binding interactions coordinate to process amino acid signals is unknown. Here, we resolved three cryo-EM structural models of the GATOR1-Rag-Ragulator complex, with the Rag-Ragulator subcomplex occupying the inhibitory site, the GAP site, and both binding sites simultaneously. When the Rag GTPases bind to GATOR1 at the GAP site, both Rag subunits contact GATOR1 to coordinate their nucleotide loading states. These results reveal a potential GAP mechanism of GATOR1 during the mTORC1 inactivation process.


Subject(s)
GTPase-Activating Proteins , Monomeric GTP-Binding Proteins , Amino Acids/metabolism , Cryoelectron Microscopy , GTPase-Activating Proteins/metabolism , Humans , Intracellular Membranes/metabolism , Lysosomes/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Monomeric GTP-Binding Proteins/metabolism
6.
Mol Cell ; 81(2): 398-407.e4, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33340489

ABSTRACT

Mechanistic target of rapamycin complex 1 (mTORC1) controls cell growth and proliferation by sensing fluctuations in environmental cues such as nutrients, growth factors, and energy levels. The Rag GTPases (Rags) serve as a critical module that signals amino acid (AA) availability to modulate mTORC1 localization and activity. Recent studies have demonstrated how AAs regulate mTORC1 activity through Rags. Here, we uncover an unconventional pathway that activates mTORC1 in response to variations in threonine (Thr) levels via mitochondrial threonyl-tRNA synthetase TARS2. TARS2 interacts with inactive Rags, particularly GTP-RagC, leading to increased GTP loading of RagA. mTORC1 activity in cells lacking TARS2 is resistant to Thr repletion, showing that TARS2 is necessary for Thr-dependent mTORC1 activation. The requirement of TARS2, but not cytoplasmic threonyl-tRNA synthetase TARS, for this effect demonstrates an additional layer of complexity in the regulation of mTORC1 activity.


Subject(s)
Mechanistic Target of Rapamycin Complex 1/genetics , Mitochondria/metabolism , Monomeric GTP-Binding Proteins/genetics , Threonine-tRNA Ligase/genetics , Threonine/metabolism , Gene Expression Regulation , Guanosine Diphosphate/metabolism , Guanosine Triphosphate/metabolism , HEK293 Cells , Humans , Isoenzymes/antagonists & inhibitors , Isoenzymes/genetics , Isoenzymes/metabolism , Lysosomes/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Monomeric GTP-Binding Proteins/metabolism , Protein Binding , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Regulatory-Associated Protein of mTOR/genetics , Regulatory-Associated Protein of mTOR/metabolism , Signal Transduction , Threonine-tRNA Ligase/antagonists & inhibitors , Threonine-tRNA Ligase/metabolism
7.
Mol Cell ; 80(3): 437-451.e6, 2020 11 05.
Article in English | MEDLINE | ID: mdl-33157014

ABSTRACT

Amino-acid-induced lysosomal mechanistic target of rapamycin complex 1 (mTORC1) localization through the Rag GTPases is a critical step for its activation by Rheb GTPase. However, how the mTORC1 interacts with Rheb on the lysosome remains elusive. We report that amino acids enhance the polyubiquitination of Rheb (Ub-Rheb), which shows a strong binding preference for mTORC1 and supports its activation, while the Ub-Rheb is subjected to subsequent degradation. Mechanistically, we identified ATXN3 as a Ub-Rheb deubiquitinase whose lysosomal localization is blocked by active Rag heterodimer in response to amino acid stimulation. Consistently, cells lacking functional Rag heterodimer on the lysosome accumulate Ub-Rheb, and blockade of its degradation instigates robust lysosomal mTORC1 localization and its activation without the Ragulator-Rag system. Thus, polyubiquitination of Rheb is an important post-translational modification, which facilitates the binding of mTORC1 to Rheb on the lysosome and is another crosstalk between the amino acid and growth factor signaling for mTORC1 activation.


Subject(s)
Ataxin-3/metabolism , Mechanistic Target of Rapamycin Complex 1/physiology , Ras Homolog Enriched in Brain Protein/metabolism , Amino Acids/metabolism , Animals , Ataxin-3/physiology , Cell Line , Deubiquitinating Enzymes/metabolism , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Mesenchymal Stem Cells/metabolism , Mice , Monomeric GTP-Binding Proteins/metabolism , Multiprotein Complexes/metabolism , Protein Binding/physiology , Ras Homolog Enriched in Brain Protein/physiology , Repressor Proteins/metabolism , Signal Transduction/physiology , Ubiquitination
8.
Immunol Rev ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39223989

ABSTRACT

The study of antibodies in jawed vertebrates (gnathostomes) provides every immunologist with a bird's eye view of how human immunoglobulins (Igs) came into existence and subsequently evolved into their present forms. It is a fascinating Darwinian history of conservation on the one hand and flexibility on the other, exemplified by the Ig heavy chain (H) isotypes IgM and IgD/W, respectively. The cartilaginous fish (e.g., sharks) Igs provide a glimpse of "how everything got off the ground," while the amphibians (e.g., the model Xenopus) reveal how the adaptive immune system made an about face with the emergence of Ig isotype switching and IgG-like structure/function. The evolution of mucosal Igs is a captivating account of malleability, convergence, and conservation, and a call to arms for future study! In between there are spellbinding chronicles of antibody evolution in each class of vertebrates and rather incredible stories of how antibodies can adapt to occupy niches, for example, single-domain variable regions, cold-adapted Igs, convergent mechanisms to dampen antibody function, provision of mucosal defense, and many more. The purpose here is not to provide an encyclopedic examination of antibody evolution, but rather to hit the high points and entice readers to appreciate how things "came to be."

9.
Mol Cell ; 74(3): 584-597.e9, 2019 05 02.
Article in English | MEDLINE | ID: mdl-30905508

ABSTRACT

V(D)J recombination is essential to generate antigen receptor diversity but is also a potent cause of genome instability. Many chromosome alterations that result from aberrant V(D)J recombination involve breaks at single recombination signal sequences (RSSs). A long-standing question, however, is how such breaks occur. Here, we show that the genomic DNA that is excised during recombination, the excised signal circle (ESC), forms a complex with the recombinase proteins to efficiently catalyze breaks at single RSSs both in vitro and in vivo. Following cutting, the RSS is released while the ESC-recombinase complex remains intact to potentially trigger breaks at further RSSs. Consistent with this, chromosome breaks at RSSs increase markedly in the presence of the ESC. Notably, these breaks co-localize with those found in acute lymphoblastic leukemia patients and occur at key cancer driver genes. We have named this reaction "cut-and-run" and suggest that it could be a significant cause of lymphocyte genome instability.


Subject(s)
Genomic Instability/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Translocation, Genetic/genetics , V(D)J Recombination/genetics , Animals , Base Sequence/genetics , COS Cells , Chlorocebus aethiops , Chromosomes/genetics , DNA/genetics , DNA Breaks, Double-Stranded , HEK293 Cells , Homeodomain Proteins/genetics , Humans , Mice , NIH 3T3 Cells , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Recombinases/genetics
10.
Mol Cell ; 73(2): 325-338.e8, 2019 01 17.
Article in English | MEDLINE | ID: mdl-30527664

ABSTRACT

The eukaryotic TORC1 kinase is a homeostatic controller of growth that integrates nutritional cues and mediates signals primarily from the surface of lysosomes or vacuoles. Amino acids activate TORC1 via the Rag GTPases that combine into structurally conserved multi-protein complexes such as the EGO complex (EGOC) in yeast. Here we show that Ego1, which mediates membrane-anchoring of EGOC via lipid modifications that it acquires while traveling through the trans-Golgi network, is separately sorted to vacuoles and perivacuolar endosomes. At both surfaces, it assembles EGOCs, which regulate spatially distinct pools of TORC1 that impinge on functionally divergent effectors: vacuolar TORC1 predominantly targets Sch9 to promote protein synthesis, whereas endosomal TORC1 phosphorylates Atg13 and Vps27 to inhibit macroautophagy and ESCRT-driven microautophagy, respectively. Thus, the coordination of three key regulatory nodes in protein synthesis and degradation critically relies on a division of labor between spatially sequestered populations of TORC1.


Subject(s)
Proteostasis , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Transcription Factors/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Autophagy , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , Endosomal Sorting Complexes Required for Transport/metabolism , Endosomes/enzymology , Endosomes/genetics , Gene Expression Regulation, Fungal , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Proteolysis , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Signal Transduction , Transcription Factors/genetics , Vacuoles/enzymology , Vacuoles/genetics
11.
Immunol Rev ; 315(1): 154-170, 2023 05.
Article in English | MEDLINE | ID: mdl-36939073

ABSTRACT

Lymphoid cells encompass the adaptive immune system, including T and B cells and Natural killer T cells (NKT), and innate immune cells (ILCs), including Natural Killer (NK) cells. During adult life, these lineages are thought to derive from the differentiation of long-term hematopoietic stem cells (HSCs) residing in the bone marrow. However, during embryogenesis and fetal development, the ontogeny of lymphoid cells is both complex and multifaceted, with a large body of evidence suggesting that lymphoid lineages arise from progenitor cell populations antedating the emergence of HSCs. Recently, the application of single cell RNA-sequencing technologies and pluripotent stem cell-based developmental models has provided new insights into lymphoid ontogeny during embryogenesis. Indeed, PSC differentiation platforms have enabled de novo generation of lymphoid immune cells independently of HSCs, supporting conclusions drawn from the study of hematopoiesis in vivo. Here, we examine lymphoid development from non-HSC progenitor cells and technological advances in the differentiation of human lymphoid cells from pluripotent stem cells for clinical translation.


Subject(s)
Pluripotent Stem Cells , Adult , Humans , Cell Differentiation , Hematopoietic Stem Cells , Killer Cells, Natural , Hematopoiesis
12.
Trends Immunol ; 44(5): 372-383, 2023 05.
Article in English | MEDLINE | ID: mdl-36941153

ABSTRACT

Genetic conflicts shape the genomes of prokaryotic and eukaryotic organisms. Here, we argue that some of the key evolutionary novelties of adaptive immune systems of vertebrates are descendants of prokaryotic toxin-antitoxin (TA) systems. Cytidine deaminases and RAG recombinase have evolved from genotoxic enzymes to programmable editors of host genomes, supporting the astounding discriminatory capability of variable lymphocyte receptors of jawless vertebrates, as well as immunoglobulins and T cell receptors of jawed vertebrates. The evolutionarily recent lymphoid lineage is uniquely sensitive to mutations of the DNA maintenance methylase, which is an orphaned distant relative of prokaryotic restriction-modification systems. We discuss how the emergence of adaptive immunity gave rise to higher order genetic conflicts between genetic parasites and their vertebrate host.


Subject(s)
Adaptive Immunity , Vertebrates , Humans , Animals , Vertebrates/genetics , Adaptive Immunity/genetics , Lymphocytes , Receptors, Antigen, T-Cell/genetics , Immune System , Evolution, Molecular
13.
Eur J Immunol ; : e2451004, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39235410

ABSTRACT

Detailed knowledge of human B-cell development is crucial for the proper interpretation of inborn errors of immunity and malignant diseases. It is of interest to understand the kinetics of protein expression changes during development, but also to properly interpret the major and possibly alternative developmental trajectories. We have investigated human samples from healthy individuals with the aim of describing all B-cell developmental trajectories. We validated a 30-parameter mass cytometry panel and demonstrated the utility of "vaevictis" visualization of B-cell developmental stages. We used the trajectory inference tool "tviblindi" to exhaustively describe all trajectories leading to all developmental ends discovered in the data. Focusing on Natural Effector B cells, we demonstrated the dynamics of expression of nuclear factors (PAX-5, TdT, Ki-67, Bcl-2), cytokine and chemokine receptors (CD127, CXCR4, CXCR5) in relation to the canonical B-cell developmental stage markers. We observed branching of the memory development, where follicular memory formation was marked by CD73 expression. Lastly, we performed an analysis of two example cases of abnormal B-cell development caused by mutations in RAG-1 and Wiskott-Aldrich syndrome gene in patients with primary immunodeficiency. In conclusion, we developed, validated, and presented a comprehensive set of tools for the investigation of B-cell development in the bone marrow compartment.

14.
Eur J Immunol ; 54(10): e2350958, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39046890

ABSTRACT

In developing B cells, V(D)J gene recombination is initiated by the RAG1/2 endonuclease complex, introducing double-stranded DNA breaks (DSBs) in V, D, and J genes and resulting in the formation of the hypervariable parts of immunoglobulins (Ig). Persistent or aberrant RAG1/2 targeting is a potential threat to genome integrity. While RAG1 and RAG2 have been shown to bind various regions genome-wide, the in vivo off-target DNA damage instigated by RAG1/2 endonuclease remains less well understood. In the current study, we identified regions containing RAG1/2-induced DNA breaks in mouse pre-B cells on a genome-wide scale using a global DNA DSB detection strategy. We detected 1489 putative RAG1/2-dependent DSBs, most of which were located outside the Ig loci. DNA sequence motif analysis showed a specific enrichment of RAG1/2-induced DNA DSBs at GA- and CA-repeats and GC-rich motifs. These findings provide further insights into RAG1/2 off-target activity. The ability of RAG1/2 to introduce DSBs on the non-Ig loci during the endogenous V(D)J recombination emphasizes its genotoxic potential in developing lymphocytes.


Subject(s)
B-Lymphocytes , DNA Breaks, Double-Stranded , DNA-Binding Proteins , Homeodomain Proteins , V(D)J Recombination , Animals , Homeodomain Proteins/genetics , Mice , DNA-Binding Proteins/genetics , V(D)J Recombination/genetics , B-Lymphocytes/immunology , Precursor Cells, B-Lymphoid/immunology , Mice, Inbred C57BL
15.
EMBO Rep ; 24(1): e55429, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36382770

ABSTRACT

Developing B cells generate DNA double-stranded breaks (DSBs) to assemble immunoglobulin receptor (Ig) genes necessary for the expression of a mature B cell receptor. These physiologic DSBs are made by the RAG endonuclease, which is comprised of the RAG1 and RAG2 proteins. In pre-B cells, RAG-mediated DSBs activate the ATM kinase to coordinate canonical and non-canonical DNA damage responses (DDR) that trigger DSB repair and B cell developmental signals, respectively. Whether this broad cellular response is distinctive to RAG DSBs is poorly understood. To delineate the factors that direct DDR signaling in B cells, we express a tetracycline-inducible Cas9 nuclease in Rag1-deficient pre-B cells. Both RAG- and Cas9-mediated DSBs at Ig genes activate canonical DDR. In contrast, RAG DSBs, but not Cas9 DSBs, induce the non-canonical DDR-dependent developmental program. This unique response to RAG DSBs is, in part, regulated by non-core regions of RAG1. Thus, B cells trigger distinct cellular responses to RAG DSBs through unique properties of the RAG endonuclease that promotes activation of B cell developmental programs.


Subject(s)
DNA Breaks, Double-Stranded , Homeodomain Proteins , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , B-Lymphocytes/metabolism , Signal Transduction , Precursor Cells, B-Lymphoid , DNA Damage
16.
Mol Cell ; 68(3): 552-565.e8, 2017 Nov 02.
Article in English | MEDLINE | ID: mdl-29056322

ABSTRACT

mTOR complex I (mTORC1) is a central growth regulator that senses amino acids through a pathway that converges on the Rag GTPases, an obligate heterodimer of two related GTPases. Despite their central role in amino acid sensing, it is unknown why the Rag GTPases are heterodimeric and whether their subunits communicate with each other. Here, we find that the binding of guanosine triphosphate (GTP) to one subunit inhibits the binding and induces the hydrolysis of GTP by the other. This intersubunit communication pushes the Rag GTPases into either of two stable configurations, which represent active "on" or "off" states that interconvert via transient intermediates. Subunit coupling confers on the mTORC1 pathway its capacity to respond rapidly to the amino acid level. Thus, the dynamic response of mTORC1 requires intersubunit communication by the Rag GTPases, providing a rationale for why they exist as a dimer and revealing a distinct mode of control for a GTP-binding protein.


Subject(s)
Amino Acids/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Monomeric GTP-Binding Proteins/metabolism , Binding Sites , Enzyme Stability , Guanosine Triphosphate/metabolism , HEK293 Cells , Humans , Hydrolysis , Kinetics , Mechanistic Target of Rapamycin Complex 1/genetics , Models, Molecular , Monomeric GTP-Binding Proteins/chemistry , Monomeric GTP-Binding Proteins/genetics , Protein Binding , Protein Conformation , Protein Multimerization , Protein Subunits , Signal Transduction , Structure-Activity Relationship , Transfection
17.
Subcell Biochem ; 104: 269-294, 2024.
Article in English | MEDLINE | ID: mdl-38963491

ABSTRACT

Eukaryotic cells coordinate available nutrients with their growth through the mechanistic target of rapamycin complex 1 (mTORC1) pathway, in which numerous evolutionarily conserved protein complexes survey and transmit nutrient inputs toward mTORC1. mTORC1 integrates these inputs and activates downstream anabolic or catabolic programs that are in tune with cellular needs, effectively maintaining metabolic homeostasis. The GAP activity toward Rags-1 (GATOR1) protein complex is a critical negative regulator of the mTORC1 pathway and, in the absence of amino acid inputs, is activated to turn off mTORC1 signaling. GATOR1-mediated inhibition of mTORC1 signaling is tightly regulated by an ensemble of protein complexes that antagonize or promote its activity in response to the cellular nutrient environment. Structural, biochemical, and biophysical studies of the GATOR1 complex and its interactors have advanced our understanding of how it regulates cellular metabolism when amino acids are limited. Here, we review the current research with a focus on GATOR1 structure, its enzymatic mechanism, and the growing group of proteins that regulate its activity. Finally, we discuss the implication of GATOR1 dysregulation in physiology and human diseases.


Subject(s)
Mechanistic Target of Rapamycin Complex 1 , Signal Transduction , Humans , Mechanistic Target of Rapamycin Complex 1/metabolism , Animals
18.
J Allergy Clin Immunol ; 153(1): 341-348.e3, 2024 01.
Article in English | MEDLINE | ID: mdl-37567393

ABSTRACT

BACKGROUND: Mutations in the recombinase-activating genes 1 and 2 (RAG1, RAG2) cause a spectrum of phenotypes, ranging from severe combined immune deficiency to combined immune deficiency with immune dysregulation (CID-ID). Hematopoietic cell transplantation is a curative option. Use of conditioning facilitates robust and durable stem cell engraftment and immune reconstitution but may cause toxicity. Transplantation from haploidentical donors is associated with poor outcome in patients with CID-ID. OBJECTIVES: We sought to evaluate multilineage engraftment and immune reconstitution after conditioning with CD45-antibody drug conjugate (CD45-ADC) as a single agent in hypomorphic mice with Rag1 mutation treated with congenic and haploidentical hematopoietic cell transplantation. METHODS: Rag1-F971L mice, a model of CID-ID, were conditioned with various doses of CD45-ADC, total body irradiation, or isotype-ADC, and then given transplants of total bone marrow cells from congenic or haploidentical donors. Flow cytometry was used to assess chimerism and immune reconstitution. Histology was used to document reconstitution of thymic architecture. RESULTS: Conditioning with CD45-ADC as a single agent allowed robust engraftment and immune reconstitution, with restoration of thymus, bone marrow, and peripheral compartments. The optimal doses of CD45-ADC were 1.5 mg/kg and 5 mg/kg for congenic and haploidentical transplantation, respectively. No graft-versus-host disease was observed. CONCLUSIONS: Conditioning with CD45-ADC alone allows full donor chimerism and immune reconstitution in Rag1 hypomorphic mice even following haploidentical transplantation, opening the way for the implementation of similar approaches in humans.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Immunologic Deficiency Syndromes , Humans , Mice , Animals , Transplantation Conditioning , Bone Marrow Transplantation , Immunologic Deficiency Syndromes/therapy , Homeodomain Proteins/genetics
19.
J Allergy Clin Immunol ; 153(4): 1113-1124.e7, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38065233

ABSTRACT

BACKGROUND: Patients with deleterious variants in MYSM1 have an immune deficiency characterized by B-cell lymphopenia, hypogammaglobulinemia, and increased radiosensitivity. MYSM1 is a histone deubiquitinase with established activity in regulating gene expression. MYSM1 also localizes to sites of DNA injury but its function in cellular responses to DNA breaks has not been elucidated. OBJECTIVES: This study sought to determine the activity of MYSM1 in regulating DNA damage responses (DDRs) to DNA double-stranded breaks (DSBs) generated during immunoglobulin receptor gene (Ig) recombination and by ionizing radiation. METHODS: MYSM1-deficient pre- and non-B cells were used to determine the role of MYSM1 in DSB generation, DSB repair, and termination of DDRs. RESULTS: Genetic testing in a newborn with abnormal screen for severe combined immune deficiency, T-cell lymphopenia, and near absence of B cells identified a novel splice variant in MYSM1 that results in nearly absent protein expression. Radiosensitivity testing in patient's peripheral blood lymphocytes showed constitutive γH2AX, a marker of DNA damage, in B cells in the absence of irradiation, suggesting a role for MYSM1 in response to DSBs generated during Ig recombination. Suppression of MYSM1 in pre-B cells did not alter generation or repair of Ig DSBs. Rather, loss of MYSM1 resulted in persistent DNA damage foci and prolonged DDR signaling. Loss of MYSM1 also led to protracted DDRs in U2OS cells with irradiation induced DSBs. CONCLUSIONS: MYSM1 regulates termination of DNA damage responses but does not function in DNA break generation and repair.


Subject(s)
DNA Damage , DNA Repair , Lymphopenia , Humans , Infant, Newborn , DNA Breaks, Double-Stranded , DNA Damage/genetics , Histones/genetics , Histones/metabolism , Lymphopenia/genetics , Trans-Activators/genetics , Ubiquitin-Specific Proteases/genetics , Ubiquitin-Specific Proteases/metabolism
20.
BMC Bioinformatics ; 25(1): 273, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39169321

ABSTRACT

BACKGROUND: There has been a considerable advancement in AI technologies like LLM and machine learning to support biomedical knowledge discovery. MAIN BODY: We propose a novel biomedical neural search service called 'VAIV Bio-Discovery', which supports enhanced knowledge discovery and document search on unstructured text such as PubMed. It mainly handles with information related to chemical compound/drugs, gene/proteins, diseases, and their interactions (chemical compounds/drugs-proteins/gene including drugs-targets, drug-drug, and drug-disease). To provide comprehensive knowledge, the system offers four search options: basic search, entity and interaction search, and natural language search. We employ T5slim_dec, which adapts the autoregressive generation task of the T5 (text-to-text transfer transformer) to the interaction extraction task by removing the self-attention layer in the decoder block. It also assists in interpreting research findings by summarizing the retrieved search results for a given natural language query with Retrieval Augmented Generation (RAG). The search engine is built with a hybrid method that combines neural search with the probabilistic search, BM25. CONCLUSION: As a result, our system can better understand the context, semantics and relationships between terms within the document, enhancing search accuracy. This research contributes to the rapidly evolving biomedical field by introducing a new service to access and discover relevant knowledge.


Subject(s)
Natural Language Processing , Data Mining/methods , Knowledge Discovery/methods , PubMed , Search Engine , Machine Learning , Information Storage and Retrieval/methods , Neural Networks, Computer
SELECTION OF CITATIONS
SEARCH DETAIL