Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 147
Filter
Add more filters

Publication year range
1.
J Biol Chem ; 300(10): 107637, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39122004

ABSTRACT

Tissues are formed and shaped by cells of many different types and are orchestrated through countless interactions. Deciphering a tissue's biological complexity thus requires studying it at cell-level resolution, where molecular and biochemical features of different cell types can be explored and thoroughly dissected. Unfortunately, the lack of comprehensive methods to identify, isolate, and culture each cell type from many tissues has impeded progress. Here, we present a method for the breadth of cell types composing the human breast. Our goal has long been to understand the essence of each of these different breast cell types, to reveal the underlying biology explaining their intrinsic features, the consequences of interactions, and their contributions to the tissue. This biological exploration has required cell purification, deep-RNA sequencing, and a thorough dissection of the genes and pathways defining each cell type. While the molecular analysis is presented in an adjoining article, we present here an exhaustive cellular dissection of the human breast and explore its cellular composition and histological organization. Moreover, we introduce a novel FACS antibody panel and rigorous gating strategy capable of isolating each of the 12 major breast cell types to purity. Finally, we describe the creation of primary cell models from nearly every breast cell type-some the first of their kind-and submit these as critical tools for studying the dynamic cellular interactions within breast tissues and tumors. Together, this body of work delivers a unique perspective of the breast, revealing insights into its cellular, molecular, and biochemical composition.

2.
Hum Mol Genet ; 32(23): 3276-3298, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37688574

ABSTRACT

Cyclin-dependent kinase-like 5 (CDKL5) is a serine-threonine kinase enriched in the forebrain to regulate neuronal development and function. Patients with CDKL5 deficiency disorder (CDD), a severe neurodevelopmental condition caused by mutations of CDKL5 gene, present early-onset epilepsy as the most prominent feature. However, spontaneous seizures have not been reported in mouse models of CDD, raising vital questions on the human-mouse differences and the roles of CDKL5 in early postnatal brains. Here, we firstly measured electroencephalographic (EEG) activities via a wireless telemetry system coupled with video-recording in neonatal mice. We found that mice lacking CDKL5 exhibited spontaneous epileptic EEG discharges, accompanied with increased burst activities and ictal behaviors, specifically at postnatal day 12 (P12). Intriguingly, those epileptic spikes disappeared after P14. We next performed an unbiased transcriptome profiling in the dorsal hippocampus and motor cortex of Cdkl5 null mice at different developmental timepoints, uncovering a set of age-dependent and brain region-specific alterations of gene expression in parallel with the transient display of epileptic activities. Finally, we validated multiple differentially expressed genes, such as glycine receptor alpha 2 and cholecystokinin, at the transcript or protein levels, supporting the relevance of these genes to CDKL5-regulated excitability. Our findings reveal early-onset neuronal hyperexcitability in mouse model of CDD, providing new insights into CDD etiology and potential molecular targets to ameliorate intractable neonatal epilepsy.


Subject(s)
Drug Resistant Epilepsy , Epilepsy , Spasms, Infantile , Humans , Animals , Mice , Transcriptome/genetics , Spasms, Infantile/genetics , Spasms, Infantile/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Epilepsy/genetics , Prosencephalon/metabolism , Mice, Knockout
3.
Breast Cancer Res Treat ; 208(2): 441-459, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39030466

ABSTRACT

PURPOSE: Inflammatory breast cancer (IBC), a rare and highly aggressive form of breast cancer, accounts for 10% of breast cancer-related deaths. Previous omics studies of IBC have focused solely on one of genomics or transcriptomics and did not discover common differences that could distinguish IBC from non-IBC. METHODS: Seventeen IBC patients and five non-IBC patients as well as additional thirty-three Asian breast cancer samples from TCGA-BRCA were included for the study. We performed whole-exon sequencing (WES) to investigate different somatic genomic alterations, copy number variants, and large structural variants between IBC and non-IBC. Bulk RNA sequencing (RNA-seq) was performed to examine the differentially expressed genes, pathway enrichment, and gene fusions. WES and RNA-seq data were further investigated in combination to discover genes that were dysregulated in both genomics and transcriptomics. RESULTS: Copy number variation analysis identified 10 cytobands that showed higher frequency in IBC. Structural variation analysis showed more frequent deletions in IBC. Pathway enrichment and immune infiltration analysis indicated increased immune activation in IBC samples. Gene fusions including CTSC-RAB38 were found to be more common in IBC. We demonstrated more commonly dysregulated RAS pathway in IBC according to both WES and RNA-seq. Inhibitors targeting RAS signaling and its downstream pathways were predicted to possess promising effects in IBC treatment. CONCLUSION: We discovered differences unique in Asian women that could potentially explain IBC etiology and presented RAS signaling pathway as a potential therapeutic target in IBC treatment.


Subject(s)
DNA Copy Number Variations , Gene Expression Profiling , Genomics , Inflammatory Breast Neoplasms , Humans , Female , Inflammatory Breast Neoplasms/genetics , Inflammatory Breast Neoplasms/pathology , Gene Expression Profiling/methods , Genomics/methods , Middle Aged , Gene Expression Regulation, Neoplastic , Exome Sequencing , Biomarkers, Tumor/genetics , Transcriptome , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Adult , Aged
4.
Brief Bioinform ; 23(5)2022 09 20.
Article in English | MEDLINE | ID: mdl-35880426

ABSTRACT

Single-cell RNA-sequencing (scRNA-seq) enables researchers to quantify transcriptomes of thousands of cells simultaneously and study transcriptomic changes between cells. scRNA-seq datasets increasingly include multisubject, multicondition experiments to investigate cell-type-specific differential states (DS) between conditions. This can be performed by first identifying the cell types in all the subjects and then by performing a DS analysis between the conditions within each cell type. Naïve single-cell DS analysis methods that treat cells statistically independent are subject to false positives in the presence of variation between biological replicates, an issue known as the pseudoreplicate bias. While several methods have already been introduced to carry out the statistical testing in multisubject scRNA-seq analysis, comparisons that include all these methods are currently lacking. Here, we performed a comprehensive comparison of 18 methods for the identification of DS changes between conditions from multisubject scRNA-seq data. Our results suggest that the pseudobulk methods performed generally best. Both pseudobulks and mixed models that model the subjects as a random effect were superior compared with the naïve single-cell methods that do not model the subjects in any way. While the naïve models achieved higher sensitivity than the pseudobulk methods and the mixed models, they were subject to a high number of false positives. In addition, accounting for subjects through latent variable modeling did not improve the performance of the naïve methods.


Subject(s)
Benchmarking , Gene Expression Profiling , Gene Expression Profiling/methods , Humans , RNA , RNA-Seq , Sequence Analysis, RNA/methods
5.
Int J Mol Sci ; 25(16)2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39201393

ABSTRACT

Liquid biopsy has emerged as a promising noninvasive approach for colorectal cancer (CRC) management. This review focuses on technologies detecting circulating nucleic acids, specifically circulating tumor DNA (ctDNA) and circulating RNA (cfRNA), as CRC biomarkers. Recent advancements in molecular technologies have enabled sensitive and specific detection of tumor-derived genetic material in bodily fluids. These include quantitative real-time PCR, digital PCR, next-generation sequencing (NGS), and emerging nanotechnology-based methods. For ctDNA analysis, techniques such as BEAMing and droplet digital PCR offer high sensitivity in detecting rare mutant alleles, while NGS approaches provide comprehensive genomic profiling. cfRNA detection primarily utilizes qRT-PCR arrays, microarray platforms, and RNA sequencing for profiling circulating microRNAs and discovering novel RNA biomarkers. These technologies show potential in early CRC detection, treatment response monitoring, minimal residual disease assessment, and tumor evolution tracking. However, challenges remain in standardizing procedures, optimizing detection limits, and establishing clinical utility across disease stages. This review summarizes current circulating nucleic acid detection technologies, their CRC applications, and discusses future directions for clinical implementation.


Subject(s)
Biomarkers, Tumor , Circulating Tumor DNA , Colorectal Neoplasms , Humans , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/blood , Colorectal Neoplasms/genetics , Colorectal Neoplasms/therapy , Biomarkers, Tumor/blood , Circulating Tumor DNA/blood , Circulating Tumor DNA/genetics , Liquid Biopsy/methods , Cell-Free Nucleic Acids/blood , High-Throughput Nucleotide Sequencing/methods
6.
Int J Mol Sci ; 25(13)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39000413

ABSTRACT

Our study aims to address the methodological challenges frequently encountered in RNA-Seq data analysis within cancer studies. Specifically, it enhances the identification of key genes involved in axillary lymph node metastasis (ALNM) in breast cancer. We employ Generalized Linear Models with Quasi-Likelihood (GLMQLs) to manage the inherently discrete and overdispersed nature of RNA-Seq data, marking a significant improvement over conventional methods such as the t-test, which assumes a normal distribution and equal variances across samples. We utilize the Trimmed Mean of M-values (TMMs) method for normalization to address library-specific compositional differences effectively. Our study focuses on a distinct cohort of 104 untreated patients from the TCGA Breast Invasive Carcinoma (BRCA) dataset to maintain an untainted genetic profile, thereby providing more accurate insights into the genetic underpinnings of lymph node metastasis. This strategic selection paves the way for developing early intervention strategies and targeted therapies. Our analysis is exclusively dedicated to protein-coding genes, enriched by the Magnitude Altitude Scoring (MAS) system, which rigorously identifies key genes that could serve as predictors in developing an ALNM predictive model. Our novel approach has pinpointed several genes significantly linked to ALNM in breast cancer, offering vital insights into the molecular dynamics of cancer development and metastasis. These genes, including ERBB2, CCNA1, FOXC2, LEFTY2, VTN, ACKR3, and PTGS2, are involved in key processes like apoptosis, epithelial-mesenchymal transition, angiogenesis, response to hypoxia, and KRAS signaling pathways, which are crucial for tumor virulence and the spread of metastases. Moreover, the approach has also emphasized the importance of the small proline-rich protein family (SPRR), including SPRR2B, SPRR2E, and SPRR2D, recognized for their significant involvement in cancer-related pathways and their potential as therapeutic targets. Important transcripts such as H3C10, H1-2, PADI4, and others have been highlighted as critical in modulating the chromatin structure and gene expression, fundamental for the progression and spread of cancer.


Subject(s)
Breast Neoplasms , Gene Expression Regulation, Neoplastic , Lymphatic Metastasis , Humans , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Lymphatic Metastasis/genetics , Female , RNA-Seq/methods , Gene Expression Profiling/methods , Lymph Nodes/pathology , Axilla , Biomarkers, Tumor/genetics , Sequence Analysis, RNA/methods
7.
BMC Genomics ; 24(1): 777, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38102591

ABSTRACT

RNA-Seq analysis of Formalin-Fixed and Paraffin-Embedded (FFPE) samples has emerged as a highly effective approach and is increasingly being used in clinical research and drug development. However, the processing and storage of FFPE samples are known to cause extensive degradation of RNAs, which limits the discovery of gene expression or gene fusion-based biomarkers using RNA sequencing, particularly methods reliant on Poly(A) enrichment. Recently, researchers have developed an exome targeted RNA-Seq methodology that utilizes biotinylated oligonucleotide probes to enrich RNA transcripts of interest, which could overcome these limitations. Nevertheless, the standardization of this experimental framework, including probe designs, sample multiplexing, sequencing read length, and bioinformatic pipelines, remains an essential requirement. In this study, we conducted a comprehensive comparison of three main commercially available exome capture kits and evaluated key experimental parameters, to provide the overview of the advantages and limitations associated with the selection of library preparation protocols and sequencing platforms. The results provide valuable insights into the best practices for obtaining high-quality data from FFPE samples.


Subject(s)
Exome , Formaldehyde , Gene Expression Profiling/methods , Paraffin , Paraffin Embedding/methods , RNA/genetics , Sequence Analysis, RNA , Tissue Fixation/methods
8.
BMC Genomics ; 24(1): 217, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37098483

ABSTRACT

BACKGROUND: Small cell lung cancer (SCLC) is a highly lethal malignant tumor. It accounts for approximately 15% of newly diagnosed lung cancers. Long non-coding RNAs (lncRNAs) can regulate gene expression and contribute to tumorigenesis through interactions with microRNAs (miRNAs). However, there are only a few studies reporting the expression profiles of lncRNAs, miRNAs, and mRNAs in SCLC. Also, the role of differentially expressed lncRNAs, miRNAs, and mRNAs in relation to competitive endogenous RNAs (ceRNA) network in SCLC remain unclear. RESULTS: In the present study, we first performed next generation sequencing (NGS) with six pairs of SCLC tumors and adjacent non-cancerous tissues obtained from SCLC patients. Overall, 29 lncRNAs, 48 miRNAs, and 510 mRNAs were found to be differentially expressed in SCLC samples (|log2[fold change] |> 1; P < 0.05). Bioinformatics analysis was performed to predict and construct a lncRNA-miRNA-mRNA ceRNA network, which included 9 lncRNAs, 11 miRNAs, and 392 mRNAs. Four up-regulated lncRNAs and related mRNAs in the ceRNA regulatory pathways were selected and validated by quantitative PCR. In addition, we examined the role of the most upregulated lncRNA, TCONS_00020615, in SCLC cells. We found that TCONS_00020615 may regulate SCLC tumorigenesis through the TCONS_00020615-hsa-miR-26b-5p-TPD52 pathway. CONCLUSIONS: Our study provided the comprehensive analysis of the expression profiles of lncRNAs, miRNAs, and mRNAs of SCLC tumors and adjacent non-cancerous tissues. We constructed the ceRNA networks which may provide new evidence for the underlying regulatory mechanism of SCLC. We also found that the lncRNA TCONS_00020615 may regulate the carcinogenesis of SCLC.


Subject(s)
Lung Neoplasms , MicroRNAs , RNA, Long Noncoding , Small Cell Lung Carcinoma , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Small Cell Lung Carcinoma/genetics , Gene Regulatory Networks , RNA, Messenger/genetics , RNA, Messenger/metabolism , Lung Neoplasms/genetics , Carcinogenesis/genetics , Gene Expression Regulation, Neoplastic , Neoplasm Proteins/genetics
9.
J Cell Biochem ; 124(11): 1720-1733, 2023 11.
Article in English | MEDLINE | ID: mdl-37796115

ABSTRACT

5-Methylcytosine (m5 C) is a prevalent RNA modification in messenger RNAs (mRNAs). Despite its abundance, its role in the decidua of pre-eclampsia (PE) remains elusive. In this study, we utilized methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA-sequencing (RNA-seq) to map m5 C peaks and mRNA expression profile in the decidua of human early-onset PE (EPE), late-onset PE (LPE), and normal pregnancy (NP). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses elucidated potential roles of the differentially methylated mRNAs (DMGs) and differentially expressed mRNAs in decidualization pathways. Integrative analysis of MeRIP-seq and RNA-seq data pinpointed 50 candidate genes linked to PE, marked by both differentially methylated m5 C peaks and congruent expression changes. To validate these observations, we selected nine genes for verification via quantitative PCR. Our results underscore the precision and reproducibility of our bioinformatics approach. Importantly, we propose that changes in m5 C modification and expression of relevant mRNA might influence the pathogenesis of PE by hampering decidualization. This work shines light on the distinct mRNA m5 C modification patterns and expression profiles in the decidua of PE, implicating pivotal signaling disruptions and decidualization impediments in the onset of PE.


Subject(s)
5-Methylcytosine , Pre-Eclampsia , Pregnancy , Female , Humans , RNA, Messenger/genetics , 5-Methylcytosine/metabolism , Pre-Eclampsia/pathology , Reproducibility of Results , Signal Transduction
10.
Funct Integr Genomics ; 23(4): 299, 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37707691

ABSTRACT

Triple-negative breast cancer (TNBC) is a subtype of breast cancer characterized by poor prognosis and limited treatment options. Oleuropein and oleocanthal are bioactive chemicals found in extra-virgin olive oil; they have been shown to have anti-cancer potential. In this study, we examined the inhibitory effects of these two natural compounds, on MDA-MB-231 and MDA-MB-468 TNBC cell lines. The human TNBC MDA-MB-231 and MDA-MB-468 cell lines were treated with oleuropein or oleocanthal at ranging concentrations for 48 h. After determining the optimum concentration to reach IC50, using the sulforhodamine B assay, total RNA was extracted after 12, 24, and 48 h from treated and untreated cells. Poly(A)-RNA selection was conducted, followed by library construction and RNA sequencing. Differential gene expression (DEG) analysis was performed to identify DEGs between treated and untreated cells. Pathway analysis was carried out using the KEGG and GO databases. Oleuropein and oleocanthal considerably reduced the proliferation of TNBC cells, with oleocanthal having a slightly stronger effect than oleuropein. Furthermore, multi-time series RNA sequencing showed that the expression profile of TNBC cells was significantly altered after treatment with these compounds, with temporal dynamics and groups of genes consistently affected at all time points. Pathway analysis revealed several significant pathways associated with TNBC, including cell death, apoptotic process, programmed cell death, response to stress, mitotic cell cycle process, cell division, and cancer progression. Our findings suggest that oleuropein and oleocanthal have potential therapeutic benefits for TNBC and can be further investigated as alternative treatment options.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , High-Throughput Nucleotide Sequencing , Gene Expression , RNA
11.
Biol Reprod ; 109(6): 965-981, 2023 12 11.
Article in English | MEDLINE | ID: mdl-37694817

ABSTRACT

The placenta is a dynamic organ that must perform a remarkable variety of functions during its relatively short existence in order to support a developing fetus. These functions include nutrient delivery, gas exchange, waste removal, hormone production, and immune barrier protection. Proper placenta development and function are critical for healthy pregnancy outcomes, but the underlying genomic regulatory events that control this process remain largely unknown. We hypothesized that mapping sites of transcriptional enhancer activity and associated changes in gene expression across gestation in human placenta tissue would identify genomic loci and predicted transcription factor activity related to critical placenta functions. We used a suite of genomic assays [i.e., RNA-sequencing (RNA-seq), Precision run-on-sequencing (PRO-seq), and Chromatin immunoprecipitation-sequencing (ChIP-seq)] and computational pipelines to identify a set of >20 000 enhancers that are active at various time points in gestation. Changes in the activity of these enhancers correlate with changes in gene expression. In addition, some of these enhancers encode risk for adverse pregnancy outcomes. We further show that integrating enhancer activity, transcription factor motif analysis, and transcription factor expression can identify distinct sets of transcription factors predicted to be more active either in early pregnancy or at term. Knockdown of selected identified transcription factors in a trophoblast stem cell culture model altered the expression of key placental marker genes. These observations provide a framework for future mechanistic studies of individual enhancer-transcription factor-target gene interactions and have the potential to inform genetic risk prediction for adverse pregnancy outcomes.


Subject(s)
Placenta , Placentation , Humans , Female , Pregnancy , Placentation/genetics , Placenta/metabolism , Enhancer Elements, Genetic , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation
12.
Cell Mol Life Sci ; 79(2): 123, 2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35129669

ABSTRACT

Traumatic brain injury (TBI) and spinal cord injury (SCI) are two main central nervous system (CNS) traumas, caused by external physical insults. Both injuries have devastating effects on the quality of life, and there is no effective therapy at present. Notably, gene expression profiling using bulk RNA sequencing (RNA-Seq) and single-cell RNA-Seq (scRNA-Seq) have revealed significant changes in many coding and non-coding genes, as well as important pathways in SCI and TBI. Particularly, recent studies have revealed that long non-coding RNAs (lncRNAs) with lengths greater than 200 nucleotides and without protein-coding potential have tissue- and cell type-specific expression pattern and play critical roles in CNS injury by gain- and loss-of-function approaches. LncRNAs have been shown to regulate protein-coding genes or microRNAs (miRNAs) directly or indirectly, participating in processes including inflammation, glial activation, cell apoptosis, and vasculature events. Therefore, lncRNAs could serve as potential targets for the diagnosis, treatment, and prognosis of SCI and TBI. In this review, we highlight the recent progress in transcriptome studies of SCI and TBI and insights into molecular mechanisms.


Subject(s)
Brain Injuries, Traumatic/metabolism , RNA, Long Noncoding/metabolism , Spinal Cord Injuries/metabolism , Animals , Gene Expression Regulation , Humans , Transcriptome
13.
Drug Dev Res ; 84(6): 1320-1324, 2023 09.
Article in English | MEDLINE | ID: mdl-37381835

ABSTRACT

Biobanks are a key resource for obtaining human cell lines for biomedical research, including for drug development projects. Such projects often include comparative RNA-sequencing of large panels of human cell lines from individuals affected by certain disorders and healthy controls, or from individuals with different drug response phenotypes. RNA extractions are typically done from growing cell cultures, a process that may take several weeks. However, maintaining large numbers of cell lines in parallel increases the project workload. Here, we show that extracting RNAs directly from frozen vials of human cell lines stored for over 20 years in a liquid nitrogen freezer yields RNAs with the high purity and integrity parameters that conform to those required for optimal RNA-sequencing and are closely similar to those obtained for RNAs extracted from growing human cell lines.


Subject(s)
Nitrogen , RNA , Humans , Cell Line , Cell Culture Techniques
14.
BMC Genomics ; 23(1): 853, 2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36575377

ABSTRACT

BACKGROUND: Long non-coding RNAs (lncRNAs) are emerging as key modulators of inflammatory gene expression, but their roles in neuroinflammation are poorly understood. Here, we identified the inflammation-related lncRNAs and correlated mRNAs of the lipopolysaccharide (LPS)-treated human microglial cell line HMC3. We explored their potential roles and interactions using bioinformatics tools such as gene ontology (GO), kyoto encyclopedia of genes and genomes (KEGG), and weighted gene co-expression network analysis (WGCNA). RESULTS: We identified 5 differentially expressed (DE) lncRNAs, 4 of which (AC083837.1, IRF1-AS1, LINC02605, and MIR3142HG) are novel for microglia. The DElncRNAs with their correlated DEmRNAs (99 total) fell into two network modules that both were enriched with inflammation-related RNAs. However, treatment with the anti-inflammatory agent JQ1, an inhibitor of the bromodomain and extra-terminal (BET) protein BRD4, neutralized the LPS effect in only one module, showing little or even enhancing effect on the other. CONCLUSIONS: These results provide insight into, and a resource for studying, the regulation of microglia-mediated neuroinflammation and its potential therapy by small-molecule BET inhibitors.


Subject(s)
Lipopolysaccharides , RNA, Long Noncoding , Humans , Lipopolysaccharides/pharmacology , Microglia/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Neuroinflammatory Diseases , Nuclear Proteins/genetics , Gene Regulatory Networks , Transcription Factors/genetics , Inflammation/genetics , Cell Cycle Proteins/genetics
15.
J Biomed Sci ; 29(1): 102, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36457101

ABSTRACT

BACKGROUND: yqiC is required for colonizing the Salmonella enterica serovar Typhimurium (S. Typhimurium) in human cells; however, how yqiC regulates nontyphoidal Salmonella (NTS) genes to influence bacteria-host interactions remains unclear. METHODS: The global transcriptomes of S. Typhimurium yqiC-deleted mutant (ΔyqiC) and its wild-type strain SL1344 after 2 h of in vitro infection with Caco-2 cells were obtained through RNA sequencing to conduct comparisons and identify major yqiC-regulated genes, particularly those involved in Salmonella pathogenicity islands (SPIs), ubiquinone and menaquinone biosynthesis, electron transportation chains (ETCs), and carbohydrate/energy metabolism. A Seahorse XFp Analyzer and assays of NADH/NAD+ and H2O2 were used to compare oxygen consumption and extracellular acidification, glycolysis parameters, adenosine triphosphate (ATP) generation, NADH/NAD+ ratios, and H2O2 production between ΔyqiC and SL1344. RESULTS: After S. Typhimurium interacts with Caco-2 cells, yqiC represses gene upregulation in aspartate carbamoyl transferase, type 1 fimbriae, and iron-sulfur assembly, and it is required for expressing ilvB operon, flagellin, tdcABCD, and dmsAB. Furthermore, yqiC is required for expressing mainly SPI-1 genes and specific SPI-4, SPI-5, and SPI-6 genes; however, it diversely regulates SPI-2 and SPI-3 gene expression. yqiC significantly contributes to menD expression in menaquinone biosynthesis. A Kyoto Encyclopedia of Genes and Genomes analysis revealed the extensive association of yqiC with carbohydrate and energy metabolism. yqiC contributes to ATP generation, and the analyzer results demonstrate that yqiC is required for maintaining cellular respiration and metabolic potential under energy stress and for achieving glycolysis, glycolytic capacity, and glycolytic reserve. yqiC is also required for expressing ndh, cydA, nuoE, and sdhB but suppresses cyoC upregulation in the ETC of aerobically and anaerobically grown S. Typhimurium; priming with Caco-2 cells caused a reversed regulation of yiqC toward upregulation in these ETC complex genes. Furthermore, yqiC is required for maintaining NADH/NAD+ redox status and H2O2 production. CONCLUSIONS: Specific unreported genes that were considerably regulated by the colonization-associated gene yqiC in NTS were identified, and the key role and tentative mechanisms of yqiC in the extensive modulation of virulence factors, SPIs, ubiquinone and menaquinone biosynthesis, ETCs, glycolysis, and oxidative stress were discovered.


Subject(s)
Salmonella typhimurium , Transcriptome , Humans , Salmonella typhimurium/genetics , NAD , Ubiquinone , Caco-2 Cells , Hydrogen Peroxide/pharmacology , Vitamin K 2 , Cell Respiration , Oxidative Stress/genetics , Adenosine Triphosphate , Carbohydrates
16.
Liver Int ; 42(1): 124-134, 2022 01.
Article in English | MEDLINE | ID: mdl-34411400

ABSTRACT

BACKGROUND & AIMS: We recently analysed and reported the features of the micro biome under hepatitis C virus (HCV) infection, but the effect of HCV infection on bile acid (BA) metabolism in the gut-liver axis remains poorly understood. The aim of this study was to clarify the characteristics of the gut-liver axis in HCV-infected patients. METHODS: The faecal BAs composition and gut microbiota from 100 chronic hepatitis C (CHC) patients were compared with those from 23 healthy individuals. For transcriptional analysis of the liver, 22 mild CHC (fibrosis stages [F] 0-2) and 42 advanced CHC (F3-4) cases were compared with 12 healthy individuals. The findings were confirmed using chimeric mice with human hepatocytes infected with HCV HCR6. RESULTS: Chronic hepatitis C patients, even at earlier disease stages, showed BA profiles distinct from healthy individuals, in which faecal deoxycholic acid (DCA) was significantly reduced and lithocholic acid or ursodeoxycholic acid became dominant. The decrease in faecal DCA was correlated with reduction in commensal Clostridiales and increase in oral Lactobacillales. Impaired biosynthesis of cholic acid (CA) was observed as a reduction in the transcription level of cytochrome P450 8B1 (CYP8B1), a key enzyme in CA biosynthesis. The reductions in faecal DCA and liver CYP8B1 were also observed in HCV-infected chimeric mice. CONCLUSIONS: Chronic hepatitis C alters the intestinal BA profile, in association with the imbalance of BA biosynthesis, which differs from the pattern in NAFLD. These imbalances appear to drive disease progression through the gut-microbiome-liver axis.


Subject(s)
Gastrointestinal Microbiome , Hepatitis C, Chronic , Animals , Bile Acids and Salts/metabolism , Hepacivirus , Hepatitis C, Chronic/metabolism , Humans , Liver/metabolism , Mice
17.
J Pharmacol Sci ; 149(1): 20-26, 2022 May.
Article in English | MEDLINE | ID: mdl-35369901

ABSTRACT

Early detection of such retinal diseases as glaucoma and age-related macular degeneration (AMD) is important to prevent blindness. There have been reports of changes in some components in the tears of glaucoma and AMD patients, suggesting tears' potential usefulness in screening for retinal diseases. We hypothesized that retinal damage might alter gene expression in the lacrimal gland, leading to those changes in tear components. We caused retinal damage in mice by intravitreal injection of N-methyl-d-aspartate (NMDA) or excessive light exposure. Hematoxylin and eosin staining showed no histological changes in the lacrimal glands of animals whose retinas had been damaged. However, RNA sequencing of lacrimal glands on the 3rd day after NMDA injection or light exposure revealed changes in the expression of 491 genes (268 up-regulated; 223 down-regulated) in the NMDA group and 531 genes (311 up-regulated; 220 down-regulated) in the light group. Further gene-set enrichment analysis indicated that both types of retinal damage activated the immune system in the lacrimal glands. This is the first demonstration that retinal damage can alter gene expression in the lacrimal glands, and it might lead to a novel non-invasive screening method for early detection of retinal diseases.


Subject(s)
Lacrimal Apparatus , Retinal Diseases , Animals , Humans , Intravitreal Injections , Lacrimal Apparatus/metabolism , Mice , Retina , Retinal Diseases/metabolism , Transcriptome
18.
Brain ; 144(7): 2009-2023, 2021 08 17.
Article in English | MEDLINE | ID: mdl-33725094

ABSTRACT

Correction of mis-splicing events is a growing therapeutic approach for neurological diseases such as spinal muscular atrophy or neuronal ceroid lipofuscinosis 7, which are caused by splicing-affecting mutations. Mis-spliced effector genes that do not harbour mutations are also good candidate therapeutic targets in diseases with more complex aetiologies such as cancer, autism, muscular dystrophies or neurodegenerative diseases. Next-generation RNA sequencing (RNA-seq) has boosted investigation of global mis-splicing in diseased tissue to identify such key pathogenic mis-spliced genes. Nevertheless, while analysis of tumour or dystrophic muscle biopsies can be informative on early stage pathogenic mis-splicing, for neurodegenerative diseases, these analyses are intrinsically hampered by neuronal loss and neuroinflammation in post-mortem brains. To infer splicing alterations relevant to Huntington's disease pathogenesis, here we performed intersect-RNA-seq analyses of human post-mortem striatal tissue and of an early symptomatic mouse model in which neuronal loss and gliosis are not yet present. Together with a human/mouse parallel motif scan analysis, this approach allowed us to identify the shared mis-splicing signature triggered by the Huntington's disease-causing mutation in both species and to infer upstream deregulated splicing factors. Moreover, we identified a plethora of downstream neurodegeneration-linked mis-spliced effector genes that-together with the deregulated splicing factors-become new possible therapeutic targets. In summary, here we report pathogenic global mis-splicing in Huntington's disease striatum captured by our new intersect-RNA-seq approach that can be readily applied to other neurodegenerative diseases for which bona fide animal models are available.


Subject(s)
Alternative Splicing/genetics , Huntingtin Protein/genetics , Huntington Disease/genetics , RNA Splicing Factors/genetics , Animals , Corpus Striatum/pathology , Humans , Huntington Disease/pathology , Mice , Sequence Analysis, RNA/methods
19.
Chem Pharm Bull (Tokyo) ; 70(9): 642-649, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35831127

ABSTRACT

Epilepsy treatment with antiepileptic drugs (AEDs) is usually requires for many years. Q808 is an innovative antiepileptic chemical. It exerts effective antiepileptic effect against various epilepsy models. Exploring the gene transcriptomic profile of long-term treatment of Q808 is necessary. In the present study, hippocampus RNA-sequencing was performed to reveal the transcriptome profile of rats before and after treatment of Q808 for 28 d. Results confirmed 51 differentially expressed genes (DEGs) between Q808 and healthy control groups. Gene cluster analysis showed that most upregulated DEGs linked to response to drug and nucleus, most downregulated DEGs linked to locomotory, neuronal cell body, and drug binding. Most of DEGs were enriched in the signaling transduction, substance dependence, nervous system, and neurodegenerative disease pathways. Furthermore, quantitative real-time PCR analysis confirmed that Q808 significantly increased the expression of neuroprotective genes, such as Mdk, and decreased the mRNA levels of Penk, Drd1, and Adora2a, which are highly expressed in epilepsy models. In addition, Q808 decreased the mRNA expression of Pde10A and Drd2, which are known to be closely associated with schizophrenia. Our study may provide a theoretical basis to explore the effect of Q808 on the susceptibility to epilepsy and other neurological diseases.


Subject(s)
Epilepsy , Neurodegenerative Diseases , Animals , Anticonvulsants/therapeutic use , Epilepsy/drug therapy , Gene Expression Profiling , Hippocampus/metabolism , Neurodegenerative Diseases/drug therapy , RNA, Messenger/genetics , Rats , Transcriptome
20.
Int J Mol Sci ; 23(9)2022 May 02.
Article in English | MEDLINE | ID: mdl-35563437

ABSTRACT

Mepiquat chloride (MC) is a plant growth regulator widely used in cotton production to control vegetative overgrowth of cotton plants to achieve ideal plant architecture required for high yielding. Cotton varieties respond differently to MC application, but there is little information about the molecular mechanisms underlying the varietal difference. In this study, comparative transcriptome analysis was conducted by using two Upland cotton varieties with different sensitivity (XLZ74, insensitive; SD1068, sensitive) to MC treatment, aiming to understand the molecular mechanisms responsible for varietal difference of MC sensitivity. RNA-seq data were generated from the two varieties treated with MC or water at three time points, 1, 3 and 6 days post-spray (dps). Genes differentially expressed between the MC and mock treatments of XLZ74 (6252) and SD1068 (6163) were subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses to compare the enriched GO terms and KEGG pathways between the two varieties. Signal transduction of phytohormones, biosynthesis of gibberellins (GAs) and brassinosteroids (BRs) and profiles of transcription factors (TFs) seemed to be differentially affected by MC in the two varieties. The transcriptomic results were further consolidated with the content changes of phytohormones in young stem. Several GA catabolic genes, GA2ox, were highly induced by MC in both varieties especially in SD1068, consistent with a more significant decrease in GA4 in SD1068. Several AUX/IAA and SAUR genes and CKX genes were induced by MC in both varieties, but with a more profound effect observed in SD1068 that showed a significant reduction in indole-3-acetic acid (IAA) and a significant increase in cytokinin (CTK) at 6 days post-spray (dps). BR biosynthesis-related genes were downregulated in SD1068, but not in XLZ74. Additionally, more downregulated TFs were observed in MC-treated SD1068 than in MC-treated XLZ74, and the two varieties had very different profiles of genes involved in starch and sucrose metabolism, with those of SD1068 and XLZ74 being downregulated and upregulated by MC treatment, respectively. Together, these results indicate that although the same or similar biological pathways are affected by MC treatment in cotton varieties showing different MC sensitivity, the extent of effect is variable, leading to their different phenotypic outcomes. How the quantitative effect of MC on the biological processes associated with growth retardation is regulated is still an open question.


Subject(s)
Gene Expression Regulation, Plant , Plant Growth Regulators , Gene Expression Profiling , Gossypium/genetics , Gossypium/metabolism , Piperidines , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL