Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
J Cell Physiol ; 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38946197

ABSTRACT

The small Rho GTP-binding proteins are important cell morphology, function, and apoptosis regulators. Unlike other Rho proteins, RhoB can be subjected to either geranylgeranylation (RhoB-GG) or farnesylation (RhoB-F), making that the only target of the farnesyltransferase inhibitor (FTI). Fluorescence resonance energy transfer experiments revealed that RhoB is activated by hyperosmolarity. By contrast, hyposmolarity did not affect RhoB activity. Interestingly, treatment with farnesyltransferase inhibitor-277 (FTI-277) decreased the cell size. To evaluate whether RhoB plays a role in volume reduction, renal collecting duct MCD4 cells and Human Kidney, HK-2 were transiently transfected with RhoB-wildtype-Enhance Green Fluorescence Protein (RhoB-wt-EGFP) and RhoB-CLLL-EGFP which cannot undergo farnesylation. A calcein-based fluorescent assay revealed that hyperosmolarity caused a significant reduction of cell volume in mock and RhoB-wt-EGFP-expressing cells. By contrast, cells treated with FTI-277 or expressing the RhoB-CLLL-EGFP mutant did not properly respond to hyperosmolarity with respect to mock and RhoB-wt-EGFP expressing cells. These findings were further confirmed by 3D-LSCM showing that RhoB-CLLL-EGFP cells displayed a significant reduction in cell size compared to cells expressing RhoB-wt-EGFP. Moreover, flow cytometry analysis revealed that RhoB-CLLL-EGFP expressing cells as well as FTI-277-treated cells showed a significant increase in cell apoptosis. Together, these data suggested that: (i) RhoB is sensitive to hyperosmolarity and not to hyposmolarity; (ii) inhibition of RhoB farnesylation associates with an increase in cell apoptosis, likely suggesting that RhoB might be a paramount player controlling apoptosis by interfering with responses to cell volume change.

2.
Mol Biol Rep ; 49(1): 755-759, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34825319

ABSTRACT

GTPase activating proteins (GAPs) were initially considered as the inhibitors of cell signaling pathways because of their nature to activate the intrinsic GTPase activity of the RhoGTPases. But recent studies of dysregulated GAPs in many cancers such as glioblastoma, colorectal cancer, breast cancer, and renal cancer have elucidated the important roles of GAPs in carcinogenesis and GAPs have been shown to perform multiple nonconventional functions in different contexts. We have discussed the recent developments in the roles played by different types of srGAPs (SLIT-ROBO Rho GTPase-activating proteins) in cancer.


Subject(s)
Carcinogenesis/metabolism , GTPase-Activating Proteins/metabolism , Neoplasms/metabolism , Signal Transduction , rho GTP-Binding Proteins/metabolism , Animals , Humans
3.
Immunopharmacol Immunotoxicol ; 43(3): 309-318, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34032546

ABSTRACT

BACKGROUND: Depression affects people feeling to be anxious, worried, and restless. They also lose interest in activities, concentrating and appetite, they finally may attempt suicide. Depression is the second chronic disease, as a source of the global burden of disease, after heart disease. Its prevalence elevated seven times during the COVID-19. AIM: The current study was designed to evaluate camphor neuroprotective role against rats' ciprofloxacin-induced depression. MATERIALS AND METHODS: Depression was induced by administration of ciprofloxacin (50 mg/kg; orally) for 21 days. Wister albino male rats were divided into five groups. Group I (normal control): rats were given normal saline. Group II: rats received camphor (10 mg/kg; i.p.) for 21 days. Group III (depression control): rats received ciprofloxacin only. Groups IV and V: rats received camphor (5 and 10 mg/kg; i.p.) for 21 days concurrent with ciprofloxacin. Behavior tests as forced swimming test, activity cage, and rotarod were estimated. Oxidative stress and antioxidant biomarkers as malondialdehyde (MDA), nitric oxide (NO), catalase, and nuclear factor erythroid 2-related factor 2 (Nrf-2) besides inflammatory biomarkers as Toll-like receptor 4 (TLR4) and tumor necrosis factor alpha (TNF-α) as well as neurotransmitters were determined. Finally, histopathological examination was done. RESULTS: Camphor increased catalase and Nrf-2 activities, decreased NO, MDA, TNF-α, TLR4 serum levels, and elevating brain contents of serotonin, dopamine, gamma-amino butyric acid (GABA) and P190-RHO GTP protein with normal neuronal cells of the frontal cortex. CONCLUSION: Camphor has neuroprotective effect via modulation of Nrf-2 and TLR4 against ciprofloxacin-induced depression in rats.


Subject(s)
Camphor/pharmacology , Ciprofloxacin/adverse effects , Depression , NF-E2-Related Factor 2/metabolism , Neuroprotective Agents/pharmacology , Toll-Like Receptor 4/metabolism , Animals , COVID-19/metabolism , COVID-19/pathology , Ciprofloxacin/pharmacology , Depression/chemically induced , Depression/drug therapy , Depression/metabolism , Male , Rats , Rats, Wistar , SARS-CoV-2/metabolism , COVID-19 Drug Treatment
4.
Int J Mol Sci ; 22(22)2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34830494

ABSTRACT

Cytotoxic necrotizing factor 1 (CNF1) is a bacterial virulence factor, the target of which is represented by Rho GTPases, small proteins involved in a huge number of crucial cellular processes. CNF1, due to its ability to modulate the activity of Rho GTPases, represents a widely used tool to unravel the role played by these regulatory proteins in different biological processes. In this review, we summarized the data available in the scientific literature concerning the observed in vitro effects induced by CNF1. An article search was performed on electronic bibliographic resources. Screenings were performed of titles, abstracts, and full-texts according to PRISMA guidelines, whereas eligibility criteria were defined for in vitro studies. We identified a total of 299 records by electronic article search and included 76 original peer-reviewed scientific articles reporting morphological or biochemical modifications induced in vitro by soluble CNF1, either recombinant or from pathogenic Escherichia coli extracts highly purified with chromatographic methods. Most of the described CNF1-induced effects on cultured cells are ascribable to the modulating activity of the toxin on Rho GTPases and the consequent effects on actin cytoskeleton organization. All in all, the present review could be a prospectus about the CNF1-induced effects on cultured cells reported so far.


Subject(s)
Bacterial Toxins/genetics , Escherichia coli Infections/genetics , Escherichia coli Proteins/genetics , Escherichia coli/genetics , Actin Cytoskeleton/drug effects , Actin Cytoskeleton/genetics , Bacterial Toxins/pharmacology , Cell Line , Enterotoxins/genetics , Enterotoxins/pharmacology , Escherichia coli Infections/microbiology , Escherichia coli Infections/pathology , Escherichia coli Proteins/pharmacology , Humans , rho GTP-Binding Proteins/genetics
5.
Circulation ; 139(9): 1185-1198, 2019 02 26.
Article in English | MEDLINE | ID: mdl-30586715

ABSTRACT

BACKGROUND: Inflammatory response after myocardial infarction (MI) is essential for cardiac healing, whereas excessive and prolonged inflammation extends the infarction and promotes adverse cardiac remodeling. Understanding the mechanistic insight of these tightly controlled inflammatory processes has a significant impact on post-MI recovery and therapy. Here, we uncover the critical role of small GTPase RhoE in post-MI recovery and its clinical implication. METHODS: Three genetic mouse lines are used: global RhoE knockout, cardiomyocyte-specific RhoE heterozygous, and cardiomyocyte-specific RhoE overexpression mice. A set of molecular signaling experiments, including bimolecular fluorescence complementation, immunoprecipitation, electrophoretic mobility shift assay, and mRNA microarray analysis, were conducted. Permanent ligation of the left anterior descending artery was performed, followed by the assessments of cardiac function, inflammation, and survival in the first week after MI. Finally, we examined the correlation of the expression levels of RhoE in MI patient heart and patient prognosis. RESULTS: RhoE deficiency turns on a group of proinflammatory gene expressions in mouse heart. Mice with cardiomyocyte-specific haploinsufficiency exhibit excessive inflammatory response with deleterious cardiac function after MI. A profound increase in nuclear factor-κB activity is detected in the mutant heart and the isolated cardiomyocytes. We further find that the expression of RhoE is upregulated in response to MI. Mechanistically, RhoE interacts with p65 and p50 individually in cytosol and blocks their nuclear translocation. RhoE also occupies the dimerization domain of p65 and subsequently disrupts the heterodimerization between p65 and p50. Cardiac RhoE overexpression inhibits nuclear factor-κB activity, restrains post-MI inflammation, and improves cardiac function and survival. Consistently, we find that the expression level of RhoE is elevated in the heart of patients with MI and that the patients with a higher expression level of RhoE exhibit a better prognosis in cardiac function recovery. CONCLUSIONS: The study uncovers RhoE as a new fine-tuning factor modulating MI-induced inflammation and promoting injured heart recovery. RhoE may serve as a new potential biomarker for the assessment of MI patient prognosis. Manipulation of RhoE could be as a potential therapeutic approach for MI and other inflammatory diseases.


Subject(s)
Gene Expression Regulation , Myocardial Infarction/metabolism , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Signal Transduction , rho GTP-Binding Proteins/metabolism , Animals , Gene Expression Profiling , Humans , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Mice , Mice, Knockout , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Myocardium/pathology , Myocytes, Cardiac/pathology , Oligonucleotide Array Sequence Analysis , rho GTP-Binding Proteins/genetics
6.
Int J Mol Sci ; 21(20)2020 Oct 20.
Article in English | MEDLINE | ID: mdl-33092266

ABSTRACT

Protein kinase N3 (PKN3) is a serine/threonine kinase implicated in tumor progression of multiple cancer types, however, its substrates and effector proteins still remain largely understudied. In the present work we aimed to identify novel PKN3 substrates in a phosphoproteomic screen using analog sensitive PKN3. Among the identified putative substrates we selected ARHGAP18, a protein from RhoGAP family, for validation of the screen and further study. We confirmed that PKN3 can phosphorylate ARHGAP18 in vitro and we also characterized the interaction of the two proteins, which is mediated via the N-terminal part of ARHGAP18. We present strong evidence that PKN3-ARHGAP18 interaction is increased upon ARHGAP18 phosphorylation and that the phosphorylation of ARHGAP18 by PKN3 enhances its GAP domain activity and contributes to negative regulation of active RhoA. Taken together, we identified new set of potential PKN3 substrates and revealed a new negative feedback regulatory mechanism of Rho signaling mediated by PKN3-induced ARHGAP18 activation.


Subject(s)
GTPase-Activating Proteins/metabolism , Protein Kinase C/metabolism , Amino Acid Sequence , Animals , Cell Line, Tumor , Feedback, Physiological , Humans , Phosphorylation , Protein Binding , Protein Kinase C/genetics , Proteomics/methods , Signal Transduction , Substrate Specificity
7.
Int J Mol Sci ; 21(9)2020 May 11.
Article in English | MEDLINE | ID: mdl-32403292

ABSTRACT

Several chronic neuroinflammatory diseases, including Parkinson's disease (PD), have the so-called 'redox imbalance' in common, a dynamic system modulated by various factors. Among them, alteration of the mitochondrial functionality can cause overproduction of reactive oxygen species (ROS) with the consequent induction of oxidative DNA damage and apoptosis. Considering the failure of clinical trials with drugs that eliminate ROS directly, research currently focuses on approaches that counteract redox imbalance, thus restoring normal physiology in a neuroinflammatory condition. Herein, we used SH-SY5Y cells treated with 6-hydroxydopamine (6-OHDA), a neurotoxin broadly employed to generate experimental models of PD. Cells were pre-treated with the Rho-modulating Escherichia coli cytotoxic necrotizing factor 1 (CNF1), before the addition of 6-OHDA. Then, cell viability, mitochondrial morphology and dynamics, redox profile as well as autophagic markers expression were assessed. We found that CNF1 preserves cell viability and counteracts oxidative stress induced by 6-OHDA. These effects are accompanied by modulation of the mitochondrial network and an increase in macroautophagic markers. Our results confirm the Rho GTPases as suitable pharmacological targets to counteract neuroinflammatory diseases and evidence the potentiality of CNF1, whose beneficial effects on pathological animal models have been already proven to act against oxidative stress through an autophagic strategy.


Subject(s)
Antioxidants/pharmacology , Autophagy/drug effects , Bacterial Toxins/pharmacology , Escherichia coli Proteins/pharmacology , Oxidative Stress/drug effects , Oxidopamine/pharmacology , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Humans , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Neuroblastoma/metabolism , Neuroblastoma/pathology , Neuroprotective Agents/pharmacology , Reactive Oxygen Species/metabolism
8.
Circ Res ; 116(1): e1-e10, 2015 Jan 02.
Article in English | MEDLINE | ID: mdl-25348166

ABSTRACT

RATIONALE: Rnd3, a small Rho GTPase, is involved in the regulation of cell actin cytoskeleton dynamics, cell migration, and proliferation. The biological function of Rnd3 in the heart remains unexplored. OBJECTIVE: To define the functional role of the Rnd3 gene in the animal heart and investigate the associated molecular mechanism. METHODS AND RESULTS: By loss-of-function approaches, we discovered that Rnd3 is involved in calcium regulation in cardiomyocytes. Rnd3-null mice died at the embryonic stage with fetal arrhythmias. The deletion of Rnd3 resulted in severe Ca(2+) leakage through destabilized ryanodine receptor type 2 Ca(2+) release channels. We further found that downregulation of Rnd3 attenuated ß2-adrenergic receptor lysosomal targeting and ubiquitination, which in turn resulted in the elevation of ß2-adrenergic receptor protein levels leading to the hyperactivation of protein kinase A (PKA) signaling. The PKA activation destabilized ryanodine receptor type 2 channels. This irregular spontaneous Ca(2+) release can be curtailed by PKA inhibitor treatment. Increases in the PKA activity along with elevated cAMP levels were detected in Rnd3-null embryos, in neonatal rat cardiomyocytes, and noncardiac cell lines with Rnd3 knockdown, suggesting a general mechanism for Rnd3-mediated PKA signaling activation. ß2-Adrenergic receptor blocker treatment reduced arrhythmia and improved cardiac function. CONCLUSIONS: Rnd3 is a novel factor involved in intracellular Ca(2+) homeostasis regulation in the heart. Deficiency of the protein induces ryanodine receptor type 2 dysfunction by a mechanism that attenuates Rnd3-mediated ß2-adrenergic receptor ubiquitination, which leads to the activation of PKA signaling. Increased PKA signaling in turn promotes ryanodine receptor type 2 hyperphosphorylation, which contributes to arrhythmogenesis and heart failure.


Subject(s)
Calcium/metabolism , Cyclic AMP-Dependent Protein Kinases/biosynthesis , Gene Deletion , Myocytes, Cardiac/metabolism , rho GTP-Binding Proteins/deficiency , rho GTP-Binding Proteins/genetics , Animals , Animals, Newborn , Cells, Cultured , Female , Heart/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Rats , Signal Transduction/physiology , Up-Regulation/physiology
9.
Biochem Biophys Res Commun ; 443(2): 749-55, 2014 Jan 10.
Article in English | MEDLINE | ID: mdl-24333442

ABSTRACT

Glioblastoma multiforme (GBM) is the most common and lethal primary brain tumor of the central nervous system (CNS). As an attempt to identify drugs for GBM therapeutics, phenotypic assays were used to screen 1000 chemicals from a clinical compound library. GBM subtypes exhibited different capabilities to induce angiogenesis when cultured on Matrigel; proneural cells migrated and formed a tube-like structure without endothelial cells. Among the compounds screened, indatraline, a nonselective monoamine transporter inhibitor, suppressed these morphological changes; it dose dependently inhibited cell spreading, migration, and in vitro/in vivo tube formation. In addition to intracellular calcium concentration, indatraline increased the level of Rho GTPase and its activity. Moreover, indatraline downregulated angiogenesis-related genes such as IGFBP2, PTN, VEGFA, PDGFRA, and VEGFR as well as nestin, a stem cell marker. These findings collectively suggest that the activation of Rho GTPase and the suppression of angiogenesis-related factors mediate the antiangiogenic activity of indatraline in proneural GBM culture.


Subject(s)
Angiogenic Proteins/metabolism , Calcium/metabolism , Glioblastoma/metabolism , Indans/pharmacology , Methylamines/pharmacology , Neovascularization, Pathologic/metabolism , rho GTP-Binding Proteins/metabolism , Cell Movement/drug effects , Down-Regulation/drug effects , Glioblastoma/complications , Humans , Neovascularization, Pathologic/complications , Tumor Cells, Cultured
10.
Mol Biochem Parasitol ; 252: 111512, 2022 11.
Article in English | MEDLINE | ID: mdl-36084901

ABSTRACT

This study aimed to know if alpha terthienyl (α-T) affects E. histolytica viability and to analyze its effect on the actin cytoskeleton. Trophozoites of E. histolytica HM1-IMSS were treated with α-T, then, cell viability and morphology were evaluated using tetrazolium salts and scanning electron microscopy, respectively; while actin filaments (F-actin) were stained with rhodamine-phalloidin, observed by confocal microscopy and quantified by fluorometry. Data showed that α-T inhibited cell viability of trophozoites (IC50, 19.43 µg / mL), affected the cell morphology, and increased the F-actin in a dose-dependent manner. Production of reactive oxygen species and RhoA-GTP levels remained normal in α-T-treated amebas. Two inhibitors that affect the organization of the trophozoites cytoskeleton, one that interacts directly with actin, Cytochalasin D (CD), and one that affects the Rho signaling pathway by inhibiting the downstream effector Rock, Y27632, were tested. Y27632 did not affect the increase of polymerized actin observed with α-T, this compound partially ameliorates the potent disrupting effects of CD on actin filaments. Docking results suggest that α-T could be an antagonist of CD for the same interaction zone in actin, however, more studies are needed to define the action mechanism of this compound.


Subject(s)
Actins , Entamoeba histolytica , Animals , Actin Cytoskeleton/drug effects , Actin Cytoskeleton/metabolism , Actins/drug effects , Actins/metabolism , Entamoeba histolytica/metabolism , Trophozoites/drug effects , Trophozoites/metabolism
11.
Cancers (Basel) ; 12(9)2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32825648

ABSTRACT

Photodynamic therapy (PDT) is an attractive cancer treatment modality. Talaporfin sodium, a second-generation photosensitizer, results in lower systemic toxicity and relatively better selective tumor destruction than first-generation photosensitizers. However, the mechanism through which PDT induces vascular shutdown is unclear. In this study, the in vitro effects of talaporfin sodium-based PDT on human umbilical vein endothelial cells (HUVECs) were determined through cell viability and endothelial tube formation assays, and evaluation of the tubulin and F-actin dynamics and myosin light chain (MLC) phosphorylation. Additionally, the effects on tumor blood flow and tumor vessel destruction were assessed in vivo. In the HUVECs, talaporfin sodium-based PDT induced endothelial tube destruction and microtubule depolymerization, triggering the formation of F-actin stress fibers and a significant increase in MLC phosphorylation. However, pretreatment with the Rho-associated protein kinase (ROCK) inhibitor, Y27632, completely prevented PDT-induced stress fiber formation and MLC phosphorylation. The in vivo analysis and pathological examination revealed that the PDT had significantly decreased the tumor blood flow and the active area of the tumor vessel. We concluded that talaporfin sodium-based PDT induces the shutdown of existing tumor vessels via the RhoA/ROCK pathway by activating the Rho-GTP pathway and decreasing the tumor blood flow.

12.
Hypertension ; 65(6): 1273-8, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25870189

ABSTRACT

Although a causative role for RhoA-Rho kinase has been recognized in the development of human hypertension, the molecular mechanism(s) and the RhoA guanine exchange factor(s) responsible for the overactivation of RhoA remain unknown. Arhgef1 was identified as a RhoA guanine exchange factor involved in angiotensin II (Ang II)-mediated regulation of vascular tone and hypertension in mice. The aim of this study was to determine whether Arhgef1 is activated and involved in the activation of RhoA-Rho kinase signaling by Ang II in humans. In vitro stimulation of human coronary artery smooth muscle cells and human peripheral blood mononuclear cells by Ang II (0.1 µmol/L) induced activation of Arhgef1 attested by its increased tyrosine phosphorylation. Silencing of Arhgef1 expression by siRNA inhibited Ang II-induced activation of RhoA-Rho kinase signaling. In normotensive subjects, activation of the renin-angiotensin system by a low-salt diet for 7 days increased RhoA-Rho kinase signaling and stimulated Arhgef1 activity in peripheral blood mononuclear cells. In conclusion, our results strongly suggest that Arhgef1 mediates Ang II-induced RhoA activation in humans. Moreover, they show that measurement of RhoA guanine exchange factor activity in peripheral blood mononuclear cells might be a useful method to evaluate RhoA guanine exchange factor activity in humans.


Subject(s)
Angiotensin II/pharmacology , Leukocytes, Mononuclear/metabolism , Muscle, Smooth, Vascular/metabolism , Rho Guanine Nucleotide Exchange Factors/metabolism , rhoA GTP-Binding Protein/metabolism , Blotting, Western , Cells, Cultured , Humans , Hypertension/drug therapy , Hypertension/physiopathology , Leukocytes, Mononuclear/drug effects , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/drug effects , RNA, Messenger/metabolism , Rho Guanine Nucleotide Exchange Factors/drug effects , Signal Transduction , Statistics, Nonparametric , rhoA GTP-Binding Protein/drug effects
13.
Free Radic Biol Med ; 73: 430-8, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24681335

ABSTRACT

Reactive oxygen species (ROS) are activators of cell signaling and modify cellular molecules, including DNA. 8-Oxo-7,8-dihydroguanine (8-oxoG) is one of the prominent lesions in oxidatively damaged DNA, whose accumulation is causally linked to various diseases and aging processes, whereas its etiological relevance is unclear. 8-OxoG is repaired by the 8-oxoguanine DNA glycosylase-1 (OGG1)-initiated DNA base excision repair (BER) pathway. OGG1 binds free 8-oxoG and this complex functions as an activator of Ras family GTPases. Here we examined whether OGG1-initiated BER is associated with the activation of Rho GTPase and mediates changes in the cytoskeleton. To test this possibility, we induced OGG1-initiated BER in cultured cells and mouse lungs and used molecular approaches such as active Rho pull-down assays, siRNA ablation of gene expression, immune blotting, and microscopic imaging. We found that OGG1 physically interacts with Rho GTPase and, in the presence of 8-oxoG base, increases Rho-GTP levels in cultured cells and lungs, which mediates α-smooth muscle actin (α-SMA) polymerization into stress fibers and increases the level of α-SMA in insoluble cellular/tissue fractions. These changes were absent in cells lacking OGG1. These unexpected data and those showing that 8-oxoG repair is a lifetime process suggest that, via Rho GTPase, OGG1 could be involved in the cytoskeletal changes and organ remodeling observed in various chronic diseases.


Subject(s)
Actins/metabolism , Cytoskeleton/metabolism , DNA Glycosylases/genetics , DNA Repair/genetics , rho GTP-Binding Proteins/metabolism , Actins/biosynthesis , Animals , Cells, Cultured , DNA/genetics , DNA Damage/genetics , DNA Glycosylases/metabolism , Female , Guanine/analogs & derivatives , Guanine/metabolism , Humans , Lung/pathology , Mice , Mice, Inbred BALB C , Oxidative Stress/genetics , RNA Interference , RNA, Small Interfering , Reactive Oxygen Species , Signal Transduction , Stress Fibers/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL