Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(37): e2408262121, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39226352

ABSTRACT

Truncating genetic variants of SORL1, encoding the endosome recycling receptor SORLA, have been accepted as causal of Alzheimer's disease (AD). However, most genetic variants observed in SORL1 are missense variants, for which it is complicated to determine the pathogenicity level because carriers come from pedigrees too small to be informative for penetrance estimations. Here, we describe three unrelated families in which the SORL1 coding missense variant rs772677709, that leads to a p.Y1816C substitution, segregates with Alzheimer's disease. Further, we investigate the effect of SORLA p.Y1816C on receptor maturation, cellular localization, and trafficking in cell-based assays. Under physiological circumstances, SORLA dimerizes within the endosome, allowing retromer-dependent trafficking from the endosome to the cell surface, where the luminal part is shed into the extracellular space (sSORLA). Our results showed that the p.Y1816C mutant impairs SORLA homodimerization in the endosome, leading to decreased trafficking to the cell surface and less sSORLA shedding. These trafficking defects of the mutant receptor can be rescued by the expression of the SORLA 3Fn-minireceptor. Finally, we find that iPSC-derived neurons with the engineered p.Y1816C mutation have enlarged endosomes, a defining cytopathology of AD. Our studies provide genetic as well as functional evidence that the SORL1 p.Y1816C variant is causal for AD. The partial penetrance of the mutation suggests this mutation should be considered in clinical genetic screening of multiplex early-onset AD families.


Subject(s)
Alzheimer Disease , Endosomes , LDL-Receptor Related Proteins , Membrane Transport Proteins , Pedigree , Humans , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Endosomes/metabolism , LDL-Receptor Related Proteins/genetics , LDL-Receptor Related Proteins/metabolism , Female , Male , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Mutation, Missense , Protein Transport , Protein Multimerization , Aged , Middle Aged , HEK293 Cells
2.
J Biol Chem ; 299(10): 105216, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37660918

ABSTRACT

The Vps10p-domain (Vps10p-D) receptor family consists of Sortilin, SorLA, SorCS1, SorCS2, and SorCS3. They mediate internalization and intracellular sorting of specific cargo in various cell types, but underlying molecular determinants are incompletely understood. Deciphering the dynamic intracellular itineraries of Vps10p-D receptors is crucial for understanding their role in physiological and cytopathological processes. However, studying their spatial and temporal dynamics by live imaging has been challenging so far, as terminal tagging with fluorophores presumably impedes several of their protein interactions and thus functions. Here, we addressed the lack of appropriate tools and developed functional versions of all family members internally tagged in their ectodomains. We predict folding of the newly designed receptors by bioinformatics and show their exit from the endoplasmic reticulum. We examined their subcellular localization in immortalized cells and primary cultured neurons by immunocytochemistry and live imaging. This was, as far as known, identical to that of wt counterparts. We observed homodimerization of fluorophore-tagged SorCS2 by coimmunoprecipitation and fluorescence lifetime imaging, suggesting functional leucine-rich domains. Through ligand uptake experiments, live imaging and fluorescence lifetime imaging, we show for the first time that all Vps10p-D receptors interact with the neurotrophin brain-derived neurotrophic factor and mediate its uptake, indicating functionality of the Vps10p-Ds. In summary, we developed versions of all Vps10p-D receptors, with internal fluorophore tags that preserve several functions of the cytoplasmic and extracellular domains. These newly developed fluorophore-tagged receptors are likely to serve as powerful functional tools for accurate live studies of the individual cellular functions of Vps10p-D receptors.

3.
Biochem Biophys Res Commun ; 600: 75-79, 2022 04 16.
Article in English | MEDLINE | ID: mdl-35196630

ABSTRACT

Sorting-related receptor with A-type repeats (SORLA) is an important receptor for regulating normal cellular functions via protein sorting. Here, we determined the structures of the full-length SORLA and identified two distinct conformations of apo-SORLA using single-particle cryogenic electron microscopy. In contrast to homologous proteins, both monomer and dimer forms of SORLA existed in a neutral solution. Only three hydrogen bonds in the vicinity of the dimer interface implied the involvement in dimerization. The orientation of residue R490 was a key point for ligand binding. These results suggest a unique mechanism of SORLA dimerization for protein trafficking.


Subject(s)
Adaptor Proteins, Vesicular Transport , LDL-Receptor Related Proteins , Adaptor Proteins, Vesicular Transport/metabolism , Carrier Proteins/metabolism , Cryoelectron Microscopy , LDL-Receptor Related Proteins/metabolism , Protein Transport
4.
Int J Mol Sci ; 23(8)2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35457051

ABSTRACT

In the last few years, the SORL1 gene has been strongly implicated in the development of Alzheimer's disease (AD). We performed whole-exome sequencing on 37 patients with early-onset dementia or family history suggestive of autosomal dominant dementia. Data analysis was based on a custom panel that included 46 genes related to AD and dementia. SORL1 variants were present in a high proportion of patients with candidate variants (15%, 3/20). We expand the clinical manifestations associated with the SORL1 gene by reporting detailed clinical and neuroimaging findings of six unrelated patients with AD and SORL1 mutations. We also present for the first time a patient with the homozygous truncating variant c.364C>T (p.R122*) in SORL1, who also had severe cerebral amyloid angiopathy. Furthermore, we report neuropathological findings and immunochemistry assays from one patient with the splicing variant c.4519+5G>A in the SORL1 gene, in which AD was confirmed by neuropathological examination. Our results highlight the heterogeneity of clinical presentation and familial dementia background of SORL1-associated AD and suggest that SORL1 might be contributing to AD development as a risk factor gene rather than as a major autosomal dominant gene.


Subject(s)
Alzheimer Disease , Dementia , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Genetic Predisposition to Disease , Humans , LDL-Receptor Related Proteins/genetics , Membrane Transport Proteins/genetics , Neuroimaging
5.
J Neurosci ; 40(31): 5908-5921, 2020 07 29.
Article in English | MEDLINE | ID: mdl-32601248

ABSTRACT

SORLA is a transmembrane trafficking protein associated with Alzheimer's disease risk. Although SORLA is abundantly expressed in neurons, physiological roles for SORLA remain unclear. Here, we show that cultured transgenic neurons overexpressing SORLA feature longer neurites, and accelerated neurite regeneration with wounding. Enhanced release of a soluble form of SORLA (sSORLA) is observed in transgenic mouse neurons overexpressing human SORLA, while purified sSORLA promotes neurite extension and regeneration. Phosphoproteomic analyses demonstrate enrichment of phosphoproteins related to the epidermal growth factor (EGFR)/ERK pathway in SORLA transgenic mouse hippocampus from both genders. sSORLA coprecipitates with EGFR in vitro, and sSORLA treatment increases EGFR Y1173 phosphorylation, which is involved in ERK activation in cultured neurons. Furthermore, sSORLA triggers ERK activation, whereas pharmacological EGFR or ERK inhibition reverses sSORLA-dependent enhancement of neurite outgrowth. In search for downstream ERK effectors activated by sSORLA, we identified upregulation of Fos expression in hippocampus from male mice overexpressing SORLA by RNAseq analysis. We also found that Fos is upregulated and translocates to the nucleus in an ERK-dependent manner in neurons treated with sSORLA. Together, these results demonstrate that sSORLA is an EGFR-interacting protein that activates EGFR/ERK/Fos signaling to enhance neurite outgrowth and regeneration.SIGNIFICANCE STATEMENT SORLA is a transmembrane trafficking protein previously known to reduce the levels of amyloid-ß, which is critical in the pathogenesis of Alzheimer's disease. In addition, SORLA mutations are a risk factor for Alzheimer's disease. Interestingly, the SORLA ectodomain is cleaved into a soluble form, sSORLA, which has been shown to regulate cytoskeletal signaling pathways and cell motility in cells outside the nervous system. We show here that sSORLA binds and activates the EGF receptor to induce downstream signaling through the ERK serine/threonine kinase and the Fos transcription factor, thereby enhancing neurite outgrowth. These findings reveal a novel role for sSORLA in promoting neurite regeneration through the EGF receptor/ERK/Fos pathway, thereby demonstrating a potential neuroprotective mechanism involving SORLA.


Subject(s)
ErbB Receptors/physiology , MAP Kinase Signaling System/physiology , Membrane Transport Proteins/physiology , Nerve Regeneration/physiology , Neurites/physiology , Receptors, LDL/physiology , Animals , Cells, Cultured , Female , Gene Expression Regulation , Genes, fos , Hippocampus/physiology , Male , Membrane Transport Proteins/genetics , Mice , Mice, Inbred BALB C , Mice, Transgenic , Phosphorylation , Receptors, LDL/genetics
6.
Metab Brain Dis ; 36(1): 103-109, 2021 01.
Article in English | MEDLINE | ID: mdl-32940806

ABSTRACT

BACKGROUND: Systemic inflammation has been implicated in the pathogenesis of moyamoya disease (MMD). Sortilin is a critical regulator of proinflammatory cytokine secretion in several cell types. The present study investigated the association between circulating sortilin and proinflammatory cytokine levels and the occurrence of MMD. METHODS: Forty-two MMD cases and 76 age- and sex-matched controls were enrolled in this study between January 2018 and June 2019 at the Affiliated Hospital of Jining Medical University. The demographic and clinical characteristics were evaluated, and the circulating serum and cerebrospinal fluid (CSF) levels of sortilin, sortilin-related receptor with A-type repeats (SorLA), and proinflammatory cytokines including C-reactive protein (CRP), interleukin (IL)-6, interferon (IFN)-γ were measured by enzyme-linked immunosorbent assay. Linear regression and correlation analyses were used to estimate the associations between sortilin, SorLA, and proinflammatory cytokine levels. RESULTS: MMD patients had higher serum levels of sortilin (P = 0.012), CRP (P = 0.013), IL-6 (P = 0.004), and IFN-γ (P = 0.033) than healthy controls. In MMD patients, serum sortilin was positively correlated with serum proinflammatory cytokines (CRP: r = 0.459, P = 0.0022; IL-6: r = 0.445, P = 0.0032; and IFN-γ: r = 0.448, P = 0.0029) and CSF sortilin (r = 0.440, P = 0.0035); the latter was positively correlated with CSF levels of CRP (r = 0.542, P = 0.0002), IL-6 (r = 0.440, P = 0.0036), and IFN-γ (r = 0.443, P = 0.0033). CONCLUSIONS: Elevated sortilin level is associated MMD onset and may be a clinically useful biomarker along with proinflammatory cytokine levels.


Subject(s)
Adaptor Proteins, Vesicular Transport/blood , Inflammation/blood , Moyamoya Disease/blood , Adult , Case-Control Studies , Cytokines/blood , Female , Humans , Male , Middle Aged
7.
J Biol Chem ; 294(15): 6042-6053, 2019 04 12.
Article in English | MEDLINE | ID: mdl-30787106

ABSTRACT

Oligomeric assemblies of amyloid-ß (Aß) peptide (Aßo) in the brains of individuals with Alzheimer's disease (AD) are toxic to neuronal synapses. More than a dozen Aß receptor candidates have been suggested to be responsible for various aspects of the molecular pathology and memory impairment in mouse models of AD. A lack of consistent experimental design among previous studies of different receptor candidates limits evaluation of the relative roles of these candidates, producing some controversy within the field. Here, using cell-based assays with several Aß species, including Aßo from AD brains obtained by autopsy, we directly compared the Aß-binding capacity of multiple receptor candidates while accounting for variation in expression and confirming cell surface expression. In a survey of 15 reported Aß receptors, only cellular prion protein (PrPC), Nogo receptor 1 (NgR1), and leukocyte immunoglobulin-like receptor subfamily B member 2 (LilrB2) exhibited direct binding to synaptotoxic assemblies of synthetic Aß. Both PrPC and NgR1 preferentially bound synaptotoxic oligomers rather than nontoxic monomers, and the method of oligomer preparation did not significantly alter our binding results. Hippocampal neurons lacking both NgR1 and LilrB2 exhibited a partial reduction of Aßo binding, but this reduction was lower than in neurons lacking PrPC under the same conditions. Finally, binding studies with soluble Aßo from human AD brains revealed a strong affinity for PrPC, weak affinity for NgR1, and no detectable affinity for LilrB2. These findings clarify the relative contributions of previously reported Aß receptors under controlled conditions and highlight the prominence of PrPC as an Aß-binding site.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Membrane Glycoproteins/metabolism , Nogo Receptor 1/metabolism , PrPC Proteins/metabolism , Receptors, Immunologic/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Peptides/genetics , Animals , COS Cells , Chlorocebus aethiops , Disease Models, Animal , Female , HEK293 Cells , Humans , Male , Membrane Glycoproteins/genetics , Mice , Mice, Knockout , Neurons/metabolism , Neurons/pathology , Nogo Receptor 1/genetics , PrPC Proteins/genetics , Receptors, Immunologic/genetics
8.
Cell Mol Neurobiol ; 38(4): 827-840, 2018 May.
Article in English | MEDLINE | ID: mdl-29067536

ABSTRACT

Sortilin was first identified based on its activity as part of intracellular protein sorting machinery. Recently, it was discovered that sortilin also acts as a cell surface receptor for the propeptide form of nerve growth factor (proNGF), progranulin, and neurotensin. The interaction of sortilin to these neurotrophic ligands is linked to diseases of the nervous system that lead to neurodegeneration and neuropathic pain. Blocking of the interaction of sortilin to these ligands may prevent or slow the progress of these nervous system disorders. In vitro screening assays for blocking compounds or peptides are part of the standard set of tools for drug discovery. However, assays for sortilin biology are not readily available to determine if the selected blocking agent inhibits sortilin activity on the surface of cells. We have developed a sortilin specific cell based assay to identify compounds that specifically block interaction between sortilin and proNGF prodomain. The assay system records both the presence of sortilin on the cell surface and the interaction with the pro domain of NGF. Fluorescent images of the sortilin expressing cells are analyzed for the presence of pro domain of NGF. Sortilin-positive and sortilin-negative cells within one well are concomitantly and automatically analyzed. Sortilin-pro domain interaction can be blocked dose dependently by neurotensin and synthetic compounds. The assay will facilitate the discovery of entities interfering with the binding of sortilin to the NGF pro domain. This assay can be modified to screen for inhibitors of the binding of ligands to other complex cell surface receptors.


Subject(s)
Adaptor Proteins, Vesicular Transport/metabolism , Biological Assay , Nerve Growth Factor/metabolism , Nerve Tissue Proteins/metabolism , Biological Assay/methods , Biophysical Phenomena , Humans , Ligands , Membrane Glycoproteins/metabolism , Neurons/metabolism , Protein Precursors/metabolism
9.
J Neurosci ; 36(30): 7996-8011, 2016 07 27.
Article in English | MEDLINE | ID: mdl-27466343

ABSTRACT

UNLABELLED: Proteolytic generation of amyloidogenic amyloid ß (Aß) fragments from the amyloid precursor protein (APP) significantly contributes to Alzheimer's disease (AD). Although amyloidogenic APP proteolysis can be affected by trafficking through genetically associated AD components such as SORLA, how SORLA functionally interacts with other trafficking components is yet unclear. Here, we report that SNX27, an endosomal trafficking/recycling factor and a negative regulator of the γ-secretase complex, binds to the SORLA cytosolic tail to form a ternary complex with APP. SNX27 enhances cell surface SORLA and APP levels in human cell lines and mouse primary neurons, and depletion of SNX27 or SORLA reduces APP endosome-to-cell surface recycling kinetics. SNX27 overexpression enhances the generation of cell surface APP cleavage products such as soluble alpha-APP C-terminal fragment (CTFα) in a SORLA-dependent manner. SORLA-mediated Aß reduction is attenuated by downregulation of SNX27. This indicates that an SNX27/SORLA complex functionally interacts to limit APP distribution to amyloidogenic compartments, forming a non-amyloidogenic shunt to promote APP recycling to the cell surface. SIGNIFICANCE STATEMENT: Many genes have been identified as risk factors for Alzheimer's disease (AD), and a large proportion of these genes function to limit production or toxicity of the AD-associated amyloid ß (Aß) peptide. Whether and how these genes precisely operate to limit AD onset remains an important question. We identify binding and trafficking interactions between two of these factors, SORLA and SNX27, and demonstrate that SNX27 can direct trafficking of SORLA and the Aß precursor APP to the cell surface to limit the production of Aß. Diversion APP to the cell surface through modulation of this molecular complex may represent a complimentary strategy for future development in AD treatment.


Subject(s)
Amyloid beta-Protein Precursor/metabolism , Amyloid/biosynthesis , Membrane Transport Proteins/metabolism , Neurons/metabolism , Receptors, LDL/metabolism , Sorting Nexins/metabolism , Subcellular Fractions/metabolism , Amyloidogenic Proteins/metabolism , Animals , Cerebral Cortex/cytology , Cerebral Cortex/metabolism , Female , Gene Expression Regulation , HEK293 Cells , Humans , Mice , Neurons/cytology , Protein Binding , Protein Transport
10.
Arterioscler Thromb Vasc Biol ; 36(9): 1972-9, 2016 09.
Article in English | MEDLINE | ID: mdl-27493099

ABSTRACT

OBJECTIVE: We aimed to determine whether LR11 (low-density lipoprotein receptor with 11 binding repeats) is a potential key regulator of smooth muscle cell (SMC) proliferation during the progression of hypoxia-induced medial thickening in mice and whether sLR11 (soluble LR11) can serve as a biomarker in patients with pulmonary arterial hypertension. APPROACH AND RESULTS: The role of LR11 in pulmonary arterial hypertension was investigated using mouse and cell models of induced hypoxia. The expression of LR11 and of hypoxia-inducible factor-1α was significantly increased in lung tissues from C57Bl/6 mice after 3 weeks of exposure to hypoxia compared with normoxia. Serum sLR11 levels were also increased. Physiological and histochemical analyses showed that increased right ventricular systolic pressure, right ventricular hypertrophy, and medial thickening induced under hypoxia in wild-type mice were attenuated in LR11(-/-) mice. The proliferation rates stimulated by hypoxia or platelet-derived growth factor-BB were attenuated in SMC derived from LR11(-/-) mice, compared with those from wild-type mice. Exogenous sLR11 protein increased the proliferation rates of SMC from wild-type mice. The expression of LR11 and hypoxia-inducible factor-1α was increased in cultured SMC under hypoxic conditions, and hypoxia-inducible factor-1α knockdown almost abolished the induction of LR11. Serum sLR11 levels were significantly higher in patients with, rather than without, pulmonary arterial hypertension. sLR11 levels positively correlated with pulmonary vascular resistance and mean pulmonary arterial pressure. CONCLUSIONS: LR11 regulated SMC proliferation during the progression of hypoxia-induced medial thickening in mice. The findings obtained from mice, together with those in humans, indicate that sLR11 could serve as a novel biomarker that reflects the pathophysiology of proliferating medial SMC in pulmonary arterial hypertension.


Subject(s)
Cell Proliferation , Hypertension, Pulmonary/metabolism , Hypoxia/complications , Membrane Transport Proteins/deficiency , Muscle, Smooth, Vascular/metabolism , Neointima , Receptors, LDL/deficiency , Vascular Remodeling , Animals , Arterial Pressure , Cells, Cultured , Genotype , Humans , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/pathology , Hypertension, Pulmonary/prevention & control , Hypertrophy, Right Ventricular/metabolism , Hypertrophy, Right Ventricular/prevention & control , Hypoxia/genetics , Hypoxia/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , LDL-Receptor Related Proteins/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Mice, Inbred C57BL , Mice, Knockout , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/physiopathology , Myocytes, Smooth Muscle/metabolism , Phenotype , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Pulmonary Artery/physiopathology , Receptors, LDL/genetics , Signal Transduction , Transfection , Vascular Resistance , Ventricular Dysfunction, Right/metabolism , Ventricular Dysfunction, Right/prevention & control , Ventricular Function, Right , Ventricular Pressure
11.
Proc Natl Acad Sci U S A ; 111(48): 17296-301, 2014 Dec 02.
Article in English | MEDLINE | ID: mdl-25404298

ABSTRACT

Accumulation of amyloid ß (Aß) peptides in the brain is the key pathogenic factor driving Alzheimer's disease (AD). Endocytic sorting of amyloid precursor protein (APP) mediated by the vacuolar protein sorting (Vps10) family of receptors plays a decisive role in controlling the outcome of APP proteolytic processing and Aß generation. Here we report for the first time to our knowledge that this process is regulated by a G protein-coupled receptor, the α(2A) adrenergic receptor (α(2A)AR). Genetic deficiency of the α(2A)AR significantly reduces, whereas stimulation of this receptor enhances, Aß generation and AD-related pathology. Activation of α(2A)AR signaling disrupts APP interaction with a Vps10 family receptor, sorting-related receptor with A repeat (SorLA), in cells and in the mouse brain. As a consequence, activation of α(2A)AR reduces Golgi localization of APP and concurrently promotes APP distribution in endosomes and cleavage by ß secretase. The α(2A)AR is a key component of the brain noradrenergic system. Profound noradrenergic dysfunction occurs consistently in patients at the early stages of AD. α(2A)AR-promoted Aß generation provides a novel mechanism underlying the connection between noradrenergic dysfunction and AD. Our study also suggests α(2A)AR as a previously unappreciated therapeutic target for AD. Significantly, pharmacological blockade of the α(2A)AR by a clinically used antagonist reduces AD-related pathology and ameliorates cognitive deficits in an AD transgenic model, suggesting that repurposing clinical α(2A)R antagonists would be an effective therapeutic strategy for AD.


Subject(s)
Amyloid beta-Protein Precursor/metabolism , Amyloid/metabolism , Membrane Transport Proteins/metabolism , Receptors, Adrenergic, alpha-2/metabolism , Receptors, LDL/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Animals , Blotting, Western , Brain/metabolism , Cell Line, Tumor , Cells, Cultured , Disease Models, Animal , HEK293 Cells , Humans , Membrane Transport Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Microscopy, Confocal , Neurons/metabolism , Peptide Fragments/metabolism , Protein Binding , Receptors, Adrenergic, alpha-2/genetics , Receptors, LDL/genetics
12.
J Neurosci ; 35(37): 12703-13, 2015 Sep 16.
Article in English | MEDLINE | ID: mdl-26377460

ABSTRACT

SORLA is a neuronal sorting receptor implicated both in sporadic and familial forms of AD. SORLA reduces the amyloidogenic burden by two mechanisms, either by rerouting internalized APP molecules from endosomes to the trans-Golgi network (TGN) to prevent proteolytic processing or by directing newly produced Aß to lysosomes for catabolism. Studies in cell lines suggested that the interaction of SORLA with cytosolic adaptors retromer and GGA is required for receptor sorting to and from the TGN. However, the relevance of anterograde or retrograde trafficking for SORLA activity in vivo remained largely unexplored. Here, we generated mouse models expressing SORLA variants lacking binding sites for GGA or retromer to query this concept in the brain. Disruption of retromer binding resulted in a retrograde-sorting defect with accumulation of SORLA in endosomes and depletion from the TGN, and in an overall enhanced APP processing. In contrast, disruption of the GGA interaction did not impact APP processing but caused increased brain Aß levels, a mechanism attributed to a defect in anterograde lysosomal targeting of Aß. Our findings substantiated the significance of adaptor-mediated sorting for SORLA activities in vivo, and they uncovered that anterograde and retrograde sorting paths may serve discrete receptor functions in amyloidogenic processes. SIGNIFICANCE STATEMENT: SORLA is a sorting receptor that directs target proteins to distinct intracellular compartments in neurons. SORLA has been identified as a genetic risk factor for sporadic, but recently also for familial forms of AD. To confirm the relevance of SORLA sorting for AD processes in the brain, we generated mouse lines, which express trafficking mutants instead of the wild-type form of this receptor. Studying neuronal activities in these mutant mice, we dissected distinct trafficking routes for SORLA guided by two cytosolic adaptors termed GGA and retromer. We show that these sorting pathways serve discrete functions in control of amyloidogenic processes and may represent unique therapeutic targets to interfere with specific aspects of neurodegenerative processes in the diseased brain.


Subject(s)
Adaptor Proteins, Vesicular Transport/metabolism , Amyloid beta-Protein Precursor/metabolism , Brain/metabolism , LDL-Receptor Related Proteins/physiology , Membrane Transport Proteins/physiology , Amino Acid Motifs , Amino Acid Sequence , Amyloid beta-Peptides/metabolism , Animals , Binding Sites , Cell Line , Endosomes/metabolism , Female , Hippocampus/cytology , LDL-Receptor Related Proteins/metabolism , Lysosomes/metabolism , Membrane Transport Proteins/metabolism , Mice , Mice, Transgenic , Molecular Sequence Data , Mutagenesis, Site-Directed , Nerve Tissue Proteins/metabolism , Protein Processing, Post-Translational , Protein Transport , RNA, Untranslated/genetics , Recombinant Fusion Proteins/metabolism , trans-Golgi Network/metabolism
13.
J Biol Chem ; 290(6): 3359-76, 2015 Feb 06.
Article in English | MEDLINE | ID: mdl-25525276

ABSTRACT

SorLA is a neuronal sorting receptor that is genetically associated with Alzheimer disease. SorLA interacts directly with the amyloid precursor protein (APP) and affects the processing of the precursor, leading to a decreased generation of the amyloid-ß peptide. The SorLA complement-type repeat (CR) domains associate in vitro with APP, but the precise molecular determinants of SorLA·APP complex formation and the mechanisms responsible for the effect of binding on APP processing have not yet been elucidated. Here, we have generated protein expression constructs for SorLA devoid of the 11 CR-domains and for two SorLA mutants harboring substitutions of the fingerprint residues in the central CR-domains. We generated SH-SY5Y cell lines that stably express these SorLA variants to study the binding and processing of APP using co-immunoprecipitation and Western blotting/ELISAs, respectively. We found that the SorLA CR-cluster is essential for interaction with APP and that deletion of the CR-cluster abolishes the protection against APP processing. Mutation of identified fingerprint residues in the SorLA CR-domains leads to changes in the O-linked glycosylation of APP when expressed in SH-SY5Y cells. Our results provide novel information on the mechanisms behind the influence of SorLA activity on APP metabolism by controlling post-translational glycosylation in the Golgi, suggesting new strategies against amyloidogenesis in Alzheimer disease.


Subject(s)
Amyloid beta-Protein Precursor/metabolism , LDL-Receptor Related Proteins/metabolism , Membrane Transport Proteins/metabolism , Protein Processing, Post-Translational , Binding Sites , Cell Line, Tumor , Glycosylation , Humans , LDL-Receptor Related Proteins/chemistry , LDL-Receptor Related Proteins/genetics , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/genetics , Protein Binding , Protein Transport
14.
Biochim Biophys Acta ; 1848(1 Pt B): 323-8, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24866012

ABSTRACT

Over the last decade, compelling evidence has linked the development of Alzheimer's disease (AD) to defective intracellular trafficking of the amyloid precursor protein (APP). Faulty APP trafficking results in an overproduction of Aß peptides, which is generally agreed to be the primary cause of AD-related pathogenesis. LR11 (SorLA), a type I transmembrane sorting receptor, has emerged as a key regulator of APP trafficking and processing. It directly interacts with APP and diverts it away from amyloidogenic processing. The 54-residue cytosolic domain of LR11 is essential for its proper intracellular localization and trafficking which, in turn, determines the fate of APP. Here, we have found a surprising membrane-proximal amphipathic helix in the cytosolic domain of LR11. Moreover, a peptide corresponding to this region folds into an α-helical structure in the presence of liposomes and transforms liposomes to small vesicles and tubule-like particles. We postulate that this amphipathic helix may contribute to the dynamic remodeling of membrane structure and facilitate LR11 intracellular transport.


Subject(s)
Amyloid beta-Protein Precursor/chemistry , LDL-Receptor Related Proteins/chemistry , Membrane Transport Proteins/chemistry , Amino Acid Sequence , Cytosol/chemistry , Humans , Liposomes/chemistry , Magnetic Resonance Spectroscopy , Molecular Sequence Data , Protein Folding , Protein Structure, Secondary , Protein Structure, Tertiary
15.
Alzheimers Dement ; 12(9): 952-963, 2016 09.
Article in English | MEDLINE | ID: mdl-27021222

ABSTRACT

INTRODUCTION: Sorting-related receptor with A-type repeats (SORLA) is an intracellular sorting receptor in neurons and a major risk factor for Alzheimer disease. METHODS: Here, we performed global proteome analyses in the brain of SORLA-deficient mice followed by biochemical and histopathologic studies to identify novel neuronal pathways affected by receptor dysfunction. RESULTS: We demonstrate that the lack of SORLA results in accumulation of phosphorylated synapsins in cortex and hippocampus. We propose an underlying molecular mechanism by demonstrating that SORLA interacts with phosphorylated synapsins through 14-3-3 adaptor proteins to deliver synapsins to calpain-mediated proteolytic degradation. DISCUSSION: Our results suggest a novel function for SORLA which is in control of synapsin degradation, potentially impacting on synaptic vesicle endocytosis and/or exocytosis.


Subject(s)
Calpain/metabolism , Cerebral Cortex/metabolism , Hippocampus/metabolism , Membrane Transport Proteins/deficiency , Proteome , Receptors, LDL/deficiency , Synapsins/metabolism , 14-3-3 Proteins/metabolism , Alzheimer Disease , Animals , Cells, Cultured , Cerebral Cortex/pathology , Female , Hippocampus/pathology , Male , Membrane Transport Proteins/genetics , Mice, Inbred BALB C , Mice, Knockout , Neurons/metabolism , Neurons/pathology , Phosphorylation , Proteolysis , Receptors, LDL/genetics
16.
Biochem Biophys Res Commun ; 456(1): 482-8, 2015 Jan 02.
Article in English | MEDLINE | ID: mdl-25482438

ABSTRACT

The formation of senile plaques composed of ß-amyloid (Aß) in the brain is likely the initial event in Alzheimer's disease (AD). Possession of the APOE ε4 allele, the strong genetic factor for AD, facilitates the Aß deposition from the presymptomatic stage of AD in a gene-dosage-dependent manner. However, the precise mechanism by which apoE isoforms differentially induce the AD pathology is largely unknown. LR11/SorLA is a type I membrane protein that functions as the neuronal lipoprotein endocytic receptor of apoE and the sorting receptor of the amyloid precursor protein (APP) to regulate amyloidogenesis. Recently, LR11/SorLA has been reported to be involved in the lysosomal targeting of extracellular amyloid-ß (Aß) through the binding of Aß to the vacuolar protein sorting 10 (VPS10) protein domain of LR11/SorLA. Here, we attempted to examine the human-apoE-isoform-dependent effect on the cellular uptake of Aß through the formation of a complex between an apoE isoform and LR11/SorLA. Cell culture experiments using Neuro2a cells revealed that the cellular uptake of secreted apoE3 and apoE4 was enhanced by the overexpression of LR11/SorLA. In contrast, the cellular uptake of apoE2 was not affected by the expression of LR11/SorLA. Co-immunoprecipitation assay revealed that apoE-isoform-dependent differences were observed in the formation of an apoE-LR11 complex (apoE4>apoE3>apoE2). ApoE-isoform-dependent differences in cellular uptake of FAM-labeled Aß were further investigated by coculture assay in which donor cells secrete one of the apoE isoforms and recipient cells express FL-LR11. The cellular uptake of extracellular Aß into the recipient cells was most prominently accentuated when cocultured with the donor cells secreting apoE4 in the medium, followed by apoE3 and apoE2. Taken together, our results provide evidence for the mechanism whereby human-apoE-isoform-dependent differences modulate the cellular uptake of Aß mediated by LR11/SorLA.


Subject(s)
Amyloid beta-Peptides/metabolism , Apolipoproteins E/metabolism , LDL-Receptor Related Proteins/metabolism , Membrane Transport Proteins/metabolism , Alleles , Animals , Brain/metabolism , Cell Line, Tumor , Cloning, Molecular , Coculture Techniques , DNA, Complementary/metabolism , HEK293 Cells , Humans , Mice , Microscopy, Confocal , Microscopy, Fluorescence , Oxygen/metabolism , Protein Isoforms/metabolism , Receptors, LDL/metabolism
17.
Naunyn Schmiedebergs Arch Pharmacol ; 397(3): 1701-1714, 2024 03.
Article in English | MEDLINE | ID: mdl-37712973

ABSTRACT

The mutual interplay between neuroinflammation, synaptic plasticity, and autophagy has piqued researchers' interest, particularly when it comes to linking their impact and relationship to cognitive deficits. Being able to reduce inflammation and apoptosis, melatonin has shown to have positive neuroprotective effects; that is why we thought to check the possible role of agomelatine (AGO) as a promising candidate that could have a positive impact on cognitive deficits. In the current study, AGO (40 mg/kg/day, p.o., 7 days) successfully ameliorated the cognitive and learning disabilities caused by lipopolysaccharide (LPS) in rats (250 µg/kg/day, i.p., 7 days). This positive impact was supported by improved histopathological findings and improved spatial memory as assessed using Morris water maze. AGO showed a strong ability to control BACE1 activity and to rein in the hippocampal amyloid beta (Aß) deposition. Also, it improved neuronal survival, neuroplasticity, and neurogenesis by boosting BDNF levels and promoting its advantageous effects and by reinforcing the pTrkB expression. In addition, it upregulated the pre- and postsynaptic neuroplasticity biomarkers resembled in synapsin I, synaptophysin, and PSD-95. Furthermore, AGO showed a modulatory action on Sortilin-related receptor with A-type repeats (SorLA) pathway and adjusted autophagy. It is noteworthy that all of these actions were abolished by administering PD98059 a MEK/ERK pathway inhibitor (0.3 mg/kg/day, i.p., 7 days). In conclusion, AGO administration significantly improves memory and learning disabilities associated with LPS administration by modulating the ERK/SorLA/BDNF/TrkB signaling pathway parallel to its capacity to adjust the autophagic process.


Subject(s)
Learning Disabilities , Lipopolysaccharides , Rats , Animals , Lipopolysaccharides/toxicity , Brain-Derived Neurotrophic Factor/metabolism , Amyloid Precursor Protein Secretases/metabolism , Amyloid Precursor Protein Secretases/pharmacology , MAP Kinase Signaling System , Amyloid beta-Peptides/metabolism , Maze Learning , Aspartic Acid Endopeptidases/metabolism , Aspartic Acid Endopeptidases/pharmacology , Learning Disabilities/metabolism , Learning Disabilities/pathology , Hippocampus , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Memory Disorders/metabolism
18.
Philos Trans R Soc Lond B Biol Sci ; 379(1899): 20220377, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38368933

ABSTRACT

SORLA, the protein encoded by the SORL1 gene, has an important role in recycling cargo proteins to the cell surface. While SORLA loss-of-function variants occur almost exclusively in Alzheimer's disease cases, the majority of SORL1 variants are missense variants that are individually rare and can have individual mechanisms how they impair SORLA function as well as have individual effect size on disease risk. However, since carriers mostly come from small pedigrees, it is challenging to determine variant penetrance, leaving clinical significance associated with most missense variants unclear. In this article, we present functional approaches to evaluate the pathogenicity of a SORL1 variant, p.D1105H. First, we generated our mutant receptor by inserting the D1105H variant into the full-length SORLA-WT receptor. Then using western blot analysis we quantified the effect of the mutation on maturation and shedding of the receptor for transfected cells, and finally applied a flow cytometry approach to quantify SORLA expression at the cell surface. The results showed decreased maturation, decreased shedding, and decreased cell surface expression of D1105H compared with wild-type SORLA. We propose how these approaches can be used to functionally assess the pathogenicity of SORL1 variants in the future. This article is part of a discussion meeting issue 'Understanding the endo-lysosomal network in neurodegeneration'.


Subject(s)
Alzheimer Disease , Humans , Virulence , Mutation , Alzheimer Disease/genetics , Genetic Predisposition to Disease , LDL-Receptor Related Proteins/genetics , LDL-Receptor Related Proteins/metabolism , Membrane Transport Proteins/genetics
19.
Brain Commun ; 6(2): fcae114, 2024.
Article in English | MEDLINE | ID: mdl-38650831

ABSTRACT

The sortilin-related receptor 1 (SORL1) gene, encoding the cellular endosomal sorting-related receptor with A-type repeats (SORLA), is now established as a causal gene for Alzheimer's disease. As the latest addition to the list of causal genes, the pathophysiological effects and biomarker potential of SORL1 variants remain relatively undiscovered. Metabolic dysfunction is, however, well described in patients with Alzheimer's disease and is used as an imaging biomarker in clinical diagnosis settings. To understand the metabolic consequences of loss-of-function SORL1 mutations, we applied two metabolic MRI technologies, sodium (23Na) MRI and MRI with hyperpolarized [1-13C]pyruvate, in minipigs and mice with compromised expression of SORL1. At the age analysed here, both animal models display no conventional imaging evidence of neurodegeneration but show biochemical signs of elevated amyloid production, thus representing the early preclinical disease. With hyperpolarized MRI, the exchange from [1-13C]pyruvate to [1-13C]lactate and 13C-bicarbonate was decreased by 32 and 23%, respectively, in the cerebrum of SORL1-haploinsufficient minipigs. A robust 11% decrease in the sodium content was observed with 23Na-MRI in the same minipigs. Comparably, the brain sodium concentration gradually decreased from control to SORL1 haploinsufficient (-11%) to SORL1 knockout mice (-23%), suggesting a gene dose dependence in the metabolic dysfunction. The present study highlights that metabolic MRI technologies are sensitive to the functional, metabolic consequences of Alzheimer's disease and Alzheimer's disease-linked genotypes. Further, the study suggests a potential avenue of research into the mechanisms of metabolic alterations by SORL1 mutations and their potential role in neurodegeneration.

20.
J Biotechnol ; 375: 17-27, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37634829

ABSTRACT

Reduced levels of the Sortilin-related receptor with A-type repeats (SORLA) in different brain regions as well as in the cerebrospinal fluid have been associated with Alzheimer's disease. Methods and reagents to develop reliable detection assays to quantify SORLA and its specific isoforms are therefore much needed. Nanobodies (Nbs) are unique biomolecules derived from the blood of camelids that display advantageous physicochemical and antigen affinity properties, making them attractive tools with great relevance to both diagnostic and therapeutic applications. Here, we purified and characterized eight Nbs that were isolated from the blood of an alpaca immunized with the recombinant extracellular domain of SORLA. The selected Nbs showed high affinity to SORLA in the low nanomolar range as observed by surface plasmon resonance. For mapping of the Nbs' epitopes within the antigen, we transiently transfected HEK293 cells with a panel of SORLA deletion constructs, and developed a protocol of immunostaining by applying fluorescent dye conjugated Nbs. With this method, we showed that the selected Nbs specifically recognize a part of SORLA containing Fibronectin-type III domains, representing promising tools not only for disease clarifying research, but also for translational medicine as candidates for clinical diagnostic purposes.


Subject(s)
Alzheimer Disease , Single-Domain Antibodies , Humans , Single-Domain Antibodies/genetics , Epitope Mapping , HEK293 Cells , Epitopes
SELECTION OF CITATIONS
SEARCH DETAIL