Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 379
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 187(9): 2175-2193.e21, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38552623

ABSTRACT

In addition to long-distance molecular motor-mediated transport, cellular vesicles also need to be moved at short distances with defined directions to meet functional needs in subcellular compartments but with unknown mechanisms. Such short-distance vesicle transport does not involve molecular motors. Here, we demonstrate, using synaptic vesicle (SV) transport as a paradigm, that phase separation of synaptic proteins with vesicles can facilitate regulated, directional vesicle transport between different presynaptic bouton sub-compartments. Specifically, a large coiled-coil scaffold protein Piccolo, in response to Ca2+ and via its C2A domain-mediated Ca2+ sensing, can extract SVs from the synapsin-clustered reserve pool condensate and deposit the extracted SVs onto the surface of the active zone protein condensate. We further show that the Trk-fused gene, TFG, also participates in COPII vesicle trafficking from ER to the ER-Golgi intermediate compartment via phase separation. Thus, phase separation may play a general role in short-distance, directional vesicle transport in cells.


Subject(s)
COP-Coated Vesicles , Endoplasmic Reticulum , Synaptic Vesicles , Animals , Synaptic Vesicles/metabolism , COP-Coated Vesicles/metabolism , Endoplasmic Reticulum/metabolism , Calcium/metabolism , Golgi Apparatus/metabolism , Rats , Biological Transport , Presynaptic Terminals/metabolism , Synapsins/metabolism , Biomolecular Condensates/metabolism , Cytoskeletal Proteins/metabolism , Phase Separation
2.
Cell ; 187(16): 4272-4288.e20, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39013469

ABSTRACT

Vesicle trafficking is a fundamental process that allows for the sorting and transport of specific proteins (i.e., "cargoes") to different compartments of eukaryotic cells. Cargo recognition primarily occurs through coats and the associated proteins at the donor membrane. However, it remains unclear whether cargoes can also be selected at other stages of vesicle trafficking to further enhance the fidelity of the process. The WDR11-FAM91A1 complex functions downstream of the clathrin-associated AP-1 complex to facilitate protein transport from endosomes to the TGN. Here, we report the cryo-EM structure of human WDR11-FAM91A1 complex. WDR11 directly and specifically recognizes a subset of acidic clusters, which we term super acidic clusters (SACs). WDR11 complex assembly and its binding to SAC-containing proteins are indispensable for the trafficking of SAC-containing proteins and proper neuronal development in zebrafish. Our studies thus uncover that cargo proteins could be recognized in a sequence-specific manner downstream of a protein coat.


Subject(s)
Cryoelectron Microscopy , Protein Transport , Zebrafish , Humans , Animals , Endosomes/metabolism , HEK293 Cells , HeLa Cells , Zebrafish Proteins/metabolism , Zebrafish Proteins/chemistry , Protein Binding
3.
Annu Rev Cell Dev Biol ; 36: 237-264, 2020 10 06.
Article in English | MEDLINE | ID: mdl-32749865

ABSTRACT

Parkinson's disease (PD) is a leading cause of neurodegeneration that is defined by the selective loss of dopaminergic neurons and the accumulation of protein aggregates called Lewy bodies (LBs). The unequivocal identification of Mendelian inherited mutations in 13 genes in PD has provided transforming insights into the pathogenesis of this disease. The mechanistic analysis of several PD genes, including α-synuclein (α-syn), leucine-rich repeat kinase 2 (LRRK2), PTEN-induced kinase 1 (PINK1), and Parkin, has revealed central roles for protein aggregation, mitochondrial damage, and defects in endolysosomal trafficking in PD neurodegeneration. In this review, we outline recent advances in our understanding of these gene pathways with a focus on the emergent role of Rab (Ras analog in brain) GTPases and vesicular trafficking as a common mechanism that underpins how mutations in PD genes lead to neuronal loss. These advances have led to previously distinct genes such as vacuolar protein-sorting-associated protein 35 (VPS35) and LRRK2 being implicated in a common signaling pathway. A greater understanding of these common nodes of vesicular trafficking will be crucial for linking other PD genes and improving patient stratification in clinical trials underway against α-syn and LRRK2 targets.


Subject(s)
Parkinson Disease/metabolism , Animals , Autophagy , Cytoplasmic Vesicles/metabolism , Humans , Mitochondria/metabolism , Parkinson Disease/genetics , Protein Aggregates , Protein Transport
4.
Cell ; 168(3): 400-412.e18, 2017 01 26.
Article in English | MEDLINE | ID: mdl-28129539

ABSTRACT

The structural characterization of protein complexes in their native environment is challenging but crucial for understanding the mechanisms that mediate cellular processes. We developed an integrative approach to reconstruct the 3D architecture of protein complexes in vivo. We applied this approach to the exocyst, a hetero-octameric complex of unknown structure that is thought to tether secretory vesicles during exocytosis with a poorly understood mechanism. We engineered yeast cells to anchor the exocyst on defined landmarks and determined the position of its subunit termini at nanometer precision using fluorescence microscopy. We then integrated these positions with the structural properties of the subunits to reconstruct the exocyst together with a vesicle bound to it. The exocyst has an open hand conformation made of rod-shaped subunits that are interlaced in the core. The exocyst architecture explains how the complex can tether secretory vesicles, placing them in direct contact with the plasma membrane.


Subject(s)
Exocytosis , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Golgi Apparatus/metabolism , Models, Molecular , Secretory Vesicles/metabolism
5.
Proc Natl Acad Sci U S A ; 121(30): e2319267121, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39008679

ABSTRACT

Migrasomes, vesicular organelles generated on the retraction fibers of migrating cells, play a crucial role in migracytosis, mediating intercellular communication. The cargoes determine the functional specificity of migrasomes. Migrasomes harbor numerous intraluminal vesicles, a pivotal component of their cargoes. The mechanism underlying the transportation of these intraluminal vesicles to the migrasomes remains enigmatic. In this study, we identified that Rab10 and Caveolin-1 (CAV1) mark the intraluminal vesicles in migrasomes. Transport of Rab10-CAV1 vesicles to migrasomes required the motor protein Myosin Va and adaptor proteins RILPL2. Notably, the phosphorylation of Rab10 by the kinase LRRK2 regulated this process. Moreover, CSF-1 can be transported to migrasomes through this mechanism, subsequently fostering monocyte-macrophage differentiation in skin wound healing, which served as a proof of the physiological importance of this transporting mechanism.


Subject(s)
Caveolin 1 , Cell Movement , rab GTP-Binding Proteins , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , Humans , Caveolin 1/metabolism , Caveolin 1/genetics , Macrophages/metabolism , Phosphorylation , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Myosin Type V/metabolism , Myosin Type V/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Mice , Myosin Heavy Chains/metabolism , Myosin Heavy Chains/genetics , Biological Transport , Wound Healing/physiology , Organelles/metabolism
6.
J Cell Sci ; 137(18)2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39330548

ABSTRACT

Cell polarity - the asymmetric distribution of molecules and cell structures within the cell - is a feature that almost all cells possess. Even though the cytoskeleton and other intracellular organelles can have a direction and guide protein distribution, the plasma membrane is, in many cases, essential for the asymmetric localization of proteins because it helps to concentrate proteins and restrict their localization. Indeed, many proteins that exhibit asymmetric or polarized localization are either embedded in the PM or located close to it in the cellular cortex. Such proteins, which we refer to here as 'polar proteins', use various mechanisms of membrane targeting, including vesicle trafficking, direct phospholipid binding, or membrane anchoring mediated by post-translational modifications or binding to other proteins. These mechanisms are often shared with non-polar proteins, yet the unique combinations of several mechanisms or protein-specific factors assure the asymmetric distribution of polar proteins. Although there is a relatively detailed understanding of polar protein membrane targeting mechanisms in animal and yeast models, knowledge in plants is more fragmented and focused on a limited number of known polar proteins in different contexts. In this Review, we combine the current knowledge of membrane targeting mechanisms and factors for known plant transmembrane and cortical proteins and compare these with the mechanisms elucidated in non-plant systems. We classify the known factors as general or polarity specific, and we highlight areas where more knowledge is needed to construct an understanding of general polar targeting mechanisms in plants or to resolve controversies.


Subject(s)
Cell Membrane , Cell Polarity , Protein Transport , Cell Membrane/metabolism , Animals , Plant Proteins/metabolism , Humans , Membrane Proteins/metabolism
7.
Proc Natl Acad Sci U S A ; 120(14): e2222040120, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36976769

ABSTRACT

Aphids are the most common insect vector transmitting hundreds of plant viruses. Aphid wing dimorphism (winged vs. wingless) not only showcases the phenotypic plasticity but also impacts virus transmission; however, the superiority of winged aphids in virus transmission over the wingless morph is not well understood. Here, we show that plant viruses were efficiently transmitted and highly infectious when associated with the winged morph of Myzus persicae and that a salivary protein contributed to this difference. The carbonic anhydrase II (CA-II) gene was identified by RNA-seq of salivary glands to have higher expression in the winged morph. Aphids secreted CA-II into the apoplastic region of plant cells, leading to elevated accumulation of H+. Apoplastic acidification further increased the activities of polygalacturonases, the cell wall homogalacturonan (HG)-modifying enzymes, promoting degradation of demethylesterified HGs. In response to apoplastic acidification, plants accelerated vesicle trafficking to enhance pectin transport and strengthen the cell wall, which also facilitated virus translocation from the endomembrane system to the apoplast. Secretion of a higher quantity of salivary CA-II by winged aphids promoted intercellular vesicle transport in the plant. The higher vesicle trafficking induced by winged aphids enhanced dispersal of virus particles from infected cells to neighboring cells, thus resulting in higher virus infection in plants relative to the wingless morph. These findings imply that the difference in the expression of salivary CA-II between winged and wingless morphs is correlated with the vector role of aphids during the posttransmission infection process, which influences the outcome of plant endurance of virus infection.


Subject(s)
Aphids , Plant Viruses , Virus Diseases , Viruses , Animals , Aphids/genetics , Carbonic Anhydrase II , Wings, Animal/metabolism , Virus Diseases/metabolism , Plant Diseases
8.
EMBO J ; 40(12): e106412, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33988249

ABSTRACT

The mammalian target of rapamycin complex 1 (mTORC1) integrates nutrients, growth factors, stress, and energy status to regulate cell growth and metabolism. Amino acids promote mTORC1 lysosomal localization and subsequent activation. However, the subcellular location or interacting proteins of mTORC1 under amino acid-deficient conditions is not completely understood. Here, we identify ADP-ribosylation factor GTPase-activating protein 1 (ArfGAP1) as a crucial regulator of mTORC1. ArfGAP1 interacts with mTORC1 in the absence of amino acids and inhibits mTORC1 lysosomal localization and activation. Mechanistically, the membrane curvature-sensing amphipathic lipid packing sensor (ALPS) motifs that bind to vesicle membranes are crucial for ArfGAP1 to interact with and regulate mTORC1 activity. Importantly, ArfGAP1 represses cell growth through mTORC1 and is an independent prognostic factor for the overall survival of pancreatic cancer patients. Our study identifies ArfGAP1 as a critical regulator of mTORC1 that functions by preventing the lysosomal transport and activation of mTORC1, with potential for cancer therapeutics.


Subject(s)
GTPase-Activating Proteins/metabolism , Lysosomes/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Pancreatic Neoplasms/metabolism , Animals , Cell Line , Female , GTPase-Activating Proteins/genetics , Humans , Kaplan-Meier Estimate , Male , Mechanistic Target of Rapamycin Complex 1/genetics , Mice , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/mortality , Prognosis
9.
Annu Rev Genet ; 51: 455-476, 2017 11 27.
Article in English | MEDLINE | ID: mdl-28934592

ABSTRACT

The evolution of a nervous system as a control system of the body's functions is a key innovation of animals. Its fundamental units are neurons, highly specialized cells dedicated to fast cell-cell communication. Neurons pass signals to other neurons, muscle cells, or gland cells at specialized junctions, the synapses, where transmitters are released from vesicles in a Ca2+-dependent fashion to activate receptors in the membrane of the target cell. Reconstructing the origins of neuronal communication out of a more simple process remains a central challenge in biology. Recent genomic comparisons have revealed that all animals, including the nerveless poriferans and placozoans, share a basic set of genes for neuronal communication. This suggests that the first animal, the Urmetazoan, was already endowed with neurosecretory cells that probably started to connect into neuronal networks soon afterward. Here, we discuss scenarios for this pivotal transition in animal evolution.


Subject(s)
Biological Evolution , Cell Communication/physiology , Nervous System/metabolism , Neurons/metabolism , Synaptic Transmission/physiology , Animals , Calcium/metabolism , Calcium Signaling/physiology , Cnidaria/anatomy & histology , Cnidaria/physiology , Endosomes/physiology , Endosomes/ultrastructure , Lysosomes/physiology , Lysosomes/ultrastructure , Nervous System/cytology , Neurons/cytology , Placozoa/anatomy & histology , Placozoa/physiology , Porifera/anatomy & histology , Porifera/physiology , SNARE Proteins/genetics , SNARE Proteins/metabolism , Synaptic Vesicles/physiology , Synaptic Vesicles/ultrastructure , Vertebrates/anatomy & histology , Vertebrates/physiology , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism
10.
J Physiol ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38979871

ABSTRACT

Although synapsins have long been proposed to be key regulators of synaptic vesicle (SV) clustering, their mechanism of action has remained mysterious and somewhat controversial. Here, we review synapsins and their associations with each other and with SVs. We highlight the recent hypothesis that synapsin tetramerization is a mechanism for SV clustering. This hypothesis, which aligns with numerous experimental results, suggests that the larger size of synapsin tetramers, in comparison to dimers, allows tetramers to form optimal bridges between SVs that overcome the repulsive force associated with the negatively charged membrane of SVs and allow synapsins to form a reserve pool of SVs within presynaptic terminals.

11.
J Biol Chem ; 299(6): 104718, 2023 06.
Article in English | MEDLINE | ID: mdl-37062417

ABSTRACT

Loss-of-function variants of vacuolar protein sorting proteins VPS33B and VPS16B (VIPAS39) are causative for arthrogryposis, renal dysfunction, and cholestasis syndrome, where early lethality of patients indicates that VPS33B and VPS16B play essential cellular roles. VPS33B is a member of the Sec1-Munc18 protein family and thought to facilitate vesicular fusion via interaction with soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes, like its paralog VPS33A in the homotypic fusion and vacuole sorting complex. VPS33B and VPS16B are known to associate, but little is known about the composition, structure, or function of the VPS33B-VPS16B complex. We show here that human VPS33B-VPS16B is a high molecular weight complex, which we expressed in yeast to perform structural, composition, and stability analysis. Circular dichroism data indicate VPS33B-VPS16B has a well-folded α-helical secondary structure, and size-exclusion chromatography-multiangle light scattering revealed a molecular weight of ∼315 kDa. Quantitative immunoblotting indicated a VPS33B:VPS16B ratio of 2:3. Expression of arthrogryposis, renal dysfunction, and cholestasis syndrome-causing VPS33B missense variants showed L30P disrupts complex formation but not S243F or H344D. Truncated VPS16B (amino acids 143 to 316) was sufficient to form a complex with VPS33B. Small-angle X-ray scattering and negative-staining EM revealed a two-lobed shape for VPS33B-VPS16B. Avidin tagging indicated that each lobe contains a VPS33B molecule, and they are oriented in opposite directions. We propose a structure for VPS33B-VPS16B that allows the VPS33B at each end to interact with separate SNARE bundles and/or SNAREpins, plus associated membrane components. These observations reveal the only known potentially bidirectional Sec1-Munc18 protein complex.


Subject(s)
Munc18 Proteins , Renal Insufficiency , Humans , SNARE Proteins/genetics , Syndrome , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism
12.
Plant J ; 116(6): 1633-1651, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37659090

ABSTRACT

The final step in secretion is membrane fusion facilitated by SNARE proteins that reside in opposite membranes. The formation of a trans-SNARE complex between one R and three Q coiled-coiled SNARE domains drives the final approach of the membranes providing the mechanical energy for fusion. Biological control of this mechanism is exerted by additional domains within some SNAREs. For example, the N-terminal Longin domain (LD) of R-SNAREs (also called Vesicle-associated membrane proteins, VAMPs) can fold back onto the SNARE domain blocking interaction with other cognate SNAREs. The LD may also determine the subcellular localization via interaction with other trafficking-related proteins. Here, we provide cell-biological and genetic evidence that phosphorylation of the Tyrosine57 residue regulates the functionality of VAMP721. We found that an aspartate mutation mimics phosphorylation, leading to protein instability and subsequent degradation in lytic vacuoles. The mutant SNARE also fails to rescue the defects of vamp721vamp722 loss-of-function lines in spite of its wildtype-like localization within the secretory pathway and the ability to interact with cognate SNARE partners. Most importantly, it imposes a dominant negative phenotype interfering with root growth, normal secretion and cytokinesis in wildtype plants generating large aggregates that mainly contain secretory vesicles. Non-phosphorylatable VAMP721Y57F needs higher gene dosage to rescue double mutants in comparison to native VAMP721 underpinning that phosphorylation modulates SNARE function. We propose a model where short-lived phosphorylation of Y57 serves as a regulatory step to control VAMP721 activity, favoring its open state and interaction with cognate partners to ultimately drive membrane fusion.


Subject(s)
Arabidopsis , SNARE Proteins , Cell Membrane/metabolism , Membrane Fusion , R-SNARE Proteins/genetics , R-SNARE Proteins/metabolism , SNARE Proteins/genetics , SNARE Proteins/metabolism , Tyrosine/metabolism , Arabidopsis/cytology , Arabidopsis/metabolism
13.
EMBO J ; 39(11): e103629, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32311148

ABSTRACT

Hedgehog (Hh) signal molecules play a fundamental role in development, adult stem cell maintenance and cancer. Hh can signal at a distance, and we have proposed that its graded distribution across Drosophila epithelia is mediated by filopodia-like structures called cytonemes. Hh reception by Patched (Ptc) happens at discrete sites along presenting and receiving cytonemes, reminiscent of synaptic processes. Here, we show that a vesicle fusion mechanism mediated by SNARE proteins is required for Ptc placement at contact sites. Transport of Ptc to these sites requires multivesicular bodies (MVBs) formation via ESCRT machinery, in a manner different to that regulating Ptc/Hh lysosomal degradation after reception. These MVBs include extracellular vesicle (EV) markers and, accordingly, Ptc is detected in the purified exosomal fraction from cultured cells. Blockage of Ptc trafficking and fusion to basolateral membranes result in low levels of Ptc presentation for reception, causing an extended and flattened Hh gradient.


Subject(s)
Drosophila Proteins/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Hedgehog Proteins/metabolism , Imaginal Discs/metabolism , Receptors, Cell Surface/metabolism , SNARE Proteins/metabolism , Wings, Animal , Animals , Drosophila Proteins/genetics , Drosophila melanogaster , Endosomal Sorting Complexes Required for Transport/genetics , Hedgehog Proteins/genetics , Protein Transport , Receptors, Cell Surface/genetics , SNARE Proteins/genetics
14.
FASEB J ; 37(2): e22757, 2023 02.
Article in English | MEDLINE | ID: mdl-36607310

ABSTRACT

Vesicle trafficking is a fundamental cellular process that controls the transport of various proteins and cargos between cellular compartments in eukaryotes. Using a combination of genome-wide CRISPR screening in mammalian cells and RNAi screening in Caenorhabditis elegans, we identify chaperonin containing TCP-1 subunit 4 (CCT4) as a critical regulator of protein secretion and vesicle trafficking. In C. elegans, deficiency of cct-4 as well as other CCT subunits impairs the trafficking of endocytic markers in intestinal cells, and this defect resembles that of dyn-1 RNAi worms. Consistent with these findings, the silencing of CCT4 in human cells leads to defective endosomal trafficking, and this defect can be rescued by the dynamin activator Ryngo 1-23. These results suggest that the cytosolic chaperonin CCT may regulate vesicle trafficking by promoting the folding of dynamin in addition to its known substrate tubulin. Our findings establish an essential role for the CCT chaperonin in regulating vesicle trafficking, and provide new insights into the regulation of vesicle trafficking and the cellular function of the cytosolic chaperonin.


Subject(s)
Caenorhabditis elegans , Chaperonin Containing TCP-1 , Animals , Humans , Chaperonin Containing TCP-1/genetics , Chaperonin Containing TCP-1/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats , Chaperonins/genetics , Chaperonins/metabolism , Tubulin/metabolism , Cytosol/metabolism , Protein Folding , Mammals/metabolism
15.
Biotechnol Bioeng ; 121(2): 735-748, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38037762

ABSTRACT

Glucose oxidase (EC 1.1.3.4, GOD) is a widely used industrial enzyme. To construct a GOD-hyperproducing Pichia pastoris strain, combinatorial strategies have been applied to improve GOD activity, synthesis, and secretion. First, wild-type GOD was subjected to saturation mutagenesis to obtain an improved variant, MGOD1 (V20W/T30S), with 1.7-fold higher kcat /KM . Subsequently, efficient signal peptides were screened, and the copy number of MGOD1 was optimized to generate a high-producing strain, 8GM1, containing eight copies of AOX1 promoter-GAS1 signal peptide-MGOD1 expression cassette. Finally, the vesicle trafficking of 8GM1 was engineered to obtain the hyperproducing strain G1EeSe co-expressing the trafficking components EES and SEC. 22, and the EES gene (PAS_chr3_0685) was found to facilitate both protein secretion and production for the first time. Using these strategies, GOD secretion was enhanced 65.2-fold. In the 5-L bioreactor, conventional fed-batch fermentation without any process optimization resulted in up to 7223.0 U/mL extracellular GOD activity (3.3-fold higher than the highest level reported to date), with almost only GOD in the fermentation supernatant at a protein concentration of 30.7 g/L. Therefore, a GOD hyperproducing strain for industrial applications was developed, and this successful case can provide a valuable reference for the construction of high-producing strains for other industrial enzymes.


Subject(s)
Glucose Oxidase , Pichia , Saccharomycetales , Glucose Oxidase/genetics , Glucose Oxidase/metabolism , Pichia/metabolism , Bioreactors , Fermentation , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
16.
Cell Mol Life Sci ; 80(3): 77, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36853333

ABSTRACT

Oxysterol-binding protein (OSBP) and its related proteins (ORPs) are a family of lipid transfer proteins (LTPs) that mediate non-vesicular lipid transport. ORP9 and ORP10, members of the OSBP/ORPs family, are located at the endoplasmic reticulum (ER)-trans-Golgi network (TGN) membrane contact sites (MCSs). It remained unclear how they mediate lipid transport. In this work, we discovered that ORP9 and ORP10 form a binary complex through intermolecular coiled-coil (CC) domain-CC domain interaction. The PH domains of ORP9 and ORP10 specially interact with phosphatidylinositol 4-phosphate (PI4P), mediating the TGN targeting. The ORP9-ORP10 complex plays a critical role in regulating PI4P levels at the TGN. Using in vitro reconstitution assays, we observed that while full-length ORP9 efficiently transferred PI4P between two apposed membranes, the lipid transfer kinetics was further accelerated by ORP10. Interestingly, our data showed that the PH domains of ORP9 and ORP10 participate in membrane tethering simultaneously, whereas ORDs of both ORP9 and ORP10 are required for lipid transport. Furthermore, our data showed that the depletion of ORP9 and ORP10 led to increased vesicle transport to the plasma membrane (PM). These findings demonstrate that ORP9 and ORP10 form a binary complex through the CC domains, maintaining PI4P homeostasis at ER-TGN MCSs and regulating vesicle trafficking.


Subject(s)
Endoplasmic Reticulum , Phosphatidylinositol Phosphates , Biological Transport , Cell Membrane , trans-Golgi Network/metabolism , Membrane Proteins/metabolism
17.
Int J Mol Sci ; 25(5)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38473798

ABSTRACT

Ehrlichia chaffeensis infects human monocytes or macrophages and causes human monocytic ehrlichiosis (HME), an emerging life-threatening zoonosis. After internalization, E. chaffeensis resides in membrane-bound inclusions, E. chaffeensis-containing vesicles (ECVs), which have early endosome-like characteristics and fuse with early autophagosomes but not lysosomes, to evade host innate immune microbicidal mechanisms and obtain nutrients for bacterial intracellular growth. The mechanisms exploited by E. chaffeensis to modulate intracellular vesicle trafficking in host cells have not been comprehensively studied. Here, we demonstrate that E. chaffeensis type IV secretion system (T4SS) effector Etf-3 induces RAB15 upregulation in host cells and that RAB15, which is localized on ECVs, inhibits ECV fusion with lysosomes and induces autophagy. We found that E. chaffeensis infection upregulated RAB15 expression using qRT-PCR, and RAB15 was colocalized with E. chaffeensis using confocal microscopy. Silence of RAB15 using siRNA enhanced ECV maturation to late endosomes and fusion with lysosomes, as well as inhibited host cell autophagy. Overexpression of Etf-3 in host cells specifically induced RAB15 upregulation and autophagy. Our findings deepen the understanding of E. chaffeensis pathogenesis and adaptation in hosts as well as the function of RAB15 and facilitate the development of new therapeutics for HME.


Subject(s)
Ehrlichia chaffeensis , Humans , Up-Regulation , Autophagosomes , Autophagy , Defense Mechanisms
18.
Proteomics ; 23(10): e2200460, 2023 05.
Article in English | MEDLINE | ID: mdl-36772928

ABSTRACT

Lumen formation and inflation are crucial steps for tubular organ morphogenesis, yet the underling mechanism remains largely unrevealed. Here, we applied 4D proteomics to screen the lumenogenesis-related proteins and revealed the biological pathways potentially that are involved in lumen inflation during notochord lumen formation in the ascidian Ciona savignyi. In total, 910 differentiated expressed proteins (DEPs) were identified before and after notochord lumen formation utilizing Mfuzz analysis. Those DEPs were grouped into four upregulated clusters based on their quantitative expression patterns; the functions of these proteins were enriched in protein metabolic and biosynthetic process, the establishment of localization, and vesicle-mediated transport. We analyzed the vesicle trafficking cluster and focused on several vesicle transport hub proteins. In vivo function-deficient experiments showed that mutation of vesicle transport proteins resulted in an abnormal lumen in notochord development, demonstrating the crucial role of intracellular trafficking for lumen formation. Moreover, abundant extracellular matrix proteins were identified, the majority of which were predicted to be glycosylated proteins. Inhibition of glycosylation markedly reduced the lumen expansion rate in notochord cells, suggesting that protein glycosylation is essential for lumenogenesis. Overall, our study provides an invaluable resource and reveals the crucial mechanisms in lumen formation and expansion.


Subject(s)
Ciona intestinalis , Ciona , Animals , Ciona/genetics , Ciona intestinalis/genetics , Glycosylation , Notochord/metabolism , Proteomics , Gene Expression Regulation, Developmental
19.
Plant J ; 112(6): 1350-1363, 2022 12.
Article in English | MEDLINE | ID: mdl-36321185

ABSTRACT

Nutrient homeostasis is essential for plant growth and reproduction. Plants, therefore, have evolved tightly regulated mechanisms for the uptake, translocation, distribution, and storage of mineral nutrients. Considering that inorganic nutrient transport relies on membrane-based transporters and channels, vesicle trafficking, one of the fundamental cell biological processes, has become a hotspot of plant nutrition studies. In this review, we summarize recent advances in the study of how vesicle trafficking regulates nutrient homeostasis to contribute to the adaptation of plants to heterogeneous environments. We also discuss new perspectives on future studies, which may inspire researchers to investigate new approaches to improve the human diet and health by changing the nutrient quality of crops.


Subject(s)
Membrane Transport Proteins , Plants , Humans , Biological Transport , Homeostasis , Plants/metabolism , Membrane Transport Proteins/metabolism , Adaptation, Physiological , Plant Roots/metabolism
20.
Mol Plant Microbe Interact ; 36(4): 208-217, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36645655

ABSTRACT

The endomembrane system, extending from the nuclear envelope to the plasma membrane, is critical to the plant response to pathogen infection. Synthesis and transport of immunity-related proteins and antimicrobial compounds to and from the plasma membrane are supported by conventional and unconventional processes of secretion and internalization of vesicles, guided by the cytoskeleton networks. Although plant bacterial pathogens reside mostly in the apoplast, major structural and functional modifications of the endomembrane system in the host cell occur during bacterial infection. Here, we review the dynamics of these cellular compartments, briefly, for their essential contributions to the plant defense responses and, in parallel, for their emerging roles in bacterial pathogenicity. We further focus on Pseudomonas syringae, Xanthomonas spp., and Ralstonia solanacearum type III secreted effectors that one or both localize to and associate with components of the host endomembrane system or the cytoskeleton network to highlight the diversity of virulence strategies deployed by bacterial pathogens beyond the inhibition of the secretory pathway. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Bacteria , Bacterial Proteins , Bacterial Proteins/metabolism , Bacteria/metabolism , Plants/microbiology , Virulence , Pseudomonas syringae , Plant Diseases/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL