Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 128
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Cell Mol Med ; 28(2): e18055, 2024 01.
Article in English | MEDLINE | ID: mdl-38113341

ABSTRACT

Diabetic cardiomyopathy (DCM) is a chronic microvascular complication of diabetes that is generally defined as ventricular dysfunction occurring in patients with diabetes and unrelated to known causes. Several mechanisms have been proposed to contribute to the occurrence and persistence of DCM, in which oxidative stress and autophagy play a non-negligible role. Diabetic cardiomyopathy is involved in a variety of physiological and pathological processes. The 5' adenosine monophosphate-activated protein kinase/nuclear factor-erythroid 2-related factor 2 (AMPK/Nrf2) are expressed in the heart, and studies have shown that asiaticoside (ASI) and activated AMPK/Nrf2 have a protective effect on the myocardium. However, the roles of ASI and AMPK/Nrf2 in DCM are unknown. The intraperitoneal injection of streptozotocin (STZ) and high-fat feed were used to establish the DCM models in 100 C57/BL mice. Asiaticoside and inhibitors of AMPK/Nrf2 were used for intervention. Cardiac function, oxidative stress, and autophagy were measured in mice. DCM mice displayed increased levels of oxidative stress while autophagy levels declined. In addition, AMPK/Nrf2 was activated in DCM mice with ASI intervention. Further, we discovered that AMPK/Nrf2 inhibition blocked the protective effect of ASI by compound C and treatment with ML-385. The present study demonstrates that ASI exerts a protective effect against DCM via the potential activation of the AMPK/Nrf2 pathway. Asiaticoside is a potential therapeutic target for DCM.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Triterpenes , Humans , Mice , Animals , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/prevention & control , Diabetic Cardiomyopathies/metabolism , AMP-Activated Protein Kinases/metabolism , NF-E2-Related Factor 2/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Oxidative Stress
2.
Phytother Res ; 38(4): 2023-2040, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38384110

ABSTRACT

Ulcerative colitis (UC) is one of the most prevalent inflammatory bowel diseases and poses a serious threat to human health. Currently, safe and effective preventive measures are unavailable. In this study, the protective effects of asiaticoside (AS) on dextran sodium sulfate (DSS)-induced colitis in mice and the underlying molecular mechanism were investigated. In this experiment, colitis was induced in mice with DSS. Subsequently, the role of AS in colitis and its underlying mechanisms were examined using H&E staining, immunofluorescence staining, western blot, Elisa, FMT, and other assays. The results showed that AS significantly attenuated the related symptoms of DSS-induced colitis in mice. In addition, AS inhibited the activation of signaling pathways TLR4/NF-κB and MAPK reduced the release of inflammatory factors, thereby attenuating the inflammatory response in mice. AS administration also restored the permeability of the intestinal barrier by increasing the levels of tight junction-associated proteins (claudin-3, occludin, and ZO-1). In addition, AS rebalanced the intestinal flora of DSS-treated mice by increasing the diversity of the flora. AS can alleviate DSS-induced ulcerative colitis in mice by maintaining the intestinal barrier, thus inhibiting the signaling pathways TLR4/NF-κB and MAPK activation, reducing the release of inflammatory factors, and regulating intestinal microecology.


Subject(s)
Colitis, Ulcerative , Colitis , Triterpenes , Humans , Animals , Mice , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , NF-kappa B , Toll-Like Receptor 4 , Colitis/chemically induced , Colitis/drug therapy , Dextran Sulfate/adverse effects , Mice, Inbred C57BL , Disease Models, Animal , Colon
3.
Environ Toxicol ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888371

ABSTRACT

Non-small cell lung cancer (NSCLC) is the primary inducer of cancer-related death worldwide. Asiaticoside (ATS) is a triterpenoid saponin that has been indicated to possess an antitumor activity in several malignancies. Nonetheless, its detailed functions in NSCLC remain unclarified. In this study, NSCLC cells were exposed to various doses of ATS. Functional experiments were employed to estimate the ATS effect on NSCLC cell behaviors. Western blotting was implemented for protein expression evaluation. A xenograft mouse model was established to assess the ATS effect on NSCLC in vivo. The results showed that ATS restrained NSCLC cell proliferation, cell cycle progression, migration, and invasiveness. ATS reversed TGF-ß-induced promotion in epithelial-mesenchymal transition (EMT). Mechanistically, ATS inhibited Wnt/ß-catenin signaling in NSCLC. Upregulating ß-catenin restored ATS-mediated suppression of NSCLC cell aggressiveness. Moreover, ATS administration repressed tumorigenesis in tumor-bearing mice. In conclusion, ATS represses growth and metastasis in NSCLC by blocking EMT via the inhibition of Wnt/ß-catenin signaling.

4.
J Obstet Gynaecol ; 44(1): 2350761, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38785148

ABSTRACT

BACKGROUND: Asiaticoside (AS) has been reported to improve the changes induced by high glucose stimulation, and it may have potential therapeutic effects on gestational diabetes mellitus (GDM). This study aims to explore the effect of AS on the cell model of GDM and the action mechanism of the PI3K/AKT pathway. METHODS: The GDM model was established in HTR-8/Svneo cells with a high glucose (HG) medium. After the cytotoxicity assay of AS, cells were divided into the control group, HG group and HG + AS group to conduct control experiment in cells. The cell proliferation and migration were detected by CCK-8 assay and scratch test, respectively. The mRNA levels of PI3K, AKT2, mTORC1, and GLUT4 in PI3K/AKT signalling pathway were measured by RT-PCR, and the protein expressions of these signalling molecules were monitored by western blot. RESULTS: AS showed a promotion effect on the cell proliferation rate of HTR-8/Svneo cells, and 80 µmol/L AS with a treatment time of 48 h had no cytotoxicity. The cell proliferation rate, migration rate, mRNA levels and protein expressions of PI3K, AKT2, mTORC1, and GLUT4 in the HG group were significantly lower than those in the control group, which were significantly increased in the HG + AS group (p < 0.05). CONCLUSIONS: AS can facilitate the cell proliferation and migration in the cell model of GDM, and might play a role in GDM treatment via PI3K/AKT pathway.


Asiaticoside possesses various pharmacological effects and has been reported to show a beneficial effect on the treatment of diabetes mellitus. This research firstly investigated the effect and mechanism of asiaticoside on gestational diabetes mellitus, and found that asiaticoside could facilitate the cell proliferation and migration of HTR-8/Svneo cells treated with high glucose, and affect the signalling molecules of PI3K/AKT pathway. Therefore, asiaticoside may be a novel useful therapeutic drug in the treatment of gestational diabetes mellitus.


Subject(s)
Cell Movement , Cell Proliferation , Diabetes, Gestational , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Triterpenes , Humans , Diabetes, Gestational/metabolism , Female , Pregnancy , Proto-Oncogene Proteins c-akt/metabolism , Cell Proliferation/drug effects , Triterpenes/pharmacology , Signal Transduction/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Cell Movement/drug effects , Cell Line , Trophoblasts/drug effects , Trophoblasts/metabolism , Glucose/pharmacology , Mechanistic Target of Rapamycin Complex 1/metabolism
5.
J Contemp Dent Pract ; 25(2): 118-127, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38514408

ABSTRACT

AIM: This study aims to evaluate the impact of asiaticoside (AC) on the viability and proliferation of dental pulp stem cells (DPSCs), considering the known negative effects of routinely used intracanal medicaments. This evaluation will be compared with the outcomes from using traditional intracanal medicaments, specifically triple antibiotic paste (TAP) and calcium hydroxide [Ca(OH)2]. MATERIALS AND METHODS: The DPSCs were obtained from the third molars of an adult donor. The application of flow cytometry was employed to do a phenotypic analysis on DPSCs using CD90, CD73, CD105, CD34, CD14, and CD45 antibodies. The methylthiazol tetrazolium (MTT) assay was employed to assess cellular viability. The cells were treated with different concentrations of TAP and Ca(OH)2 (5, 2.5, 1, 0.5, and 0.25 mg/mL), along with AC (100, 50, 25, 12.5, and 6.25 µM). A cell proliferation rate was performed at 3, 5, and 7 days. RESULTS: The characterization of DPSCs was conducted by flow cytometry analysis, which verified the presence of mesenchymal cell surface antigen molecules (CD105, CD73, and CD90) and demonstrated the absence of hematopoietic markers (CD34, CD45, and CD14). Cells treated with concentrations over 0.5 mg/mL of TAP and Ca(OH)2 showed a notable reduction in cell viability in comparison to the untreated cells (p < 0.05). Additionally, the cells treated with different concentrations of AC 12.5, 6.25, 25, and 50 µM did not differ significantly from the untreated cells (p > 0.05). Nevertheless, cells treated with concentrations of 100 µM showed a significant reduction in viability compared to the untreated cells (p < 0.05). After a period of 7 days, it was noted that cells exposed to three different concentrations of AC (50, 25, and 12.5 µM) had a notable rise in cell density in comparison to TAP and Ca(OH)2 (p < 0.05). Furthermore, cells that were exposed to a concentration of 12.5 µM exhibited the highest cell density. CONCLUSION: The cellular viability of the AC-treated cells was superior to that of the TAP and Ca(OH)2-treated cells. Moreover, the AC with a concentration of 12.5 µM had the highest degree of proliferation. CLINICAL SIGNIFICANCE: This study underscores the importance of evaluating alternative root canal medicaments and their effects on DPSCs' growth and vitality. The findings on AC, particularly its influence on the survival and proliferation of DPSCs, offer valuable insights for its probable use as an intracanal medication. This research contributes to the ongoing efforts to identify safer and more effective intracanal treatments, which are crucial for enhancing patient outcomes in endodontic procedures. How to cite this article: Alazemi MJ, Badawi MF, Elbeltagy MG, et al. Examining the Effects of Asiaticoside on Dental Pulp Stem Cell Viability and Proliferation: A Promising Approach to Root Canal Treatment. J Contemp Dent Pract 2024;25(2):118-127.


Subject(s)
Dental Pulp Cavity , Dental Pulp , Triterpenes , Humans , Cell Survival , Anti-Bacterial Agents/pharmacology , Calcium Hydroxide/pharmacology , Cell Proliferation
6.
J Cell Mol Med ; 27(5): 593-608, 2023 03.
Article in English | MEDLINE | ID: mdl-36756687

ABSTRACT

Centella asiatica is an ethnomedicinal herbaceous species that grows abundantly in tropical and sub-tropical regions of China, India, South-Eastern Asia and Africa. It is a popular nutraceutical that is employed in various forms of clinical and cosmetic treatments. C. asiatica extracts are reported widely in Ayurvedic and Chinese traditional medicine to boost memory, prevent cognitive deficits and improve brain functions. The major bioactive constituents of C. asiatica are the pentacyclic triterpenoid glycosides, asiaticoside and madecassoside, and their corresponding aglycones, asiatic acid and madecassic acid. Asiaticoside and madecassoside have been identified as the marker compounds of C. asiatica in the Chinese Pharmacopoeia and these triterpene compounds offer a wide range of pharmacological properties, including neuroprotective, cardioprotective, hepatoprotective, wound healing, anti-inflammatory, anti-oxidant, anti-allergic, anti-depressant, anxiolytic, antifibrotic, antibacterial, anti-arthritic, anti-tumour and immunomodulatory activities. Asiaticoside and madecassoside are also used extensively in treating skin abnormalities, burn injuries, ischaemia, ulcers, asthma, lupus, psoriasis and scleroderma. Besides medicinal applications, these phytocompounds are considered cosmetically beneficial for their role in anti-ageing, skin hydration, collagen synthesis, UV protection and curing scars. Existing reports and experimental studies on these compounds between 2005 and 2022 have been selectively reviewed in this article to provide a comprehensive overview of the numerous therapeutic advantages of asiaticoside and madecassoside and their potential roles in the medical future.


Subject(s)
Triterpenes , Triterpenes/pharmacology , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Glycosides , Wound Healing
7.
Appl Microbiol Biotechnol ; 107(2-3): 473-489, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36481800

ABSTRACT

In vitro culture of a plant cell, tissue and organ is a marvellous, eco-friendly biotechnological strategy for the production of phytochemicals. With the emergence of recent biotechnological tools, genetic engineering is now widely practiced enhancing the quality and quantity of plant metabolites. Triterpenoid saponins especially asiaticoside and madecassoside of Centella asiatica (L.) Urb. are popularly known for their neuroprotective activity. It has become necessary to increase the production of asiaticoside and madecassoside because of their high pharmaceutical and industrial demand. Thus, the review aims to provide efficient biotechnological tools along with proper strategies. This review also included a comparative analysis of various carbon sources and biotic and abiotic elicitors. The vital roles of a variety of plant growth regulators and their combinations have also been evaluated at different in vitro growth stages of Centella asiatica. Selection of explants, direct and callus-mediated organogenesis, root organogenesis, somatic embryogenesis, synthetic seed production etc. are also highlighted in this study. In a nutshell, this review will present the research outcomes of different biotechnological interventions used to increase the yield of triterpenoid saponins in C. asiatica. KEY POINTS: • Critical and updated assessment on in vitro biotechnology in C. asiatica. • In vitro propagation of C. asiatica and elicitation of triterpenoid saponins production. • Methods for mass producing C. asiatica.


Subject(s)
Centella , Saponins , Triterpenes , Centella/genetics , Centella/metabolism , Triterpenes/metabolism , Plant Extracts/metabolism , Biotechnology , Saponins/metabolism
8.
J Appl Toxicol ; 43(6): 789-798, 2023 06.
Article in English | MEDLINE | ID: mdl-36523111

ABSTRACT

Asiaticoside is a natural triterpene compound derived from Centella asiatica, possessing confirmed cardioprotective property. However, the roles of asiaticoside in regulating oxygen-glucose deprivation/reoxygenation (OGD/R)-caused cardiomyocyte dysfunction remain largely obscure. Human cardiomyocyte AC16 cells were stimulated with OGD/R to mimic myocardial ischemia/reperfusion injury and treated with asiaticoside. Cytotoxicity was investigated by CCK-8 assay and lactate dehydrogenase (LDH) release analysis. Autophagy- and Wnt/ß-catenin signaling-related protein levels were measured via western blotting. Asiaticoside (0-20 µM) did not induce cardiomyocyte cytotoxicity. Asiaticoside (20 µM) mitigated OGD/R-induced autophagy, cytotoxicity, oxidative stress, and myocardial injury. Rapamycin, an autophagy inductor, reversed the influences of asiaticoside on autophagy, cytotoxicity, oxidative stress, and myocardial injury, whereas 3-methyadanine, an autophagy inhibitor, played an opposite effect. Asiaticoside (20 µM) attenuated OGD/R-induced Wnt/ß-catenin signaling inactivation, which was reversed after transfection with si-ß-catenin. Transfection with si-ß-catenin attenuated the influences of asiaticoside on autophagy, cytotoxicity, oxidative stress, and myocardial injury. In conclusion, asiaticoside protected against OGD/R-induced cardiomyocyte cytotoxicity, oxidative stress, and myocardial injury via blunting autophagy through activating the Wnt/ß-catenin signaling, indicating the therapeutic potential of asiaticoside in myocardial ischemia/reperfusion injury.


Subject(s)
Myocardial Reperfusion Injury , Triterpenes , Humans , Myocytes, Cardiac , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/metabolism , beta Catenin/metabolism , Oxygen/metabolism , Glucose/metabolism , Apoptosis , Triterpenes/pharmacology , Triterpenes/metabolism , Autophagy
9.
Phytother Res ; 37(5): 1771-1786, 2023 May.
Article in English | MEDLINE | ID: mdl-36444395

ABSTRACT

Triple-negative breast cancer (TNBC) accounts for 10-20% of all human ductal adenocarcinomas and has a poor prognosis relative to other subtypes because of its high propensity to develop metastases. Here, the anticancer effects of asiaticoside (AC) against TNBC and the possible underlying mechanism were examined. We found that AC inhibited the TGF-ß1 expression and the SMAD2/3 phosphorylation in TNBC cells, thereby impairing the TGF-ß/SMAD signaling. AC inhibited the migration, invasion, and epithelial-mesenchymal transition (EMT) of TNBC cells by suppressing the TGF-ß/SMAD signaling. Meanwhile, AC inhibited the lung metastasis of TNBC cells in vivo and the expression of p-SMAD2/3 and vimentin, and increased the expression of E-cadherin and ZO-1 in the lung. Peroxisome proliferator activated receptor gamma (PPARG) was identified as a potential target of AC. AC increased PPARG expression, while PPARG knockdown attenuated the therapeutic effect of AC. AC-mediated PPARG overexpression suppressed the transcription of P2X purinoceptor 7 (P2RX7). The restoration of P2RX7 reversed the therapeutic effect of AC. These results suggested that AC blocked P2RX7-mediated TGF-ß/SMAD signaling by increasing PPARG expression, thereby suppressing EMT in TNBC.


Subject(s)
PPAR gamma , Triple Negative Breast Neoplasms , Humans , PPAR gamma/metabolism , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Epithelial-Mesenchymal Transition , Cell Line, Tumor , Receptors, Purinergic P2X7/therapeutic use
10.
Int J Mol Sci ; 24(15)2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37569347

ABSTRACT

Alzheimer's disease (AD) is a prevalent neurodegenerative disorder, hallmarked by the accumulation of amyloid-ß (Aß) plaques and neurofibrillary tangles. Due to the uncertainty of the pathogenesis of AD, strategies aimed at suppressing neuroinflammation and fostering synaptic repair are eagerly sought. Asiaticoside (AS), a natural triterpenoid derivative derived from Centella asiatica, is known for its anti-inflammatory, antioxidant, and wound-healing properties; however, its neuroprotective function in AD remains unclear. Our current study reveals that AS, when administered (40 mg/kg) in vivo, can mitigate cognitive dysfunction and attenuate neuroinflammation by inhibiting the activation of microglia and proinflammatory factors in Aß1-42-induced AD mice. Further mechanistic investigation suggests that AS may ameliorate cognitive impairment by inhibiting the activation of the p38 MAPK pathway and promoting synaptic repair. Our findings propose that AS could be a promising candidate for AD treatment, offering neuroinflammation inhibition and enhancement of synaptic function.

11.
Int J Mol Sci ; 24(24)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38139059

ABSTRACT

Centella asiatica extract is a valued plant material with known anti-inflammatory and anti-microbiological properties. Using the Design of Experiment (DoE) approach, it was possible to obtain an optimized water/alcoholic extract from Centella asiatica, which allowed the preparation of the final material with biological activity in the wound healing process. Studies on the novel applications of Centella asiatica in conjunction with the multifunctional chitosan carrier have been motivated by the plant's substantial pharmacological activity and the need to develop new and effective methods for the treatment of chronic wounds. The controlled release of asiaticoside was made possible by the use of chitosan as a carrier. Based on the findings of investigations using the PAMPA skin assay, which is a model imitating the permeability of actives through skin, this compound, characterized by sustained release from the chitosan delivery system, was identified as being well able to permeate biological membranes such as skin. Chitosan and the lyophilized extract of Centella asiatica worked synergistically to block hyaluronidase, exert efficient microbiological activity and take part in the wound healing process, as proven in an in vitro model. A formulation containing 3% extract with 3% medium-molecular-weight chitosan was indicated as a potentially new treatment with high compliance and effectiveness for patients. Optimization of the chitosan-based hydrogel preparation ensured the required rheological properties necessary for the release of the bioactive from the chitosan delivery system and demonstrated a satisfactory antimicrobial activity.


Subject(s)
Centella , Chitosan , Triterpenes , Humans , Chitosan/pharmacology , Hydrogels/pharmacology , Triterpenes/pharmacology , Triterpenes/therapeutic use , Plant Extracts/pharmacology , Wound Healing
12.
Molecules ; 28(5)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36903346

ABSTRACT

Background: We hypothesized that the antitumor effects of asiaticoside on breast cancer are driven by its ability to decrease the expression of tumor inflammation-promoting genes and increase apoptotic signaling. In this study, we aimed to better understand the mechanisms of action of asiaticoside as a chemical modulator or as a chemopreventive agent in breast cancer. Methods: MCF-7 cells were cultured and treated with 0, 20, 40, and 80 µM asiaticoside for 48 h. Fluorometric caspase-9, apoptosis, and gene expression analyses were conducted. For the xenograft experiments, we divided nude mice into the following 5 groups (10 animals per group): group I, control mice; group II, untreated tumor-bearing nude mice; group III, tumor-bearing nude mice treated with asiaticoside at weeks 1-2 and 4-7 and injected with MCF-7 cells at week 3; group IV, tumor-bearing nude mice injected with MCF-7 cells at week 3 and treated with asiaticoside beginning at week 6; and group V, nude mice treated with asiaticoside, as a drug control. After treatment, weight measurements were performed weekly. Tumor growth was determined and analyzed using histology and DNA and RNA isolation. Results: In MCF-7 cells, we found that asiaticoside increased caspase-9 activity. In the xenograft experiment, we found that TNF-α and IL-6 expression decreased (p < 0.001) via the NF-κB pathway. Conclusion: Overall, our data suggest that asiaticoside produces promising effects on tumor growth, progression, and tumor-associated inflammation in MCF-7 cells as well as a nude mouse MCF-7 tumor xenograft model.


Subject(s)
Breast Neoplasms , NF-kappa B , Humans , Mice , Animals , Female , MCF-7 Cells , NF-kappa B/metabolism , Mice, Nude , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Heterografts , Cell Line, Tumor , Caspase 9/metabolism , Breast Neoplasms/drug therapy , Apoptosis
13.
J Bioenerg Biomembr ; 54(1): 9-16, 2022 02.
Article in English | MEDLINE | ID: mdl-35038080

ABSTRACT

Asiaticoside, the major bioactive constituent purified from Centella asiatica, is a pentacyclic triterpene saponin with sugar moieties (glucose-glucose-rhamnose). Its biological activities including anti-inflammation and antioxidant have been widely reported. This study aimed to investigate the role of asiaticoside in diabetic retinopathy (DR). Human retinal pigment epithelium (RPE) cells ARPE-19 were induced by high glucose. Then, cell survival rate, expression of inflammatory factors, oxidative stress, and apoptosis were measured by MTT method, western blot, oxidative stress detection kits and TUNEL respectively. To uncover the underlying mechanism, the levels of cyclic AMP (cAMP) and protein kinase A (PKA) were measured by Enzyme linked immunosorbent assay (ELISA) and PKA activities were detected by the Kemptide phosphorylation assay. Furthermore, cAMP inhibitor SQ22536 was also used to validate the mechanism. Asiaticoside suppressed the inflammation and apoptosis of ARPE-19 cells, and the activities of cAMP and PKA were inhibited upon HG induction while again released after further administration of asiaticoside. However, these effects were all abolished by SQ22536. In conclusion, we have demonstrated in this paper that asiaticoside ameliorates high glucose-induced inflammation and apoptosis of RPE cells by activating cAMP/PKA signaling pathway. asiaticoside-mediated activation of cAMP/PKA signaling pathway may serve as a potential target for the management of DR.


Subject(s)
Cyclic AMP-Dependent Protein Kinases , Cyclic AMP , Apoptosis , Cyclic AMP/metabolism , Cyclic AMP/pharmacology , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic AMP-Dependent Protein Kinases/pharmacology , Epithelial Cells/metabolism , Glucose/metabolism , Glucose/pharmacology , Humans , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Retinal Pigments/metabolism , Retinal Pigments/pharmacology , Triterpenes
14.
Pharmacol Res ; 177: 106117, 2022 03.
Article in English | MEDLINE | ID: mdl-35124205

ABSTRACT

Visceral leishmaniasis (VL) is a severe and potentially fatal neglected tropical disease, being considered a public health concern in many countries worldwide. There are still no vaccines against human VL, and the existing chemotherapy is often toxic. Thereby, alternative treatments have been investigated, and byproducts from plant metabolism have been a source of promising pharmacological compounds. Terpenes are secondary metabolites that exhibit a large spectrum of therapeutic activities. Herein, we conducted a systematic review to evaluate the effects of terpenes in the treatment of VL in rodents. After an extensive search using the PubMed/MEDLINE, Scopus, and Web of Science databases, we included 34 articles in this review. Our results revealed that triterpenes were the most used terpenes by the eligible studies. Overall, terpene treatment showed no or negligible toxicity, causing an increase in the Th1-type immune response profile and nitric oxide production. It also reduced the Th2 cytokines levels and parasite load (> 90% to > 99%). Moreover, terpenes induced apoptosis by damaging the plasma membrane and inhibiting DNA topoisomerases in the parasite. The use of terpene carriers increased the terpene bioavailability in the body, preventing their rapid excretion and promoting the drug delivery at the site of Leishmania infection. Terpene derivatives showed better pharmacokinetics than the original terpenes. Altogether, the benefits of VL treatment with terpenes in preclinical studies may open new directions for other preclinical and human trials.


Subject(s)
Leishmaniasis, Visceral , Triterpenes , Drug Delivery Systems , Humans , Leishmaniasis, Visceral/drug therapy , Phytotherapy , Terpenes/pharmacology , Terpenes/therapeutic use
15.
Biotechnol Appl Biochem ; 69(1): 313-322, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33444480

ABSTRACT

Renal fibrosis results in the progressive renal dysfunction and leads to chronic kidney disease (CKD) and ultimately end-stage renal disease. Asiaticoside was reported to regulate synaptopodin, desmin, nephrin, and podocin levels in adriamycin-induced nephropathy of rats. In this study, we found out that asiaticoside inhibited renal fibrosis in vitro and in vivo. Additionally, miR-142-5p was upregulated in in vitro and in vivo models of CKD. MiR-142-5p promoted the levels of collagen-I, collagen-IV, and fibronectin proteins. Additionally, miR-142-5p overexpression partly rescued the protective effect of asiaticoside on renal fibrosis. Mechanistically, miR-142-5p inhibited ACTN4 levels by binding with its 3´untranslated region, and further reduced its translation. Treatment of asiaticoside decreased miR-142-5p levels and increased ACTN4 levels. Rescue assays revealed that ACTN4 overexpression partially rescued the effect of miR-142-5p on renal fibrosis. Asiaticoside mitigated renal fibrosis by regulating the miR-142-5p/ACTN4 axis. In conclusion, asiaticoside inhibits renal fibrosis by regulating the miR-142-5p/ACTN4 axis. This novel discovery suggested that asiaticoside may serve as a potential medicine for renal fibrosis improvement.


Subject(s)
Kidney Diseases , MicroRNAs , Triterpenes , Actinin , Animals , Fibrosis , Kidney Diseases/chemically induced , Kidney Diseases/drug therapy , Kidney Diseases/genetics , MicroRNAs/genetics , Rats
16.
J Nanobiotechnology ; 20(1): 259, 2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35672708

ABSTRACT

Patients with diabetic foot ulcers usually suffer from inefficient epithelisation and angiogenesis accompanied by chronic wound healing. Diabetic foot ulcers remain a major challenge in clinical medicine; however, traditional treatments are incapable of transdermal drug delivery, resulting in a low drug delivery rate. We report the development of Ti2C3 MXenes-integrated poly-γ-glutamic acid (γ-PGA) hydrogel microneedles to release asiaticoside (MN-MXenes-AS). Asiaticoside was loaded into PGA-MXenes hydrogel to facilitate cell proliferation while regulating angiogenesis. The characterisation and mechanical strength of the microneedles were investigated in vitro, and the wound-healing efficacy of the microneedles was confirmed in diabetic mice. MXenes significantly improved the mechanical strength of microneedles, while γ-PGA hydrogels provided a moist microenvironment for wound healing. Mice treated with MN-MXenes-AS demonstrated obvious improvements in wound healing process. We successfully fabricated an MXenes-integrated microneedle that possesses sufficient rigidity to penetrate the cuticle for subcutaneous drug delivery, thereby accelerating diabetic wound healing. We demonstrated that MN-MXenes-AS is effective in promoting growth both in vivo and in vitro. Collectively, our data show that MN-MXenes-AS accelerated the healing of diabetic foot ulcers, supporting the use of these microneedles in the treatment of chronic wounds.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Foot , Animals , Diabetes Mellitus, Experimental/drug therapy , Diabetic Foot/drug therapy , Humans , Hydrogels , Mice , Triterpenes , Wound Healing
17.
Article in Zh | MEDLINE | ID: mdl-35255555

ABSTRACT

Objective: To investigate the effect of asiaticoside for fibrosis in lung tissues of rats exposed to silica and to explore its possible mechanism. Methods: 144 SD male rats were randomly divided into control group, model group, positive drug control group, asiaticoside high-dose group, medium-dose group and low-dose group, each group included 24 rats. Rats in the control group were perfused with 1.0 ml of normal saline, and the other groups were given 1.0 ml 50 mg/ml SiO(2) suspension. Gavage of herbal was given from the next day after model establishment, once a day. Rats in the positive drug control group were administration with 30 mg/kg tetrandrine and rats in the low-dose group, medium-dose group and high-dose group were given 20 mg/kg, 40 mg/kg and 60 mg/kg asiaticoside for fibrosis respectively. Rats in the control group and the model group were given 0.9% normal saline. The rats were sacrificed in on the 14th, 28th and 56th day after intragastric administration and collect the lung tissues to detect the content of hydroxyproline, TGF-ß(1) and IL-18, observe the pathological changes of the lung tissues by HE and Masson staining and determine the expressions of Col-I, a-SMA, TGF-ß in lung tissues by Western Blot. Results: On the 14th day, 28th day and 56th day after model establishment, the lung tissues of rats in the model group showed obvious inflammatory response and accumulation of collagen fibers, and the degree of inflammation and fibrosis increased with time. The intervention of asiaticoside could effectively inhibit the pathological changes of lung tissues. The contents of hydroxyproline, IL-18 and TGF-ß1 in lung tissues of model group were higher than those in the control group (P<0.05) , while the level of hydroxyproline, IL-18 and TGF-ß1 in asiaticoside groups were significantly decreased, and the difference was statistically signicant (P<0.05) . Compared with the control group, the expression levels of Col-I, TGF-ß1and α-SMA in lung tissue of model group were increased (P<0.05) , while the expression level of Col-I, TGF-ß1 and α-SMA were decreased after the intervention of asiaticoside, and the difference was statistically signicant (P<0.05) . Conclusion: Asiaticoside can inhibit the increase of Col-I, TGF-ß1 and α-SMA content in the SiO(2)-induced lung tissues of rats, reduce the release of TGF-ß1 and IL-18 inflammatory factors in lung tissue, and then inhibit the synthesis and deposition of extracellular matrix in rat lung tissue, and improve silicosis fibrosis.


Subject(s)
Pulmonary Fibrosis , Silicosis , Animals , Dust , Lung , Male , Pulmonary Fibrosis/metabolism , Rats , Silicon Dioxide/adverse effects , Silicosis/metabolism , Transforming Growth Factor beta1/metabolism
18.
Chem Biodivers ; 18(12): e2100540, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34599555

ABSTRACT

Viral protein R (Vpr) is an accessory protein in Human immunodeficiency virus-1 (HIV-1) and has been suggested as an attractive target for HIV disease treatment. Investigations of the ethanolic extracts of twelve Thai herbs revealed that the extracts of the Punica granatum fruits, the Centella asiatica aerials, the Citrus hystrix fruit peels, the Caesalpinia sappan heartwoods, the Piper betel leaves, the Alpinia galangal rhizomes, the Senna tora seeds, the Zingiber cassumunar rhizomes, the Rhinacanthus nasutus leaves, and the Plumbago indica roots exhibited the anti-Vpr activity in HeLa cells harboring the TREx plasmid encoding full-length Vpr (TREx-HeLa-Vpr cells). Moreover, the investigation of the selected main constituents in Punica granatum, Centella asiatica, A. galangal, and Caesalpinia sappan indicated that punicalagin, asiaticoside, ellagic acid, madecassic acid, madecassoside, zingerone, brazilin, and asiatic acid possessed anti-Vpr activities at the 10 µM concentration. Among the tested extracts and compounds, the extracts from Centella asiatica and Citrus hystrix and the compounds, punicalagin and asiaticoside, showed the most potent anti-Vpr activities without any cytotoxicity, respectively.


Subject(s)
Hydrolyzable Tannins/pharmacology , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , Triterpenes/pharmacology , vpr Gene Products, Human Immunodeficiency Virus/antagonists & inhibitors , HeLa Cells , Humans , Hydrolyzable Tannins/chemistry , Hydrolyzable Tannins/isolation & purification , Molecular Structure , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Thailand , Triterpenes/chemistry , Triterpenes/isolation & purification , vpr Gene Products, Human Immunodeficiency Virus/metabolism
19.
Int Wound J ; 18(5): 598-607, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33666348

ABSTRACT

Hypertrophic scar (HS) is a fibrotic skin disease characterised by over-productive collagen and excessive inflammatory reaction, which can be functionally and cosmetically problematic. A scar-prone constitute will accelerate HS formation and functional disorder, which deserves systemic therapy with oral medicine. To examine the oral therapeutic effectiveness on HS with convincing evidence of gross view and histological improvement, a rabbit ear HS model was employed with oral administration of asiaticoside (AS) at the doses of 12 and 24 mg kg-1 d-1 daily for 60 consecutive days. Gross observation and histological findings showed that oral AS treatment could significantly inhibit HS formation in a dose dependent manner. Semi-quantification of scar elevation index at days 7, 15, 30, and 60, and quantitative polymerase chain reaction at days 30 and 60 also provided the evidences of reduced scar thickness and inhibited fibrotic gene expressions of collagens I, III, TGF-ß1, interleukins 1ß, 6 and 8, and enhanced gene expression of SMAD 7 and PPAR-γ with a dose-dependent manner. These results indicated that AS is likely to serve as a systemic therapeutic agent of HS treatment for those who may have scar-prone constitute via anti-inflammation, inhibiting fibrotic process, and enhancing matrix degradation.


Subject(s)
Cicatrix, Hypertrophic , Triterpenes , Administration, Oral , Animals , Cicatrix, Hypertrophic/drug therapy , Cicatrix, Hypertrophic/pathology , Collagen Type I/therapeutic use , Fibroblasts/pathology , Rabbits , Triterpenes/therapeutic use
20.
J Cell Mol Med ; 24(14): 8248-8261, 2020 07.
Article in English | MEDLINE | ID: mdl-32548952

ABSTRACT

Asiaticoside (AS) has been reported to have protective effect on pulmonary fibrosis (PF). In this study, we aimed to explore the potential mechanism of the therapeutic role of AS and its relationship with A2AR in PF. Adenosine 2A receptor gene knockout (A2AR-/- ) mice and wild-type (WT) mice were used to establish bleomycin (BLM)-induced PF models and were then treated with AS (50 mg/kg/d). Pulmonary inflammation and fibrosis were observed in the PF model with much higher severity in A2AR-/- mice than that in WT mice and AS significantly alleviated lung inflammation and fibrosis; however, it was less effective in A2AR-/- mice than in WT mice via histopathological analysis. Using RNA sequencing analysis, we found up-regulated differentially expressed genes (DEGs) in BLM group were enriched in immune and inflammation-associated pathways compared with control group. There were 242 common DEGs between down-regulated in BLM vs control group and up-regulated in BLM + AS vs BLM group, which were enriched in cAMP and Rap1 signalling pathways. Furthermore, the expression of five key factors of these two pathways including adenylate cyclase (ADCY1, ADCY5, ADCY8, cAMP and Rap1) were confirmed up-regulated by AS with the presence of A2AR. Therefore, AS might attenuate BLM-induced PF by activating cAMP and Rap1 signalling pathways which is assisted by A2AR, making it a promising therapeutic optional for PF.


Subject(s)
Cyclic AMP/metabolism , Protective Agents/pharmacology , Pulmonary Fibrosis/etiology , Pulmonary Fibrosis/metabolism , Receptor, Adenosine A2A/metabolism , Signal Transduction/drug effects , Triterpenes/pharmacology , rap1 GTP-Binding Proteins/metabolism , Animals , Bleomycin/adverse effects , Computational Biology/methods , Disease Models, Animal , Gene Expression Profiling , Immunohistochemistry , Immunomodulation/drug effects , Male , Mice , Mice, Transgenic , Models, Biological , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/pathology , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL