Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Appl Environ Microbiol ; 89(1): e0126622, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36602357

ABSTRACT

Acidithiobacillus caldus is a common bioleaching bacterium that is inevitably exposed to extreme copper stress in leachates. The ArsR/SmtB family of metalloregulatory repressors regulates homeostasis and resistance in bacteria by specifically responding to metals. Here, we characterized A. caldus Cu(I)-sensitive repressor (AcsR) and gained molecular insights into this new member of the ArsR/SmtB family. Transcriptional analysis indicated that the promoter (PIII) of acsR was highly active in Escherichia coli but inhibited upon AcsR binding to the PIII-acsR region. Size exclusion chromatography and circular dichroism spectra revealed that CuI-AcsR shared an identical assembly state with apo-AcsR, as a dimer with fewer α helices, more extended strands, and more ß turns. Mutation of the cysteine site in AcsR did not affect its assembly state. Copper(I) titrations revealed that apo-AcsR bound two Cu(I) molecules per monomer in vitro with an average dissociation constant (KD) for bicinchoninic acid competition of 2.55 × 10-9 M. Site-directed mutation of putative Cu(I)-binding ligands in AcsR showed that replacing Cys64 with Ala reduces copper binding ability from two Cu(I) molecules per monomer to one, with an average KD of 6.05 × 10-9 M. Electrophoretic mobility shift assays revealed that apo-AcsR has high affinity for the 12-2-12 imperfect inverted repeats P2245 and P2270 in the acsR gene cluster and that Cu-loaded AcsR had lower affinity for DNA fragments than apo-AcsR. We developed a hypothetical working model of AcsR to better understand Cu resistance mechanisms in A. caldus. IMPORTANCE Copper (Cu) resistance among various microorganisms is attracting interest. The chemolithoautotrophic bacterium A. caldus, which can tolerate extreme copper stress (≥10 g/L Cu ions), is typically used to bioleach chalcopyrite (CuFeS2). Understanding of Cu resistance in A. caldus is limited due to scant investigation and the absence of efficient gene manipulation tools. Here, we characterized a new member of the ArsR/SmtB family of prokaryotic metalloregulatory transcriptional proteins that repress operons linked to stress-inducing concentrations of heavy metal ions. This protein can bind two Cu(I) molecules per monomer and negatively regulate its gene cluster. Members of the ArsR/SmtB family have not been investigated in A. caldus until now. The discovery of this novel protein enriches understanding of Cu homeostasis in A. caldus.


Subject(s)
Acidithiobacillus , Bacterial Proteins , Extremophiles , Trans-Activators , Acidithiobacillus/genetics , Acidithiobacillus/metabolism , Bacteria/genetics , Bacteria/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Copper/metabolism , Extremophiles/genetics , Extremophiles/metabolism , Ions/metabolism , Metals/metabolism , Protein Binding , Trans-Activators/genetics , Trans-Activators/metabolism
2.
Appl Environ Microbiol ; 87(16): e0066021, 2021 07 27.
Article in English | MEDLINE | ID: mdl-34085855

ABSTRACT

The copper-sensitive operon repressor (CsoR) family, which is the main Cu(I)-sensing family, is widely distributed and regulates regulons involved in detoxification in response to extreme copper stress (a general range of ≥3 g/liter copper ions). Here, we identified CsoR in hyper-copper-resistant Acidithiobacillus caldus (CsoRAc), an organism used in the bioleaching process of copper ores. CsoRAc possesses highly conserved Cu(I) ligands and structures within the CsoR family members. Transcriptional analysis assays indicated that the promoter (PIII) of csoR was active but weakly responsive to copper in Escherichia coli. Copper titration assays gave a stoichiometry of 0.8 mol Cu(I) per apo-CsoRAc monomer in vitro combined with atomic absorption spectroscopy analysis. CuI-CsoRAc and apo-CsoRAc share essentially identical secondary structures and assembly states, as demonstrated by circular dichroism spectra and size exclusion chromatography profiles. The average dissociation constants (KD = 2.26 × 10-18 M and 0.53 × 10-15 M) and Cu(I) binding affinity of apo-CsoRAc were estimated by bathocuproine disulfonate (BCS) and bicinchoninic acid (BCA) competition assays, respectively. Site-directed mutations of conserved Cu(I) ligands in CsoRAc did not significantly alter the secondary structure or assembly state. Competition assays showed that mutants had the same order of magnitude of Cu(I) binding affinity as apo-CsoRAc. Moreover, apo-CsoRAc could bind to the DNA fragment P08430 in vitro, although with low affinity. Finally, a working model was developed to illustrate putative copper resistance mechanisms in A. caldus. IMPORTANCE Research on copper resistance among various species has attracted considerable interest. However, due to the lack of effective and reproducible genetic tools, few studies regarding copper resistance have been reported for A. caldus. Here, we characterized a major Cu(I)-sensing family protein, CsoRAc, which binds Cu(I) with an attomolar affinity higher than that of the Cu(I)-specific chelator bathocuproine disulfonate. In particular, CsoR family proteins were identified only in A. caldus, rather than A. ferrooxidans and A. thiooxidans, which are both used for bioleaching. Meanwhile, A. caldus harbored more copper resistance determinants and a relatively full-scale regulatory system involved in copper homeostasis. These observations suggested that A. caldus may play an essential role in the application of engineered strains with higher copper resistance in the near future.


Subject(s)
Acidithiobacillus/metabolism , Bacterial Proteins/metabolism , Copper/metabolism , Repressor Proteins/metabolism , Acidithiobacillus/genetics , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Operon , Repressor Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL