Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.489
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 121(24): e2320205121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38833468

ABSTRACT

Antifreeze proteins (AFPs) are remarkable biomolecules that suppress ice formation at trace concentrations. To inhibit ice growth, AFPs must not only bind to ice crystals, but also resist engulfment by ice. The highest supercooling, [Formula: see text], for which AFPs are able to resist engulfment is widely believed to scale as the inverse of the separation, [Formula: see text], between bound AFPs, whereas its dependence on the molecular characteristics of the AFP remains poorly understood. By using specialized molecular simulations and interfacial thermodynamics, here, we show that in contrast with conventional wisdom, [Formula: see text] scales as [Formula: see text] and not as [Formula: see text]. We further show that [Formula: see text] is proportional to AFP size and that diverse naturally occurring AFPs are optimal at resisting engulfment by ice. By facilitating the development of AFP structure-function relationships, we hope that our findings will pave the way for the rational design of AFPs.


Subject(s)
Antifreeze Proteins , Ice , Antifreeze Proteins/chemistry , Antifreeze Proteins/metabolism , Thermodynamics , Molecular Dynamics Simulation , Animals , Crystallization
2.
Plant J ; 119(5): 2199-2216, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38990506

ABSTRACT

The osmotic resistance mechanism has been extensively studied in whole plants or plant tissues. However, little is known about it in embryogenic tissue (ET) which is widely used in plant-based biotechnological systems. Suberin, a cell wall aliphatic and aromatic heteropolymer, plays a critical role in plant cells against osmosis stress. The suberin regulatory biosynthesis has rarely been studied in gymnosperms. Here, PaMYB11, a subgroup 11 R2R3-MYB transcription factor, plays a key role in the osmotic resistance of Norway spruce (Picea abies) ETs during cryoprotectant pretreatment. Thus, RNA-seq, histological, and analytical chemical analyses are performed on the stable transformations of PaMYB11-OE and PaMYB11-SRDX in Norway spruce ETs. DAP-seq, Y1H, and LUC are further combined to explore the PaMYB11 targets. Activation of PaMYB11 is necessary and sufficient for suberin lamellae deposition on Norway spruce embryogenic cell walls, which plays a decisive role in ET survival under osmotic stress. Transcriptome analysis shows that PaMYB11 enhances suberin lamellae monomer synthesis by promoting very long-chain fatty acid (VLCFA) synthesis. PaPOP, PaADH1, and PaTET8L, the first two (PaADH1 and PaPOP, included) involved in VLCFA synthesis, are proved to be the direct targets of PaMYB11. Our study identified a novel osmotic response directed by PaMYB11 in Norway spruce ET, which provides a new understanding of the resistance mechanism against osmosis in gymnosperms.


Subject(s)
Cryopreservation , Lipids , Osmotic Pressure , Picea , Plant Proteins , Picea/genetics , Picea/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Cryopreservation/methods , Osmosis , Gene Expression Regulation, Plant , Transcription Factors/metabolism , Transcription Factors/genetics , Cell Wall/metabolism
3.
FASEB J ; 38(1): e23372, 2024 01.
Article in English | MEDLINE | ID: mdl-38102977

ABSTRACT

Embryo vitrification is a standard procedure in assisted reproductive technology. Previous studies have shown that frozen embryo transfer is associated with an elevated risk of adverse maternal and neonatal outcomes. This study aimed to explore the effects of mouse blastocyst vitrification on the phenotype of vitrified-warmed blastocysts, their intrauterine and postnatal development, and the long-term metabolic health of the derived offspring. The vitrified-warmed blastocysts (IVF + VT group) exhibited reduced mitochondrial activity, increased apoptotic levels, and decreased cell numbers when compared to the fresh blastocysts (IVF group). Implantation rates, live pup rates, and crown-rump length at E18.5 were not different between the two groups. However, there was a significant decrease in fetal weight and fetal/placental weight ratio in the IVF + VT group. Furthermore, the offspring of the IVF + VT group at an age of 36 weeks had reduced whole energy consumption, impaired glucose and lipid metabolism when compared with the IVF group. Notably, RNA-seq results unveiled disturbed hepatic gene expression in the offspring from vitrified-warmed blastocysts. This study revealed the short-term negative impacts of vitrification on embryo and fetal development and the long-term influence on glucose and lipid metabolism that persist from the prenatal stage into adulthood in mice.


Subject(s)
Cryopreservation , Vitrification , Pregnancy , Female , Animals , Mice , Cryopreservation/methods , Placenta , Embryonic Development , Blastocyst , Glucose , Retrospective Studies
4.
Cell Mol Life Sci ; 81(1): 306, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023560

ABSTRACT

Recent advances in stem cell research have led to the creation of organoids, miniature replicas of human organs, offering innovative avenues for studying diseases. Kidney organoids, with their ability to replicate complex renal structures, provide a novel platform for investigating kidney diseases and assessing drug efficacy, albeit hindered by labor-intensive generation and batch variations, highlighting the need for tailored cryopreservation methods to enable widespread utilization. Here, we evaluated cryopreservation strategies for kidney organoids by contrasting slow-freezing and vitrification methods. 118 kidney organoids were categorized into five conditions. Control organoids followed standard culture, while two slow-freezing groups used 10% DMSO (SF1) or commercial freezing media (SF2). Vitrification involved V1 (20% DMSO, 20% Ethylene Glycol with sucrose) and V2 (15% DMSO, 15% Ethylene Glycol). Assessment of viability, functionality, and structural integrity post-thawing revealed notable differences. Vitrification, particularly V1, exhibited superior viability (91% for V1, 26% for V2, 79% for SF1, and 83% for SF2 compared to 99.4% in controls). 3D imaging highlighted distinct nephron segments among groups, emphasizing V1's efficacy in preserving both podocytes and tubules in kidney organoids. Cisplatin-induced injury revealed a significant reduction in regenerative capacities in organoids cryopreserved by flow-freezing methods, while the V1 method did not show statistical significance compared to the unfrozen controls. This study underscores vitrification, especially with high concentrations of cryoprotectants, as an effective approach for maintaining kidney organoid viability and structure during cryopreservation, offering practical approaches for kidney organoid research.


Subject(s)
Cryopreservation , Cryoprotective Agents , Kidney , Organoids , Cryopreservation/methods , Organoids/cytology , Organoids/drug effects , Organoids/metabolism , Humans , Kidney/cytology , Cryoprotective Agents/pharmacology , Vitrification , Dimethyl Sulfoxide/pharmacology , Ethylene Glycol/pharmacology , Freezing , Cell Survival/drug effects
5.
Proc Natl Acad Sci U S A ; 119(41): e2211744119, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36191219

ABSTRACT

Most multicellular organisms are freeze sensitive, but the ability to survive freezing of the extracellular fluids evolved in several vertebrate ectotherms, some plants, and many insects. Here, we test the coupled hypotheses that are perpetuated in the literature: that irreversible denaturation of proteins and loss of biological membrane integrity are two ultimate molecular mechanisms of freezing injury in freeze-sensitive insects and that seasonally accumulated small cryoprotective molecules (CPs) stabilize proteins and membranes against injury in freeze-tolerant insects. Using the drosophilid fly, Chymomyza costata, we show that seven different soluble enzymes exhibit no or only partial loss of activity upon lethal freezing stress applied in vivo to whole freeze-sensitive larvae. In contrast, the enzymes lost activity when extracted and frozen in vitro in a diluted buffer solution. This loss of activity was fully prevented by adding low concentrations of a wide array of different compounds to the buffer, including C. costata native CPs, other metabolites, bovine serum albumin (BSA), and even the biologically inert artificial compounds HistoDenz and Ficoll. Next, we show that fat body plasma membranes lose integrity when frozen in vivo in freeze-sensitive but not in freeze-tolerant larvae. Freezing fat body cells in vitro, however, resulted in loss of membrane integrity in both freeze-sensitive and freeze-tolerant larvae. Different additives showed widely different capacities to protect membrane integrity when added to in vitro freezing media. A complete rescue of membrane integrity in freeze-tolerant larvae was observed with a mixture of proline, trehalose, and BSA.


Subject(s)
Serum Albumin, Bovine , Trehalose , Acclimatization , Animals , Cell Membrane/metabolism , Cryoprotective Agents/pharmacology , Ficoll , Freezing , Insecta/metabolism , Larva/metabolism , Proline/metabolism
6.
Dev Dyn ; 253(8): 781-790, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38340021

ABSTRACT

BACKGROUND: Sea urchins have contributed greatly to knowledge of fertilization, embryogenesis, and cell biology. However, until now, they have not been genetic model organisms because of their long generation times and lack of tools for husbandry and gene manipulation. We recently established the sea urchin Lytechinus pictus, as a multigenerational model Echinoderm, because of its relatively short generation time of 4-6 months and ease of laboratory culture. To take full advantage of this new multigenerational species, methods are needed to biobank and share genetically modified L. pictus sperm. RESULTS: Here, we describe a method, based on sperm ion physiology that maintains L. pictus and Strongylocentrotus purpuratus sperm fertilizable for at least 5-10 weeks when stored at 0°C. We also describe a new method to cryopreserve sperm of both species. Sperm of both species can be frozen and thawed at least twice and still give rise to larvae that undergo metamorphosis. CONCLUSIONS: The simple methods we describe work well for both species, achieving >90% embryo development and producing larvae that undergo metamorphosis to juvenile adults. We hope that these methods will be useful to others working on marine invertebrate sperm.


Subject(s)
Cryopreservation , Lytechinus , Spermatozoa , Strongylocentrotus purpuratus , Animals , Male , Cryopreservation/methods , Lytechinus/physiology , Strongylocentrotus purpuratus/embryology , Strongylocentrotus purpuratus/physiology , Spermatozoa/physiology , Spermatozoa/cytology , Semen Preservation/methods
7.
J Proteome Res ; 23(7): 2641-2650, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38906844

ABSTRACT

To investigate the mechanisms underlying the differences in the freezability of boar semen, Yorkshire boars with freezing-tolerant semen (YT, n = 3), Yorkshire boars with freezing-sensitive semen (YS, n = 3), Landrace boars with freezing-tolerant semen (LT, n = 3), and Landrace boars with freezing-sensitive semen (LS, n = 3) were selected for this study. Their sperm was subjected to protein extraction, followed by data-independent acquisition proteomics and functional bioinformatics analysis. A total of 3042 proteins were identified, of which 2810 were quantified. Some key KEGG pathways were enriched, such as starch and sucrose metabolism, carbohydrate digestion and absorption, mineral absorption, the HIF-1 signaling pathway, and the necroptosis pathways. Through PRM verification, we found that several proteins, such as α-amylase and epididymal sperm-binding protein 1, can be used as molecular markers of the freezing resistance of boar semen. Furthermore, we found that the addition of α-amylase to cryoprotective extender could significantly improve the post-thaw motility and quality of boar semen. In summary, this study revealed some molecular markers and potential molecular pathways contributing to the high or low freezability of boar sperm, identifying α-amylase as a key protein. This study is valuable for optimizing boar semen cryopreservation technology.


Subject(s)
Cryopreservation , Proteomics , Semen Preservation , Sperm Motility , Spermatozoa , alpha-Amylases , Animals , Male , Spermatozoa/metabolism , Proteomics/methods , Swine , Semen Preservation/veterinary , Semen Preservation/methods , Cryopreservation/veterinary , alpha-Amylases/metabolism , Freezing , Cryoprotective Agents/pharmacology , Semen Analysis/methods , Semen Analysis/veterinary , Proteome/metabolism , Proteome/analysis
8.
BMC Genomics ; 25(1): 591, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867206

ABSTRACT

BACKGROUND: The Portuguese oyster Crassostrea angulata, a bivalve of significant economic and ecological importance, has faced a decline in both production and natural populations due to pathologies, climate change, and anthropogenic factors. To safeguard its genetic diversity and improve reproductive management, cryopreservation emerges as a valuable strategy. However, the cryopreservation methodologies lead to some damage in structures and functions of the cells and tissues that can affect post-thaw quality. Transcriptomics may help to understand the molecular consequences related to cryopreservation steps and therefore to identify different freezability biomarkers. This study investigates the molecular damage induced by cryopreservation in C. angulata D-larvae, focusing on two critical steps: exposure to cryoprotectant solution and the freezing/thawing process. RESULTS: Expression analysis revealed 3 differentially expressed genes between larvae exposed to cryoprotectant solution and fresh larvae and 611 differentially expressed genes in cryopreserved larvae against fresh larvae. The most significantly enriched gene ontology terms were "carbohydrate metabolic process", "integral component of membrane" and "chitin binding" for biological processes, cellular components and molecular functions, respectively. Kyoto Encyclopedia of Genes and Genomes enrichment analysis identified the "neuroactive ligand receptor interaction", "endocytosis" and "spliceosome" as the most enriched pathways. RNA sequencing results were validate by quantitative RT-PCR, once both techniques presented the same gene expression tendency and a group of 11 genes were considered important molecular biomarkers to be used in further studies for the evaluation of cryodamage. CONCLUSIONS: The current work provided valuable insights into the molecular repercussions of cryopreservation on D-larvae of Crassostrea angulata, revealing that the freezing process had a more pronounced impact on larval quality compared to any potential cryoprotectant-induced toxicity. Additionally, was identify 11 genes serving as biomarkers of freezability for D-larvae quality assessment. This research contributes to the development of more effective cryopreservation protocols and detection methods for cryodamage in this species.


Subject(s)
Crassostrea , Cryopreservation , Cryoprotective Agents , Gene Expression Profiling , Larva , Animals , Crassostrea/genetics , Crassostrea/growth & development , Cryoprotective Agents/pharmacology , Cryoprotective Agents/toxicity , Larva/genetics , Larva/drug effects , Larva/growth & development , Transcriptome , Gene Ontology
9.
Eur J Immunol ; 53(12): e2350546, 2023 12.
Article in English | MEDLINE | ID: mdl-37751619

ABSTRACT

Cryopreservation of mouse thymus depletes donor thymocytes but preserves thymus function when transplanted after thawing into athymic mice. No differences in immune reconstitution were observed between fresh and frozen/thawed transplants suggesting that donor thymocyte depletion does not affect outcome. Thus, cryopreservation of thymus may improve outcomes in thymus transplant patients.


Subject(s)
Immune Reconstitution , Thymocytes , Humans , Animals , Mice , Thymus Gland , Cryopreservation
10.
Eur J Immunol ; 53(9): e2250362, 2023 09.
Article in English | MEDLINE | ID: mdl-37366295

ABSTRACT

Nonhematopoietic lymph node stromal cells (LNSCs) regulate lymphocyte trafficking, survival, and function for key roles in host defense, autoimmunity, alloimmunity, and lymphoproliferative disorders. However, the study of LNSCs in human diseases is complicated by a dependence on viable lymphoid tissues, which are most often excised prior to establishment of a specific diagnosis. Here, we demonstrate that cryopreservation can be used to bank lymphoid tissue for the study of LNSCs in human disease. Using human tonsils and lymph nodes (LN), lymphoid tissue fragments were cryopreserved for subsequent enzymatic digestion and recovery of viable nonhematopoietic cells. Flow cytometry and single-cell transcriptomics identified comparable proportions of LN stromal cell types in fresh and cryopreserved tissue. Moreover, cryopreservation had little effect on transcriptional profiles, which showed significant overlap between tonsils and LN. The presence and spatial distribution of transcriptionally defined cell types were confirmed by in situ analyses. Our broadly applicable approach promises to greatly enable research into the roles of LNSCs in human disease.


Subject(s)
Biological Specimen Banks , Cryopreservation , Humans , Lymphocytes , Lymph Nodes/pathology , Stromal Cells
11.
Biochem Biophys Res Commun ; 714: 149993, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38663096

ABSTRACT

Sarcoidosis, a systemic inflammatory disease, poses challenges in understanding its etiology and variable clinical courses. Despite ongoing uncertainty about causative agents and genetic predisposition, granuloma formation remains its hallmark feature. To address this, we developed a validated in vitro human granuloma model using patient-derived peripheral blood mononuclear cells (PBMCs), offering a dynamic platform for studying early granuloma formation and sarcoidosis pathogenesis. However, a current limitation of this model is its dependence on freshly isolated PBMCs obtained from whole blood. While cryopreservation is a common method for long-term sample preservation, the biological effects of freezing and thawing PBMCs on granuloma formation remain unclear. This study aimed to assess the viability and functionality of cryopreserved sarcoidosis PBMCs within the granuloma model, revealing similar granulomatous responses to fresh cells and highlighting the potential of cryopreserved PBMCs as a valuable tool for studying sarcoidosis and related diseases.


Subject(s)
Cryopreservation , Granuloma , Leukocytes, Mononuclear , Sarcoidosis , Humans , Sarcoidosis/immunology , Sarcoidosis/pathology , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Granuloma/pathology , Granuloma/immunology , Antigens/immunology , Cell Survival , Cells, Cultured , Male , Female , Adult
12.
J Exp Zool B Mol Dev Evol ; 342(3): 278-290, 2024 May.
Article in English | MEDLINE | ID: mdl-38185943

ABSTRACT

Development of reliable germplasm repositories is critical for preservation of genetic resources of aquatic species, which are widely utilized to support biomedical innovation by providing a foundational source for naturally occurring variation and development of new variants through genetic manipulations. A significant barrier in repository development is the lack of cryopreservation capability and reproducibility across the research community, posing great risks of losing advances developed from billions of dollars of research investment. The emergence of open scientific hardware has fueled a new movement across biomedical research communities. With the increasing accessibility of consumer-level fabrication technologies, such as three-dimensional printers, open hardware devices can be custom designed, and design files distributed to community members for enhancing rigor, reproducibility, and standardization. The overall goal of this review is to explore pathways to create open-hardware ecosystems among the communities using aquatic model resources for biomedical research. To gain feedback and insights from community members, an interactive workshop focusing on open-hardware applications in germplasm repository development was held at the 2022 Aquatic Models for Human Disease Conference, Woods Hole, Massachusetts. This work integrates conceptual strategies with practical insights derived from workshop interactions using examples of germplasm repository development. These insights can be generalized for establishment of open-hardware ecosystems for a broad biomedical research community. The specific objectives were to: (1) introduce an open-hardware ecosystem concept to support biomedical research; (2) explore pathways toward open-hardware ecosystems through four major areas, and (3) identify opportunities and future directions.


Subject(s)
Biomedical Research , Animals , Ecosystem , Aquatic Organisms , Models, Animal
13.
Hum Reprod ; 39(1): 147-153, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37944107

ABSTRACT

STUDY QUESTION: What structural (logistical) and psychological challenges do patients who cryopreserve oocytes or embryos for medical reasons face, including possible barriers to using their frozen materials? SUMMARY ANSWER: The majority of women who underwent oocyte or embryo cryopreservation for medical reasons reported a desire to use their frozen oocytes or embryos but had been impeded by ongoing medical issues, the need for a gestational carrier, or the lack of a partner. WHAT IS KNOWN ALREADY: Current data suggest that many women who have frozen oocytes or embryos for medical indications are concerned about the prospect of infertility and have unique emotional and financial needs that differ from patients with infertility. Further, most patients have not returned to use their cryopreserved materials. STUDY DESIGN, SIZE, DURATION: This is a qualitative interview study of 42 people who cryopreserved between January 2012 and December 2021. Interviews were conducted between March 2021 and March 2022. PARTICIPANTS/MATERIALS, SETTING, METHODS: All participants were cisgender women who had undergone oocyte or embryo cryopreservation for medical indications at an academic fertility center. Participants were invited to interview by email if they were younger than 40 years old when their oocytes or embryos were cryopreserved. Interviews were conducted over the internet and transcribed verbatim. Data were analyzed using thematic analysis with the constant comparison method. MAIN RESULTS AND THE ROLE OF CHANCE: Saturation was reached at 42 interviews. The median age of participants was 35 years old (range 28-43) at interview and 31 years old (range 25-39) at cryopreservation. Of the 42 women, 30 had a cancer diagnosis, while 7 had non-cancer chronic medical conditions, and 5 had hereditary cancer susceptibility syndromes. There were 12 women who banked embryos and 30 who banked oocytes. The majority of women indicated a desire to use their cryopreserved materials, but many were unsure about how or when. Four had already used their frozen oocytes or embryos, while another four had conceived without assisted reproduction. The cryopreservation experience was described by the majority as highly emotionally challenging because they felt out of place among couples receiving infertility treatment and, for cancer patients, overwhelmed by the complex decisions to be made in a short time period. Common reported barriers to using frozen materials included ongoing medical issues preventing pregnancy, the need for a gestational carrier, the lack of a partner, and the desire for unassisted conception. Some were glad to have frozen oocytes or embryos to allow more time to meet a partner or if they were considering becoming single parents. LIMITATIONS, REASONS FOR CAUTION: The majority of participants had their oocytes or embryos frozen at a single, urban, academic fertility center, which may limit generalizability. We also could not calculate a response rate because the snowball technique was used to identify additional participants, so did not know the total number of people invited to participate. Like other interview studies, our study may be subject to response bias because those who agreed to participate may have particularly positive or negative views about their experiences. Furthermore, the mean follow-up time since freezing was relatively short (3.3 years, median 2.7 years), which may not have been enough time for some patients to use their frozen materials. WIDER IMPLICATIONS OF THE FINDINGS: Learning about the experiences of patients undergoing medically indicated oocyte and embryo cryopreservation can help clinicians better counsel these patients regarding decisions and hurdles they may encounter. We found that most patients had not returned to use their frozen materials because of ongoing medical issues, the need for a gestational carrier, lack of a partner, or the desire to attempt unassisted reproduction. STUDY FUNDING/COMPETING INTEREST(S): This study did not receive any funding. The authors of this study have no conflicts of interest to declare. TRIAL REGISTRATION NUMBER: N/A.


Subject(s)
Infertility , Intention , Pregnancy , Humans , Female , Adult , Cryopreservation , Oocytes , Qualitative Research , Retrospective Studies
14.
Hum Reprod ; 39(2): 310-325, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38011909

ABSTRACT

STUDY QUESTION: What is the mechanism behind cryoinjury in human sperm, particularly concerning the interplay between reactive oxygen species (ROS) and autophagy, and how does it subsequently affect sperm fate? SUMMARY ANSWER: The freeze-thaw operation induces oxidative stress by generating abundant ROS, which impairs sperm motility and activates autophagy, ultimately guiding the sperm toward programmed cell death such as apoptosis and necrosis, as well as triggering premature capacitation. WHAT IS KNOWN ALREADY: Both ROS-induced oxidative stress and autophagy are thought to exert an influence on the quality of frozen-thawed sperm. STUDY DESIGN, SIZE, DURATION: Overall, 84 semen specimens were collected from young healthy fertile males, with careful quality evaluation. The specimens were split into three groups to investigate the ROS-induced cryoinjury: normal control without any treatment, sperm treated with 0.5 mM hydrogen peroxide (H2O2) for 1 h, and sperm thawed following cryopreservation. Samples from 48 individuals underwent computer-assisted human sperm analysis (CASA) to evaluate sperm quality in response to the treatments. Semen samples from three donors were analyzed for changes in the sperm proteome after H2O2 treatment, and another set of samples from three donors were analyzed for changes following the freeze-thaw process. The other 30 samples were used for fluorescence-staining and western blotting. PARTICIPANTS/MATERIALS, SETTING, METHODS: Sperm motility parameters, including progressive motility (PR %) and total motility (PR + NP %), were evaluated using the CASA system on a minimum of 200 spermatozoa. The proteomic profiles were determined with label-free mass spectrometry (MS/MS) and protein identification was performed via ion search against the NCBI human database. Subsequently, comprehensive bioinformatics was applied to detect significant proteomic changes and functional enrichment. Fluorescence-staining and western blot analyses were also conducted to confirm the proteomic changes on selected key proteins. The ROS level was measured using 2',7'-dichlorodihydrofluorescein diacetate labeling and the abundance of bioactive mitochondria was determined by evaluating the inner mitochondrial membrane potential (MMP) level. Molecular behaviors of sequestosome-1 (p62 or SQSTM1) and microtubule-associated proteins 1A/1B light chain 3 (LC3) were monitored to evaluate the state of apoptosis in human sperm. Fluorescent probes oxazole yellow (YO-PRO-1) and propidium iodide (PI) were utilized to monitor programmed cell death, namely apoptosis and necrosis. Additionally, gradient concentrations of antioxidant coenzyme Q10 (CoQ10) were introduced to suppress ROS impacts on sperm. MAIN RESULTS AND THE ROLE OF CHANCE: The CASA analysis revealed a significant decrease in sperm motility for both the H2O2-treatment and freeze-thaw groups. Fluorescence staining showed that high ROS levels were produced in the treated sperm and the MMPs were largely reduced. The introduction of CoQ10 at concentrations of 20 and 30 µM resulted in a significant rescue of progressive motility (P < 0.05). The result suggested that excessive ROS could be the major cause of sperm motility impairment, likely by damaging mitochondrial energy generation. Autophagy was significantly activated in sperm when they were under oxidative stress, as evidenced by the upregulation of p62 and the increased conversion of LC3 as well as the upregulation of several autophagy-related proteins, such as charged multivesicular body protein 2a, mitochondrial import receptor subunit TOM22 homolog, and WD repeat domain phosphoinositide-interacting protein 2. Additionally, fluorescent staining indicated the occurrence of apoptosis and necrosis in both H2O2-treated sperm and post-thaw sperm. The cell death process can be suppressed when CoQ10 is introduced, which consolidates the view that ROS could be the major contributor to sperm cryoinjury. The freeze-thaw process could also initiate sperm premature capacitation, demonstrated by the prominent increase in tyrosine phosphorylated proteins, verified with anti-phosphotyrosine antibody and immunofluorescence assays. The upregulation of capacitation-related proteins, such as hyaluronidase 3 and Folate receptor alpha, supported this finding. LARGE SCALE DATA: The data underlying this article are available in the article and its online supplementary material. LIMITATIONS, REASONS FOR CAUTION: The semen samples were obtained exclusively from young, healthy, and fertile males with progressive motility exceeding 60%, which might overemphasize the positive effects while possibly neglecting the negative impacts of cryoinjury. Additionally, the H2O2 treatment conditions in this study may not precisely mimic the oxidative stress experienced by sperm after thawing from cryopreservation, potentially resulting in the omission of certain molecular alterations. WIDER IMPLICATIONS OF THE FINDINGS: This study provides substantial proteomic data for a comprehensive and deeper understanding of the impact of cryopreservation on sperm quality. It will facilitate the design of optimal protocols for utilizing cryopreserved sperm to improve applications, such as ART, and help resolve various adverse situations caused by chemotherapy, radiotherapy, and surgery. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by grants from the Major Innovation Project of Research Institute of National Health Commission (#2022GJZD01-3) and the National Key R&D Program of China (#2018YFC1003600). All authors declare no competing interests. TRIAL REGISTRATION NUMBER: N/A.


Subject(s)
Semen Preservation , Semen , Male , Humans , Reactive Oxygen Species/metabolism , Semen/metabolism , Sperm Motility , Hydrogen Peroxide , Proteomics , Tandem Mass Spectrometry , Spermatozoa/metabolism , Oxidative Stress , Cryopreservation/methods , Semen Preservation/adverse effects , Semen Preservation/methods , Necrosis/metabolism
15.
Hum Reprod ; 39(9): 2067-2078, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39025483

ABSTRACT

STUDY QUESTION: Is it possible to establish an ex vivo endometriosis model using cryopreserved endometriotic tissue fragments? SUMMARY ANSWER: Cryopreserved endometriotic tissue fragments remain viable after thawing and during at least 3 days of culture and can therefore be used to establish an ex vivo endometriosis model to efficiently test potential therapeutic agents. WHAT IS KNOWN ALREADY: Endometriosis is the most prevalent benign gynecologic disease with an enormous societal burden; however, curative therapies are still lacking. To efficiently test potential new therapies, an ex vivo model based on previously cryopreserved endometriotic tissue that recapitulates the different endometriosis subtypes and their microenvironment is highly desirable. STUDY DESIGN, SIZE, DURATION: Endometriotic tissue fragments of three different subtypes were obtained from 28 patients by surgical resection. After cryopreservation and thawing, viability and metabolic activity of these tissue fragments were assessed. Viability was compared with fresh fragments from 11 patients directly after surgical removal. Experimental intervention studies were performed in cryopreserved and thawed tissue fragments from two patients to confirm the usability of these tissues for ex vivo intervention studies. PARTICIPANTS/MATERIALS, SETTING, METHODS: Endometriotic tissue fragments (n = 45) were cryopreserved according to three different protocols. After thawing, fragments were cultured for 24 h. A resazurin-based assay was performed to assess the metabolic activity of the tissue fragments. In addition, cell type-specific viability was analyzed by VivaFix, Hoechst 33342, and α-smooth muscle actin immunofluorescence staining and confocal microscopy. The presence of endometriosis was histologically confirmed based on hematoxylin-eosin staining. Cryopreserved and thawed tissue fragments were treated for 72 h with pirfenidone or metformin and COL1A1 and CEMIP gene expressions were assessed using RT-PCR and RT-qPCR, either in the whole tissue fragments or in myofibroblasts isolated by laser capture microdissection. MAIN RESULTS AND THE ROLE OF CHANCE: Metabolic activity of endometriotic tissue fragments obtained from peritoneal (PER), ovarian (OMA), and deep (DE) endometriotic lesions was well preserved after cryopreservation in a dimethyl sulfoxide-based medium and was comparable with fresh tissue fragments. Relative metabolic activity compared to fresh tissue was 70% (CI: 92-47%) in PER, 43% (CI: 53-15%) in OMA and 94% (CI: 186-3%) in DE lesions. In fragments from PE lesions 92% (CI: 87-96%), from OMA lesions 95% (CI: 91-98%), and from DE lesions 88% (CI: 78-98%) of cells were viable after cryopreservation and thawing followed by a 24-h culture period. Differences in gene expression of fibrotic markers COL1A1 and CEMIP after 72-h treatment with pirfenidone or metformin could be detected in whole tissue fragments and in isolated myofibroblasts, indicating that cryopreserved and thawed endometriotic tissue fragments are suitable for testing anti-fibrotic interventions. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: Viability and metabolic activity of the endometriotic tissue fragments may have been partially compromised by damage sustained during the surgical procedure, contributing to inter-sample variance. WIDER IMPLICATIONS OF THE FINDINGS: The storage of viable endometriotic tissue fragments for later usage in an ex vivo model creates the possibility to efficiently test potential new therapeutic strategies and facilitates the exchange of viable endometriotic tissue between different research laboratories. STUDY FUNDING/COMPETING INTEREST(S): This study was not financially supported by external funding. The authors declare no competing interest. TRIAL REGISTRATION NUMBER: N/A.


Subject(s)
Cryopreservation , Endometriosis , Endometrium , Fibrosis , Female , Humans , Endometriosis/pathology , Endometriosis/metabolism , Endometrium/pathology , Endometrium/metabolism , Adult , Cellular Microenvironment , Tissue Survival , Cell Survival
16.
Hum Reprod ; 39(9): 2032-2042, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39008827

ABSTRACT

STUDY QUESTION: How do adult transgender and gender diverse (TGD) people, who are infertile due to prior gender-affirming treatment, view their current infertility and their reproductive decisions made in the past? SUMMARY ANSWER: In a time where sterilization was mandatory, transgender adolescents prioritized gender-affirming treatment over their future fertility and would make the same choice today despite emotional challenges related to infertility experienced by some. WHAT IS KNOWN ALREADY: Under transgender law in the Netherlands, sterilization was required for legal gender recognition until 2014, resulting in permanent infertility. The long-term consequences of this iatrogenic infertility in transgender adolescents who have now reached adulthood remain underexplored. STUDY DESIGN, SIZE, DURATION: Qualitative study design based on 21 in-depth one-on-one semi-structured interviews. PARTICIPANTS/MATERIALS, SETTING, METHODS: TGD people in a stage of life where family planning may be a current topic were eligible for participation. They all received gender-affirming treatment in adolescence prior to the legislation change in 2014. A purposeful sampling technique was used from participants of another ongoing study. Eleven people assigned female at birth and ten people assigned male at birth were included. Interview transcripts were thematically analysed using a modified version of Braun and Clarke's six steps theory. MAIN RESULTS AND THE ROLE OF CHANCE: Six main themes were generated: (i) personal considerations regarding fertility and fertility preservation in the past; (ii) external considerations regarding fertility and fertility preservation in the past; (iii) current vision on past considerations and decisions; (iv) Current experiences and coping with infertility; (v) future family building; (vi) advice regarding fertility and fertility preservation decision-making. LIMITATIONS, REASONS FOR CAUTION: Selection, recall, and choice supportive bias may play a role in interpreting our results. WIDER IMPLICATIONS OF THE FINDINGS: This study highlights the importance of tailored counselling and comprehensive information on fertility preservation for transgender individuals, especially adolescents, undergoing gender-affirming treatment. STUDY FUNDING/COMPETING INTEREST(S): N/A. TRIAL REGISTRATION NUMBER: N/A.


Subject(s)
Decision Making , Infertility , Qualitative Research , Transgender Persons , Humans , Female , Male , Transgender Persons/psychology , Adult , Infertility/psychology , Infertility/therapy , Adolescent , Netherlands , Fertility , Young Adult
17.
Hum Reprod ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38723190

ABSTRACT

STUDY QUESTION: Does the use of frozen sperm affect live birth rate (LBR) and cumulative LBR (CLBR) compared to fresh sperm samples in oocyte donation ICSI cycles? SUMMARY ANSWER: Although there were slight decreases in pregnancy rates (PRs) and LBR, as well as CLBR per embryo replaced and per embryo transfer (ET), when frozen sperm samples were used compared to fresh ejaculates, their clinical impact was limited. WHAT IS KNOWN ALREADY: Sperm cryopreservation is part of the daily routine in reproduction clinics worldwide because of its many advantages in cycle planning. Nonetheless, there is a lack of agreement in terms of its impact on the outcomes of ICSI cycles. Previous studies showed conflicting conclusions and focused on different populations, which makes reaching consensus on the impact of sperm freezing-thawing complicated. Moreover, classical parameters are used to assess cycle success: pregnancy, live birth and miscarriage rates per ET. This study reports those measurements plus CLBR, which more accurately reflects the impact of the technique on the likelihood of achieving a newborn. STUDY DESIGN, SIZE, DURATION: A retrospective multicenter observational cohort study, including data from 37 041 couples and 44 423 ICSI procedures from January 2008 to June 2022, was carried out. The group using frozen sperm included 23 852 transferred embryos and 108 661 inseminated oocytes, whereas the fresh sample group comprised 73 953 embryos replaced and 381 509 injected oocytes. PARTICIPANTS/MATERIALS, SETTING, METHODS: Outcomes measured per first ET and per ET were compared between groups using Fisher's exact test and Chi-squared test, as appropriate. Binary-logistics regression models were used to adjust the analyses according to clinically relevant co-variables. Kaplan-Meier curves plotted the CLBR per oocyte inseminated, per embryo replaced and per ET, and compared between groups using the Mantel-Cox test. Cox regressions were employed for the multivariate analyses of CLBR. MAIN RESULTS AND THE ROLE OF CHANCE: The frozen sperm group showed a slightly lower biochemical (3.55% and 2.56%), clinical (3.68% and 3.54%) and ongoing (3.63% and 3.15%) PR compared to the cycles using fresh sperm, respectively, both per first ET and per ET. LBR was 4.57% lower per first ET and 3.95% lower per ET in the frozen sperm group than the fresh sperm group. There was also a subtle increase of 2.66% in biochemical miscarriage rate per ET when using frozen versus fresh sperm. All these differences remained statistically significant after the multivariate analysis (adjusted P ≤ 0.001). There were statistically significant differences in CLBR per embryo replaced and per ET but not per oocyte used (adjusted P = 0.071). Despite the statistical significance of the differences between the groups, those using frozen sperm required only 0.54 more oocytes injected, 0.45 more embryos transferred and 0.41 more ET procedures, on average, to achieve a live birth compared to the fresh samples. LIMITATIONS, REASONS FOR CAUTION: The retrospective nature of the study subjects the data to biases or potential errors during annotation on the source clinical and cycle records. This study uses multivariate analyses to control biases as much as possible. Using the oocyte donation model also contributes to reducing heterogeneity in the oocyte quality factor. WIDER IMPLICATIONS OF THE FINDINGS: The large sample sizes included in this study allowed for the detection of small changes in cycle success rates between groups. Although statistically significant, the decrease in PRs, LBR, and CLBR when using frozen sperm can be clinically overlooked in favor of the many benefits of sperm cryopreservation. STUDY FUNDING/COMPETING INTEREST(S): None declared. TRIAL REGISTRATION NUMBER: Not applicable.

18.
Hum Reprod ; 39(6): 1275-1290, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38592717

ABSTRACT

STUDY QUESTION: Can the addition of late embryogenesis-abundant (LEA) proteins as a cryoprotective agent during the vitrification cryopreservation of in vitro matured oocytes enhance their developmental potential after fertilization? SUMMARY ANSWER: LEA proteins improve the developmental potential of human in vitro matured oocytes following cryopreservation, mostly by downregulating FOS genes, reducing oxidative stress, and inhibiting the formation of ice crystals. WHAT IS KNOWN ALREADY: Various factors in the vitrification process, including cryoprotectant toxicity, osmotic stress, and ice crystal formation during rewarming, can cause fatal damage to oocytes, thereby affecting the oocytes developmental potential and subsequent clinical outcomes. Recent studies have shown that LEA proteins possess high hydrophilicity and inherent stress tolerance, and can reduce low-temperature damage, although the molecular mechanism it exerts protective effects is still unclear. STUDY DESIGN, SIZE, DURATION: Two LEA proteins extracted and purified by us were added to solutions for vitrification-warming of oocytes at concentrations of 10, 100, and 200 µg/mL, to determine the optimal protective concentration for each protein. Individual oocyte samples were collected for transcriptomic analysis, with each group consisting of three sample replicates. PARTICIPANTS/MATERIALS, SETTING, METHODS: Immature oocytes were collected from patients who were undergoing combined in vitro fertilization (IVF) treatment and who had met the designated inclusion and exclusion criteria. These oocytes underwent in vitro maturation (IVM) culture for experimental research. A fluorescence microscope was used to detect the levels of mitochondrial membrane potential (MMP), reactive oxygen species (ROS), and calcium in the mitochondria of vitrified-warmed human oocytes treated with different concentrations of LEA proteins, and the protective effect of the protein on mitochondrial function was assessed. The levels of intracellular ice recrystallization inhibition (IRI) in human oocytes after vitrification-warming were characterized by the cryomicroscope, to determine the LEA proteins inhibitory effect on recrystallization. By analyzing transcriptome sequencing data to investigate the potential mechanism through which LEA proteins exert their cryoprotective effects. MAIN RESULTS AND THE ROLE OF CHANCE: The secondary structures of AfrLEA2 and AfrLEA3m proteins were shown to consist of a large number of α-helices and the proteins were shown to be highly hydrophilic, in agreement with previous reports. Confocal microscopy results showed that the immunofluorescence of AfrLEA2-FITC and AfrLEA3m-FITC-labeled proteins appeared to be extracellular and did not penetrate the cell membrane compared with the fluorescein isothiocyanate (FITC) control group, indicating that both AfrLEA2 and AfrLEA3m proteins were extracellular. The group treated with 100 µg/mL AfrLEA2 or AfrLEA3m protein had more uniform cytoplasmic particles and fewer vacuoles compared to the 10 and 200 µg/mL groups and were closest to the fresh group. In the 100 µg/mL groups, MMPs were significantly higher while ROS and calcium levels were significantly lower than those in the control group and were closer to the levels observed in fresh oocytes. Meanwhile, 100 µg/mL of AfrLEA2 or AfrLEA3m protein caused smaller ice crystal formation in the IRI assay compared to the control group treated with dimethylsulphoxide (DMSO) and ethylene glycol (EG); thus, the recrystallization inhibition was superior to that with the conventional cryoprotectants DMSO and EG. Further results revealed that the proteins improved the developmental potential of human oocytes following cryopreservation, likely by downregulating FOS genes and reducing oxidative stress. LIMITATIONS, REASONS FOR CAUTION: The in vitro-matured metaphase II (IVM-MII) oocytes used in the study, due to ethical constraints, may not accurately reflect the condition of MII oocytes in general. The AfrLEA2 and AfrLEA3m proteins are recombinant proteins and their synthetic stability needs to be further explored. WIDER IMPLICATIONS OF THE FINDINGS: LEA proteins, as a non-toxic and effective cryoprotectant, can reduce the cryoinjury of oocytes during cryopreservation. It provides a new promising method for cryopreservation of various cell types. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the National Key Research and Development Program of China (2022YFC2703000) and the National Natural Science Foundation of China (52206064). The authors declare no competing interest. TRIAL REGISTRATION NUMBER: N/A.


Subject(s)
Cryopreservation , In Vitro Oocyte Maturation Techniques , Oocytes , Vitrification , Humans , Oocytes/drug effects , Oocytes/metabolism , In Vitro Oocyte Maturation Techniques/methods , Female , Cryopreservation/methods , Cryoprotective Agents/pharmacology , Reactive Oxygen Species/metabolism , Fertilization in Vitro/methods
19.
Hum Reprod ; 39(2): 355-363, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38145619

ABSTRACT

STUDY QUESTION: Which reproductive treatment outcomes are observed in women who underwent elective oocyte cryopreservation (EOC) and who returned to the clinic with a desire for a child? SUMMARY ANSWER: Whether to warm oocytes or to first use fresh own oocytes for ART depends on age upon returning, but both strategies result in favorable reproductive outcomes. WHAT IS KNOWN ALREADY: Most affluent countries have observed a trend toward postponement of childbearing, and EOC is increasingly used based on the assumption that oocytes cryopreserved at a younger age may extend a woman's reproductive lifespan and mitigate her age-related fertility decline. Although most follow-up studies after EOC have focused on women who requested oocyte warming, a substantial proportion of women who do not conceive naturally will embark on fertility treatment without using their cryopreserved oocytes. Reports on reproductive outcomes in past EOC users are scarce, and the lack of reproductive treatment algorithms in this group of women hampers counseling toward the most efficient clinical strategy. STUDY DESIGN, SIZE, DURATION: This retrospective observational single-center study encompasses 843 women who had elective oocyte vitrification between 2009 and 2019 at our fertility clinic. Women who underwent fertility preservation for medical or oncological reasons were excluded. This study describes the outcomes of the diverse reproductive treatment strategies performed until May 2022 in women returning to our clinic to attempt motherhood. PARTICIPANTS/MATERIALS, SETTING, METHODS: Using descriptive statistics, patient characteristics and data of ovarian stimulation (OS) of EOC cycles were analyzed, as well as data related to OS and laboratory data of ART in women who pursued fertility treatment with and/or without using their cryopreserved oocytes. The primary outcome was live birth rate (LBR) per patient after oocyte warming and after ART using fresh oocytes. Secondary outcomes were return rate, utilization rate of the cryopreserved oocytes, laboratory outcomes upon return, and LBR per embryo transfer. A multivariable regression model was developed to identify factors associated with the decision to thaw oocytes as the primary strategy and factors associated with ongoing pregnancy upon return to the clinic. MAIN RESULTS AND THE ROLE OF CHANCE: A total of 1353 EOC cycles (mean ± SD, 1.6 ± 0.9 per patient) were performed. At the time of EOC, the mean age was 36.5 ± 2.8 years, mean anti-Müllerian hormone (AMH) was 2.3 ± 2.0 ng/ml, and 174 (20.6%) women had a partner. On average, 13.9 ± 9.2 mature oocytes were cryopreserved. Two hundred thirty-one (27.4%) women returned to the clinic, an average of 39.9 ± 23.4 months after EOC. Upon returning, their mean age was 40.4 ± 3.1 years, mean AMH was 1.5 ± 1.5 ng/ml, and 158/231 (68.3%) patients had a partner. As a primary approach, 110/231 (47.6%) past EOC users embarked on oocyte warming, 50/231 (21.6%) had intrauterine insemination, and 71/231 (30.7%) had ART using fresh own oocytes. Cumulative LBR (CLBR) was 45.9% (106/231) notwithstanding a miscarriage rate (MR) of 30.7% (51/166) in the entire cohort. In total, 141 women performed oocyte warming at some stage in their treatment trajectory. A subset of 90/231 (39.0%) patients exclusively had oocyte warming (41.6 ± 3.0 years, with 10.0 ± 5.2 oocytes warmed per patient). 52/231 (22.5%) patients exclusively had ART using fresh own oocytes (mean age of 39.0 ± 2.8 years, with 9.9 ± 7.4 mature oocytes retrieved per patient). CLBR was 37/90 (41.1%) in the oocyte warming-only group and 25/52 (48.1%) in the OS-only group. MR/transfer was 25.0% and 29.3% in the oocyte warming-only group and the OS-only group, respectively. LIMITATIONS, REASONS FOR CAUTION: Both sample size and the retrospective design are limitations of this study. The decision to embark on a specific reproductive treatment strategy was based on patient preference, after counseling on their treatment options. This precludes direct comparison of the efficiency of reproductive treatment options in past EOC users in this study. WIDER IMPLICATIONS OF THE FINDINGS: Reporting on clinical outcomes of women who underwent EOC and returned to the clinic to embark on divergent reproductive treatment strategies is mandatory to establish guidelines for best clinical practice in this growing patient population. STUDY FUNDING/COMPETING INTEREST(S): None. TRIAL REGISTRATION NUMBER: N/A.


Subject(s)
Cryopreservation , Oocyte Retrieval , Humans , Pregnancy , Child , Female , Adult , Follow-Up Studies , Retrospective Studies , Oocytes , Live Birth/epidemiology , Pregnancy Rate
20.
Hum Reprod ; 39(8): 1724-1734, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38876980

ABSTRACT

STUDY QUESTION: Does a purpose-designed Decision Aid for women considering elective egg freezing (EEF) impact decisional conflict and other decision-related outcomes? SUMMARY ANSWER: The Decision Aid reduces decisional conflict, prepares women for decision-making, and does not cause distress. WHAT IS ALREADY KNOWN: Elective egg-freezing decisions are complex, with 78% of women reporting high decisional conflict. Decision Aids are used to support complex health decisions. We developed an online Decision Aid for women considering EEF and demonstrated that it was acceptable and useful in Phase 1 testing. STUDY DESIGN, SIZE, DURATION: A single-blind, two-arm parallel group randomized controlled trial was carried out. Target sample size was 286 participants. Randomization was 1:1 to the control (existing website information) or intervention (Decision Aid plus existing website information) group and stratified by Australian state/territory and prior IVF specialist consultation. Participants were recruited between September 2020 and March 2021 with outcomes recorded over 12 months. Data were collected using online surveys and data collection was completed in March 2022. PARTICIPANTS/MATERIALS, SETTING, METHODS: Females aged ≥18 years, living in Australia, considering EEF, proficient in English, and with internet access were recruited using multiple methods including social media posts, Google advertising, newsletter/noticeboard posts, and fertility clinic promotion. After completing the baseline survey, participants were emailed their allocated website link(s). Follow-up surveys were sent at 6 and 12 months. Primary outcome was decisional conflict (Decisional Conflict Scale). Other outcomes included distress (Depression Anxiety and Stress Scale), knowledge about egg freezing and female age-related infertility (study-specific measure), whether a decision was made, preparedness to decide about egg freezing (Preparation for Decision-Making Scale), informed choice (Multi-Dimensional Measure of Informed Choice), and decision regret (Decision Regret Scale). MAIN RESULTS AND THE ROLE OF CHANCE: Overall, 306 participants (mean age 30 years; SD: 5.2) were randomized (intervention n = 150, control n = 156). Decisional Conflict Scale scores were significantly lower at 12 months (mean score difference: -6.99 [95% CI: -12.96, -1.02], P = 0.022) for the intervention versus control group after adjusting for baseline decisional conflict. At 6 months, the intervention group felt significantly more prepared to decide about EEF than the control (mean score difference: 9.22 [95% CI: 2.35, 16.08], P = 0.009). At 12 months, no group differences were observed in distress (mean score difference: 0.61 [95% CI: -3.72, 4.93], P = 0.783), knowledge (mean score difference: 0.23 [95% CI: -0.21, 0.66], P = 0.309), or whether a decision was made (relative risk: 1.21 [95% CI: 0.90, 1.64], P = 0.212). No group differences were found in informed choice (relative risk: 1.00 [95% CI: 0.81, 1.25], P = 0.983) or decision regret (median score difference: -5.00 [95% CI: -15.30, 5.30], P = 0.337) amongst participants who had decided about EEF by 12 months (intervention n = 48, control n = 45). LIMITATIONS, REASONS FOR CAUTION: Unknown participant uptake and potential sampling bias due to the recruitment methods used and restrictions caused by the coronavirus disease 2019 pandemic. Some outcomes had small sample sizes limiting the inferences made. The use of study-specific or adapted validated measures may impact the reliability of some results. WIDER IMPLICATIONS OF THE FINDINGS: This is the first randomized controlled trial to evaluate a Decision Aid for EEF. The Decision Aid reduced decisional conflict and improved women's preparation for decision making. The tool will be made publicly available and can be tailored for international use. STUDY FUNDING/COMPETING INTEREST(S): The Decision Aid was developed with funding from the Royal Women's Hospital Foundation and McBain Family Trust. The study was funded by a National Health and Medical Research Council (NHMRC) Project Grant APP1163202, awarded to M. Hickey, M. Peate, R.J. Norman, and R. Hart (2019-2021). S.S., M.P., D.K., and S.B. were supported by the NHMRC Project Grant APP1163202 to perform this work. R.H. is Medical Director of Fertility Specialists of Western Australia and National Medical Director of City Fertility. He has received grants from MSD, Merck-Serono, and Ferring Pharmaceuticals unrelated to this study and is a shareholder of CHA-SMG. R.L. is Director of Women's Health Melbourne (Medical Practice), ANZSREI Executive Secretary (Honorary), RANZCOG CREI Subspecialty Committee Member (Honorary), and a Fertility Specialist at Life Fertility Clinic Melbourne and Royal Women's Hospital Public Fertility Service. R.A.A. has received grants from Ferring Pharmaceuticals unrelated to this study. M.H., K.H., and R.J.N. have no conflicts to declare. TRIAL REGISTRATION NUMBER: ACTRN12620001032943. TRIAL REGISTRATION DATE: 11 August 2020. DATE OF FIRST PATIENT'S ENROLMENT: 29 September 2020.


Subject(s)
Cryopreservation , Decision Making , Decision Support Techniques , Fertility Preservation , Humans , Female , Adult , Cryopreservation/methods , Fertility Preservation/methods , Fertility Preservation/psychology , Single-Blind Method , Australia
SELECTION OF CITATIONS
SEARCH DETAIL