Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 457
Filter
Add more filters

Publication year range
1.
Crit Rev Biotechnol ; 44(7): 1325-1349, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38228500

ABSTRACT

In the food industry, despite the widespread use of interventions such as preservatives and thermal and non-thermal processing technologies to improve food safety, incidences of foodborne disease continue to happen worldwide, prompting the search for alternative strategies. Bacteriophages, commonly known as phages, have emerged as a promising alternative for controlling pathogenic bacteria in food. This review emphasizes the potential applications of phages in biological sciences, food processing, and preservation, with a particular focus on their role as biocontrol agents for improving food quality and preservation. By shedding light on recent developments and future possibilities, this review highlights the significance of phages in the food industry. Additionally, it addresses crucial aspects such as regulatory status and safety concerns surrounding the use of bacteriophages. The inclusion of up-to-date literature further underscores the relevance of phage-based strategies in reducing foodborne pathogenic bacteria's presence in both food and the production environment. As we look ahead, new phage products are likely to be targeted against emerging foodborne pathogens. This will further advance the efficacy of approaches that are based on phages in maintaining the safety and security of food.


Subject(s)
Bacteriophages , Food Microbiology , Bacteriophages/physiology , Food Safety , Food Handling , Foodborne Diseases/microbiology , Foodborne Diseases/prevention & control , Food-Processing Industry , Humans , Food Preservation/methods , Food Industry
2.
Crit Rev Food Sci Nutr ; : 1-34, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38712440

ABSTRACT

Using renewable resources for food packaging not only helps reduce our dependence on fossil fuels but also minimizes the environmental impact associated with traditional plastics. Starch has been a hot topic in the field of current research because of its low cost, wide source and good film forming property. However, a comprehensive review in this field is still lacking. Starch-based films offer a promising alternative for sustainable packaging in the food industry. The present paper covers various aspects such as raw material sources, modification methods, and film formation mechanisms. Understanding the physicochemical properties and potential commercial applications is crucial for bridging the gap between research and practical implementation. Finally, the application of starch-based films in the food industry is discussed in detail. Different modifications of starch can improve the mechanical and barrier properties of the films. The addition of active substances to starch-based films can endow them with more functions. Therefore, these factors should be better investigated and optimized in future studies to improve the physicochemical properties and functionality of starch-based films. In summary, this review provides comprehensive information and the latest research progress of starch-based films in the food industry.

3.
Crit Rev Food Sci Nutr ; : 1-27, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39097753

ABSTRACT

In recent years, how to improve the functional performance of food packaging materials has received increasing attention. One common inorganic material, nanometer zinc oxide (ZnO-NPs), has garnered significant attention due to its excellent antibacterial properties and sensitivity. Consequently, ZnO-NP-based functional packaging materials are rapidly developing in the food industry. However, there is currently a lack of comprehensive and systematic reviews on the use of ZnO-NPs as functional fillers in food packaging. In this review, we introduced the characteristics and antibacterial mechanism of ZnO-NPs, and paid attention to the factors affecting the antibacterial activity of ZnO-NPs. Furthermore, we systematically analyzed the application of intelligent packaging and antibacterial packaging containing ZnO-NPs in the food industry. At the same time, this paper also thoroughly investigated the impact of ZnO-NPs on various properties including thickness, moisture resistance, water vapor barrier, mechanical properties, optical properties, thermal properties and microstructure of food packaging materials. Finally, we discussed the migration and safety of ZnO-NPs in packaging materials. ZnO-NPs are safe and have negligible migration rates, simultaneously their sensitivity and antibacterial properties can be used to detect the quality changes of food during storage and extend its shelf life.

4.
Food Microbiol ; 122: 104550, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38839218

ABSTRACT

Listeria monocytogenes presents significant risk to human health due to its high resistance and capacity to form toxin-producing biofilms that contaminate food. The objective of this study was to assess the inhibitory effect of citronella aldehyde (CIT) on L. monocytogenes and investigate the underlying mechanism of inhibition. The results indicated that the minimum inhibitory concentration (MIC) and Minimum sterilisation concentration (MBC) of CIT against L. monocytogenes was 2 µL/mL. At this concentration, CIT was able to effectively suppress biofilm formation and reduce metabolic activity. Crystalline violet staining and MTT reaction demonstrated that CIT was able to inhibit biofilm formation and reduce bacterial cell activity. Furthermore, the motility assessment assay revealed that CIT inhibited bacterial swarming and swimming. Scanning electron microscopy (SEM) and laser confocal microscopy (LSCM) observations revealed that CIT had a significant detrimental effect on L. monocytogenes cell structure and biofilm integrity. LSCM also observed that nucleic acids of L. monocytogenes were damaged in the CIT-treated group, along with an increase in bacterial extracellular nucleic acid leakage. The proteomic results also confirmed the ability of CIT to affect the expression of proteins related to processes including metabolism, DNA replication and repair, transcription and biofilm formation in L. monocytogenes. Consistent with the proteomics results are ATPase activity and ATP content of L. monocytogenes were significantly reduced following treatment with various concentrations of CIT. Notably, CIT showed good inhibitory activity against L. monocytogenes on cheese via fumigation at 4 °C.This study establishes a foundation for the potential application of CIT in food safety control.


Subject(s)
Biofilms , Cheese , Listeria monocytogenes , Microbial Sensitivity Tests , Listeria monocytogenes/drug effects , Listeria monocytogenes/growth & development , Listeria monocytogenes/physiology , Cheese/microbiology , Biofilms/drug effects , Biofilms/growth & development , Anti-Bacterial Agents/pharmacology , Food Preservation/methods , Food Microbiology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Aldehydes/pharmacology , Plant Extracts/pharmacology , Acyclic Monoterpenes/pharmacology
5.
J Microencapsul ; 41(2): 112-126, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38345078

ABSTRACT

This study aimed to produce spray dried acerola juice microparticles with different protein carriers to be incorporated into edible starch films. The microparticles were evaluated for solids recovery, polyphenol retention, solubility, hygroscopicity, particle size distribution, X-ray diffraction, phytochemical compounds and antioxidant activity. Acerola microparticles produced with WPI/hydrolysed collagen carriers (AWC) with higher solids recovery (53.5 ± 0.34% w/w), polyphenol retention (74.4 ± 0.44% w/w), high solubility in water (85.2 ± 0.4% w/w), total polyphenol content (128.45 ± 2.44 mg GAE/g) and good storage stability were selected to produce starch-based films by casting. As a result, cassava films with water vapour permeability of 0.29 ± 0.07 g mm/m2 h KPa, polyphenol content of 10.15 ± 0.22 mg GAE/g film and DPPH radical scavenging activity of 6.57 ± 0.13 µM TE/g film, with greater migration of polyphenol to water (6.30 ± 0.52 mg GAE/g film) were obtained. Our results show that the incorporation of phytochemical-rich fruit microparticles is a promising strategy to create biodegradable edible films.


Whey/collagen protein blend AWC was the best wall material for acerola encapsulation.Spray dried protein-acerola particles were used to formulate edible films.Water soluble phenolic-rich AWC films with antioxidant properties were produced.Acerola phenolics from starch films migrated more to water than to acid media.


Subject(s)
Edible Films , Ascorbic Acid , Phytochemicals , Polyphenols , Starch
6.
Int J Mol Sci ; 25(2)2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38256044

ABSTRACT

Tyrosinase is vital in fruit and vegetable browning and melanin synthesis, crucial for food preservation and pharmaceuticals. We investigated 6'-O-caffeoylarbutin's inhibition, safety, and preservation on tyrosinase. Using HPLC, we analyzed its effect on mushroom tyrosinase and confirmed reversible competitive inhibition. UV_vis and fluorescence spectroscopy revealed a stable complex formation with specific binding, causing enzyme conformational changes. Molecular docking and simulations highlighted strong binding, enabled by hydrogen bonds and hydrophobic interactions. Cellular tests showed growth reduction of A375 cells with mild HaCaT cell toxicity, indicating favorable safety. Animal experiments demonstrated slight toxicity within safe doses. Preservation trials on apple juice showcased 6'-O-caffeoylarbutin's potential in reducing browning. In essence, this study reveals intricate mechanisms and applications of 6'-O-caffeoylarbutin as an effective tyrosinase inhibitor, emphasizing its importance in food preservation and pharmaceuticals. Our research enhances understanding in this field, laying a solid foundation for future exploration.


Subject(s)
Arbutin/analogs & derivatives , Caffeic Acids , Monophenol Monooxygenase , Tea , Animals , Molecular Docking Simulation , Pharmaceutical Preparations
7.
Int J Mol Sci ; 25(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38892136

ABSTRACT

Due to the high microbiological contamination of raw food materials and the increase in the incidence of multidrug-resistant bacteria, new methods of ensuring microbiological food safety are being sought. One solution may be to use bacteriophages (so-called phages) as natural bacterial enemies. Therefore, the aim of this study was the biological and genomic characterization of three newly isolated Serratia- and Enterobacter-specific virulent bacteriophages as potential candidates for food biocontrol. Serratia phage KKP_3708 (vB_Sli-IAFB_3708), Serratia phage KKP_3709 (vB_Sma-IAFB_3709), and Enterobacter phage KKP_3711 (vB_Ecl-IAFB_3711) were isolated from municipal sewage against Serratia liquefaciens strain KKP 3654, Serratia marcescens strain KKP 3687, and Enterobacter cloacae strain KKP 3684, respectively. The effect of phage addition at different multiplicity of infection (MOI) rates on the growth kinetics of the bacterial hosts was determined using a Bioscreen C Pro growth analyzer. The phages retained high activity in a wide temperature range (from -20 °C to 60 °C) and active acidity values (pH from 3 to 12). Based on transmission electron microscopy (TEM) imaging and whole-genome sequencing (WGS), the isolated bacteriophages belong to the tailed bacteriophages from the Caudoviricetes class. Genomic analysis revealed that the phages have linear double-stranded DNA of size 40,461 bp (Serratia phage KKP_3708), 67,890 bp (Serratia phage KKP_3709), and 113,711 bp (Enterobacter phage KKP_3711). No virulence, toxins, or antibiotic resistance genes were detected in the phage genomes. The lack of lysogenic markers indicates that all three bacteriophages may be potential candidates for food biocontrol.


Subject(s)
Bacteriophages , Enterobacter , Genome, Viral , Genomics , Serratia , Bacteriophages/genetics , Bacteriophages/isolation & purification , Bacteriophages/physiology , Bacteriophages/classification , Serratia/virology , Serratia/genetics , Enterobacter/virology , Enterobacter/genetics , Genomics/methods , Phylogeny , Sewage/virology , Sewage/microbiology , Virulence/genetics
8.
Molecules ; 29(16)2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39203051

ABSTRACT

This work primarily reviewed the response mechanism of fluorescent probes for H2S detection in foodstuffs in recent years, as well as the methodologies employed for detecting foodstuffs. Firstly, the significance of studying H2S gas as an important signaling molecule is introduced. Subsequently, a review of the response mechanism of the scientific community on how to detect H2S in foodstuffs samples by fluorescent probe technology is carried out. Secondly, the methods commonly used for detecting foodstuffs samples are discussed, including the test strip method and the spiking recovery methods. Nevertheless, despite the significant advancements in this field, there remain some research gaps. Finally, the article identifies the remaining issues that require further attention in current research and proposes avenues for future investigation. More importantly, this work identifies the current limitations of research in this field and proposes future applications of fluorescent probes for H2S in assessing food freshness and determining food spoilage. Therefore, this review will provide robust technical support for the protection of consumer health and the advancement of the sustainable development of the food industry and also put forward some new ideas and suggestions for future research.


Subject(s)
Fluorescent Dyes , Food Preservation , Hydrogen Sulfide , Hydrogen Sulfide/analysis , Fluorescent Dyes/chemistry , Food Preservation/methods , Food Analysis/methods , Humans , Food Contamination/analysis
9.
Molecules ; 29(14)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39064897

ABSTRACT

The nutrients present in food are not only prone to a series of physicochemical reactions but also provide conditions for the growth and reproduction of foodborne microorganisms. In recent years, many innovative methods from different fields have been introduced into food preservation, which extends the shelf life while maximizing the preservation of the original ingredients and properties of food. In this field, there is a lack of a systematic summary of new technologies emerging. In view of this, we overview the innovative methods applied to the field of food preservation in recent 3 years, focusing on a variety of technological approaches such as antimicrobial photodynamic therapy based on nanotechnology, electromagnetic radiation sterilization based on radiation technology, and antimicrobial peptides based on biomolecules. We also discuss the preservation mechanism and the application of the different methods to specific categories of products. We evaluated their advantages and limitations in the food industry, describing their development prospects. In addition, as microorganisms are the main causes of food spoilage, our review also has reference significance for clinical antibacterial treatment.


Subject(s)
Anti-Bacterial Agents , Food Preservation , Food Preservation/methods , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Food Microbiology , Humans , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Photochemotherapy/methods , Nanotechnology/methods
10.
J Sci Food Agric ; 104(4): 2085-2096, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-37971971

ABSTRACT

BACKGROUND: Nowadays, when discussing agri-food products, it is important to talk about sustainable production methods. Environmental sustainability has become a production issue, especially when it comes to the design of a product, service, or process. Using frozen fresh cauliflower gnocchi marketed in different packaging and in different global areas as a case study, we aim to highlight the importance of the impact of product eco-design on the entire life cycle. RESULTS: The environmental impact of cauliflower gnocchi was assessed based on the life cycle assessment methodology. With the cradle-to-gate approach, the most influential factors are the cultivation, distribution, and packaging phases. Considering the cradle-to-grave approach, home storage has proven to be the most influential factor for a quarter of the entire life cycle of cauliflower gnocchi. The eco-design of packaging has demonstrated how, by analysing only the packaging, it is possible to achieve significant reductions in impact (-47%), but when compared with the entire life cycle these actions have no significant responsibility (approximately 10%). If, however, the field of action is broadened and eco-design solutions are sought to reduce the impact deriving from the conservation phase, the consumer has the ability, through their decisions, to reduce the impact relating to conservation as much as possible or to double the impact of the product life cycle. CONCLUSION: Overall, to promote prosperity while protecting the environment, according to Agenda 2030, the agri-food system must analyse the supply chains without neglecting any step involved in the life cycle of the product. The eco-design must go beyond the usual factors analysed and shall include downstream activities to aim for more sustainable products, including consumer behaviours, following the cradle-to-grave approach. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Agriculture , Environment , Animals , Food , Freezing , Life Cycle Stages
11.
J Sci Food Agric ; 104(12): 7085-7095, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38546416

ABSTRACT

Meat and meat products are highly susceptible to contamination by microorganisms and foodborne pathogens, which cause serious economic losses and health hazards. The large consumption and waste of meat and meat products means that there is a need for safe and effective preservation methods. Furthermore, toxicological aspects of chemical preservation techniques related to major health problems have sparked controversies and have prompted consumers and producers to turn to natural preservatives. Consequently, natural preservatives are being increasingly used to ensure the safety and quality of meat products as a result of customer preferences and biological efficacy. However, information on the current status of these preservatives is scattered and a comprehensive review is lacking. Here, we review current knowledge on the classification, mechanisms of natural preservatives and their applications in the preservation of meat and meat products, and also discuss the potential of natural preservatives to improve the safety of meat and meat products. The current status and the current research gaps in the extraction, application and controlled-release of natural antibacterial agents for meat preservation are also discussed in detail. This review may be useful to the development of efficient food preservation techniques in the meat industry. © 2024 Society of Chemical Industry.


Subject(s)
Food Preservation , Food Preservatives , Meat Products , Meat , Food Preservatives/pharmacology , Food Preservatives/analysis , Meat Products/analysis , Meat Products/microbiology , Animals , Meat/analysis , Meat/microbiology , Food Preservation/methods , Humans
12.
Compr Rev Food Sci Food Saf ; 23(5): e70006, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39245914

ABSTRACT

Foodborne harmful bacteria not only cause waste of fresh food, but also pose a major threat to human health. Among many new sterilization and preservation technologies, photodynamic inactivation (PDI) has the advantages of low-cost, broad-spectrum, energy-saving, nontoxic, and high efficiency. In particular, PDI based on edible photosensitizers (PSs) has a broader application prospect due to edible, accessible, and renewable features, it also can maximize the retention of the nutritional characteristics and sensory quality of the food. Therefore, it is meaningful and necessary to review edible PSs and edible PSs-mediated PDI, which can help to arouse interest and concern and promote the further development of edible PSs-mediated PDI in the future field of nonthermally sterilized food preservation. Herein, the classification and modification of edible PSs, PS-mediated in vivo and PS-mediated in vitro mechanism of PDI, strengthening strategy to improve PDI efficiency by the structure change synergistic and multitechnical means, as well as the application in fresh food preservation were reviewed systematically. Finally, the deficiency and possible future perspectives of edible PSs-mediated PDI were articulated. This review aimed to provide new perspective for the future food preservation and microbial control.


Subject(s)
Food Preservation , Photosensitizing Agents , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Food Preservation/methods , Food Microbiology , Bacteria/drug effects , Bacteria/radiation effects
13.
Compr Rev Food Sci Food Saf ; 23(1): e13275, 2024 01.
Article in English | MEDLINE | ID: mdl-38284604

ABSTRACT

Along with the growth of the world's population that reduces the accessibility of arable land and water, demand for food, as the fundamental element of human beings, has been continuously increasing each day. This situation not only becomes a challenge for the modern food chain systems but also affects food availability throughout the world. Edible coating is expected to play a significant role in food preservation and packaging, where this technique can reduce the number of food loss and subsequently ensure more sustainable food and agriculture production through various mechanisms. This review provides comprehensive information related to the currently available advanced technologies of coating applications, which include advanced methods (i.e., nanoscale and multilayer coating methods) and advanced properties (i.e., active, self-healing, and super hydrophobic coating properties). Furthermore, the benefits and drawbacks of those technologies during their applications on foods are also discussed. For further research, opportunities are foreseen to develop robust edible coating methods by combining multiple advanced technologies for large-scale and more sustainable industrial production.


Subject(s)
Edible Films , Humans , Food Packaging/methods , Food Preservation/methods , Food Technology , Biopolymers
14.
Compr Rev Food Sci Food Saf ; 23(3): e13373, 2024 May.
Article in English | MEDLINE | ID: mdl-38778547

ABSTRACT

The environmental challenges posed by plastic pollution have prompted the exploration of eco-friendly alternatives to disposable plastic packaging and utensils. Paper-based materials, derived from renewable resources such as wood pulp, non-wood pulp (bamboo pulp, straw pulp, reed pulp, etc.), and recycled paper fibers, are distinguished by their recyclability and biodegradability, making them promising substitutes in the field of plastic food packaging. Despite their merits, challenges like porosity, hydrophilicity, limited barrier properties, and a lack of functionality have restricted their packaging potential. To address these constraints, researchers have introduced antimicrobial agents, hydrophobic substances, and other functional components to improve both physical and functional properties. This enhancement has resulted in notable improvements in food preservation outcomes in real-world scenarios. This paper offers a comprehensive review of recent progress in hydrophobic antimicrobial paper-based materials. In addition to outlining the characteristics and functions of commonly used antimicrobial substances in food packaging, it consolidates the current research landscape and preparation techniques for hydrophobic paper. Furthermore, the paper explores the practical applications of hydrophobic antimicrobial paper-based materials in agricultural produce, meat, and seafood, as well as ready-to-eat food packaging. Finally, challenges in production, application, and recycling processes are outlined to ensure safety and efficacy, and prospects for the future development of antimicrobial hydrophobic paper-based materials are discussed. Overall, the emergence of hydrophobic antimicrobial paper-based materials stands out as a robust alternative to plastic food packaging, offering a compelling solution with superior food preservation capabilities. In the future, paper-based materials with antimicrobial and hydrophobic functionalities are expected to further enhance food safety as promising packaging materials.


Subject(s)
Anti-Infective Agents , Food Packaging , Hydrophobic and Hydrophilic Interactions , Paper , Food Packaging/methods , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Food Preservation/methods
15.
Compr Rev Food Sci Food Saf ; 23(1): e13281, 2024 01.
Article in English | MEDLINE | ID: mdl-38284572

ABSTRACT

Seafood processing has traditionally been challenging due to the rapid spoilage rates and quality degradation of these products. With the rise of food science and technology, novel methods are being developed to overcome these challenges and improve seafood quality, shelf life, and safety. These methods range from high-pressure processing (HPP) to edible coatings, and their exploration and application in seafood processing are of great importance. This review synthesizes the recent advancements in various emerging technologies used in the seafood industry and critically evaluates their efficacy, challenges, and potential benefits. The technologies covered include HPP, ultrasound, pulsed electric field, plasma technologies, pulsed light, low-voltage electrostatic field, ozone, vacuum cooking, purified condensed smoke, microwave heating, and edible coating. Each technology offers unique advantages and presents specific challenges; however, their successful application largely depends on the nature of the seafood product and the desired result. HPP and microwave heating show exceptional promise in terms of quality retention and shelf-life extension. Edible coatings present a multifunctional approach, offering preservation and the potential enhancement of nutritional value. The strength, weakness, opportunity, and threat (SWOT) analysis indicates that, despite the potential of these technologies, cost-effectiveness, scalability, regulatory considerations, and consumer acceptance remain crucial issues. As the seafood industry stands on the cusp of a technological revolution, understanding these nuances becomes imperative for sustainable growth. Future research should focus on technological refinements, understanding consumer perspectives, and developing regulatory frameworks to facilitate the adoption of these technologies in the seafood industry.


Subject(s)
Food Technology , Food-Processing Industry , Nutritive Value , Cooking , Seafood
16.
Compr Rev Food Sci Food Saf ; 23(2): e13318, 2024 03.
Article in English | MEDLINE | ID: mdl-38532699

ABSTRACT

Conventional food preservation methods such as heat treatment, irradiation, chemical treatment, refrigeration, and coating have various disadvantages, like loss of food quality, nutrition, and cost-effectiveness. Accordingly, cold plasma is one of the new technologies for food processing and has played an important role in preventing food spoilage. Specifically, in-package cold plasma has become a modern trend to decontaminate, process, and package food simultaneously. This strategy has proven successful in processing various fresh food ingredients, including spinach, fruits, vegetables, and meat. In particular, cold plasma treatment within the package reduces the risk of post-processing contamination. Cryoplasm decontamination within packaging has been reported to reduce significantly the microbial load of many foods' spoilage-causing pathogens. However, studies are needed to focus more on the effects of in-package treatments on endogenous enzyme activity, pest control, and removal of toxic pesticide residues. In this review, we comprehensively evaluated the efficacy of in-package low-temperature plasma treatment to extend the shelf life of various foods. The mechanisms by which cold plasma interacts with food were investigated, emphasizing its effects on pathogen reduction, spoilage mitigation, and surface modification. The review also critically assessed the effects of the treatments on food quality, regulatory considerations, and their potential as viable technologies to improve food safety and packaging life. In-package cold plasma treatment could revolutionize food storage when combined with other sophisticated technologies such as nanotechnology.


Subject(s)
Food Packaging , Plasma Gases , Food Packaging/methods , Plasma Gases/pharmacology , Food Storage/methods , Food Preservation/methods , Food Handling
17.
Plant Foods Hum Nutr ; 79(2): 260-269, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38761282

ABSTRACT

High voltage electrostatic field processing (HVEF) is a food preservation procedure frequently used to produce healthy minimally processed fruits and vegetables (F&V) as it reduces the growth of microorganisms and activates or inhibits various enzymes, thus retarding their natural ripening while preserving and even enhancing native nutritional quality and sensory characteristics. HVEF is one of the various nonthermal processing technology (NTPT) regarded as abiotic stress that can activate the antioxidant system of F&V and can also inhibith spoilage enzymes as, polyphenol oxidase (PPO), lipoxygenase (LOX), pectin methylesterase (PME), polygalacturonase (PG), cellulase (Cel), ß-xylosidase, xyloglucan and endotransglycosylase/hydrolase, bringing positive effect on hardness, firmness, colour attributes, electric conductivity, antioxidant compounds, microstructure and decreasing electrolyte leakage (EL), malondialdehyde (MDA) contents and browning degree. This technique can also increase the contents of fructose, glucose, and sucrose and decrease the production of CO2 and H2O2. Additionally, it has been reported that HVEF could be used with other treatments, such as modified atmosphere packaging (MAP) and acidic electrolyzed water (AEW) treatment, to enhance its effects. Future works should deepen on elucidating the activation of the antioxidant systems by applying HVEF of critical enzymes related to the synthesis pathways of phenolic compounds (PC) and carotenoids (Car). Holistic approaches to the effects of HVEF on metabolism based on systems biology also need to be studied by considering the overall biochemical, physical, and process engineering related aspects of this technique.


Subject(s)
Antioxidants , Food Handling , Fruit , Vegetables , Fruit/chemistry , Antioxidants/metabolism , Antioxidants/analysis , Food Handling/methods , Food Preservation/methods , Static Electricity , Nutritive Value , Humans
18.
BMC Microbiol ; 23(1): 289, 2023 10 07.
Article in English | MEDLINE | ID: mdl-37805450

ABSTRACT

BACKGROUND: Although the mechanism of action of nanoemulsion is still unclear, the modern use of nanoemulsions made from natural extracts as antimicrobial and anti-aflatoxigenic agents represents a potential food preservation and a safety target. METHODS: Two natural nanoemulsion extracts of Crocus sativus (the saffron flower) and Achillea millefolium (the yarrow flower) were produced in the current study using a low-energy method that included carboxymethylcellulose and Arabic gum. The synthesized nanoemulsion was fully identified by different analytical methods. Detection of the volatile content was completed using GC-MS analysis. The antioxidant potential, and phenolic compounds content were analyzed in the extractions. The synthesized nanoemulsions were screened for their antimicrobial potential in addition to their anti-aflatoxigenic activity. RESULTS: The droplet size of Saffron flowers was finer (121.64 ± 2.18 nm) than yarrow flowers (151.21 ± 1.12 nm). The Zeta potential measurements of the yarrow flower (-16.31 ± 2.54 mV) and the saffron flower (-18.55 ± 2.31 mV) both showed high stability, along with low PDI values (0.34-0.41). The nanoemulsion of yarrow flower revealed 51 compounds using gas chromatography-mass spectrometry (GCMS), with hexanal (16.25%), ß-Pinene (7.41%), ß-Myrcene (5.24%), D-Limonene (5.58%) and Caryophyllene (4.38%) being the most prevalent. Additionally, 31 compounds were detected in the saffron nanoemulsion, with D-limonene (4.89%), isophorone (12.29%), 4-oxy isophorone (8.19%), and safranal (44.84%) being the most abundant. Compared to the nanoemulsion of the yarrow flower, the saffron nanoemulsion had good antibacterial and antifungal activity. Saffron nanoemulsion inhibited total fungal growth by 69.64-71.90% in a simulated liquid medium and demonstrated the most significant decrease in aflatoxin production. Infected strawberry fruits coated with nanoemulsion extracts exhibited high antimicrobial activity in the form of saffron flower and yarrow flower extract nanoemulsions, which inhibited and/or controlled the growth of Aspergillus fungi. Due to this inhibition, the lag phase was noticeably prolonged, the cell load decreased, and the stability time increased. CONCLUSION: This study will contribute to expanding the theoretical research and utilization of nanoemulsions as green protective agents in agricultural and food industries for a promising protection from the invasion of some pathogenic bacteria and fungi.


Subject(s)
Achillea , Crocus , Achillea/chemistry , Crocus/chemistry , Food Preservatives , Limonene/analysis , Flowers , Anti-Bacterial Agents , Plant Extracts/pharmacology , Plant Extracts/chemistry
19.
Crit Rev Food Sci Nutr ; 63(28): 9330-9348, 2023.
Article in English | MEDLINE | ID: mdl-35452320

ABSTRACT

Nanozymes with excellent broad-spectrum antibacterial properties offers an alternative strategy for food preservation. This review comprehensively summarized the antibacterial mechanisms of nanozymes, including the generation of reactive oxygen species (ROS) and the destruction of biofilms. Besides, the primary factors (size, morphology, hybridization, light, etc.) regulating the antibacterial activity of different types of nanozymes were highlighted in detail, which provided effective guidance on how to design highly efficient antibacterial nanozymes. Moreover, this review presented elaborated viewpoints on the unique applications of nanozymes in food preservation, including the selection of nanozymes loading matrix, fabrication techniques of nanozymes-based antibacterial films/coatings, and the recent advances in the application of nanozymes-based antibacterial films/coatings in food preservation. In the end, the safety issues of nanozymes have also been mentioned. Overall, this review provided new avenues in the field of food preservation and displayed great prospects.


Subject(s)
Nanostructures , Food Preservation , Anti-Bacterial Agents/pharmacology , Reactive Oxygen Species
20.
Crit Rev Food Sci Nutr ; : 1-11, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37427571

ABSTRACT

The traditional packaging concept has reached its limits when it comes to ensuring the quality of food and extending its shelf life. Compared to traditional packaging materials, food packaging with self-healing function is becoming more and more popular. This is because they can automatically repair the damaged area, restore the original properties and prevent the decline of food quality and loss of nutrients. Materials based on various self-healing mechanisms have been developed and used on a laboratory scale in the form of coatings and films for food packaging. However, more efforts are needed for the commercial application of these new self-healing packaging materials. Understanding the self-healing mechanism of these packaging materials is very important for their commercial application. This article first discusses the self-healing mechanism of different packaging materials and compares the self-healing efficiency of self-healing materials under different conditions. Then, the application potential of self-healing coatings and films in the food industry is systematically analyzed. Finally, we give an outlook on the application of self-healing materials in the field of food packaging.

SELECTION OF CITATIONS
SEARCH DETAIL