Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 16.548
Filter
Add more filters

Publication year range
1.
Annu Rev Biochem ; 93(1): 389-410, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38594926

ABSTRACT

Molecular docking has become an essential part of a structural biologist's and medicinal chemist's toolkits. Given a chemical compound and the three-dimensional structure of a molecular target-for example, a protein-docking methods fit the compound into the target, predicting the compound's bound structure and binding energy. Docking can be used to discover novel ligands for a target by screening large virtual compound libraries. Docking can also provide a useful starting point for structure-based ligand optimization or for investigating a ligand's mechanism of action. Advances in computational methods, including both physics-based and machine learning approaches, as well as in complementary experimental techniques, are making docking an even more powerful tool. We review how docking works and how it can drive drug discovery and biological research. We also describe its current limitations and ongoing efforts to overcome them.


Subject(s)
Drug Discovery , Molecular Docking Simulation , Protein Binding , Proteins , Ligands , Drug Discovery/methods , Humans , Proteins/chemistry , Proteins/metabolism , Machine Learning , Binding Sites , Drug Design
2.
Cell ; 187(14): 3712-3725.e34, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38810646

ABSTRACT

The cystic fibrosis transmembrane conductance regulator (CFTR) is a crucial ion channel whose loss of function leads to cystic fibrosis, whereas its hyperactivation leads to secretory diarrhea. Small molecules that improve CFTR folding (correctors) or function (potentiators) are clinically available. However, the only potentiator, ivacaftor, has suboptimal pharmacokinetics and inhibitors have yet to be clinically developed. Here, we combine molecular docking, electrophysiology, cryo-EM, and medicinal chemistry to identify CFTR modulators. We docked ∼155 million molecules into the potentiator site on CFTR, synthesized 53 test ligands, and used structure-based optimization to identify candidate modulators. This approach uncovered mid-nanomolar potentiators, as well as inhibitors, that bind to the same allosteric site. These molecules represent potential leads for the development of more effective drugs for cystic fibrosis and secretory diarrhea, demonstrating the feasibility of large-scale docking for ion channel drug discovery.


Subject(s)
Aminophenols , Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Molecular Docking Simulation , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/chemistry , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Humans , Cystic Fibrosis/drug therapy , Cystic Fibrosis/metabolism , Aminophenols/pharmacology , Aminophenols/chemistry , Aminophenols/therapeutic use , Drug Discovery , Cryoelectron Microscopy , Quinolones/pharmacology , Quinolones/chemistry , Quinolones/therapeutic use , Allosteric Site/drug effects , Animals , Ligands
3.
Cell ; 187(12): 2990-3005.e17, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38772370

ABSTRACT

Integrins link the extracellular environment to the actin cytoskeleton in cell migration and adhesiveness. Rapid coordination between events outside and inside the cell is essential. Single-molecule fluorescence dynamics show that ligand binding to the bent-closed integrin conformation, which predominates on cell surfaces, is followed within milliseconds by two concerted changes, leg extension and headpiece opening, to give the high-affinity integrin conformation. The extended-closed integrin conformation is not an intermediate but can be directly accessed from the extended-open conformation and provides a pathway for ligand dissociation. In contrast to ligand, talin, which links the integrin ß-subunit cytoplasmic domain to the actin cytoskeleton, modestly stabilizes but does not induce extension or opening. Integrin activation is thus initiated by outside-in signaling and followed by inside-out signaling. Our results further imply that talin binding is insufficient for inside-out integrin activation and that tensile force transmission through the ligand-integrin-talin-actin cytoskeleton complex is required.


Subject(s)
Integrins , Talin , Animals , Humans , Mice , Actin Cytoskeleton/metabolism , Actin Cytoskeleton/chemistry , Cell Adhesion , CHO Cells , Cricetulus , Integrins/metabolism , Integrins/chemistry , Ligands , Protein Binding , Protein Conformation , Signal Transduction , Single Molecule Imaging , Talin/metabolism , Talin/chemistry
4.
Cell ; 187(5): 1160-1176.e21, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38382524

ABSTRACT

The α7 nicotinic acetylcholine receptor is a pentameric ligand-gated ion channel that plays an important role in cholinergic signaling throughout the nervous system. Its unique physiological characteristics and implications in neurological disorders and inflammation make it a promising but challenging therapeutic target. Positive allosteric modulators overcome limitations of traditional α7 agonists, but their potentiation mechanisms remain unclear. Here, we present high-resolution structures of α7-modulator complexes, revealing partially overlapping binding sites but varying conformational states. Structure-guided functional and computational tests suggest that differences in modulator activity arise from the stable rotation of a channel gating residue out of the pore. We extend the study using a time-resolved cryoelectron microscopy (cryo-EM) approach to reveal asymmetric state transitions for this homomeric channel and also find that a modulator with allosteric agonist activity exploits a distinct channel-gating mechanism. These results define mechanisms of α7 allosteric modulation and activation with implications across the pentameric receptor superfamily.


Subject(s)
alpha7 Nicotinic Acetylcholine Receptor , Humans , alpha7 Nicotinic Acetylcholine Receptor/chemistry , alpha7 Nicotinic Acetylcholine Receptor/metabolism , alpha7 Nicotinic Acetylcholine Receptor/ultrastructure , Binding Sites , Cryoelectron Microscopy , Inflammation/drug therapy , Signal Transduction , Allosteric Regulation
5.
Cell ; 187(13): 3445-3459.e15, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38838668

ABSTRACT

Understanding cellular force transmission dynamics is crucial in mechanobiology. We developed the DNA-based ForceChrono probe to measure force magnitude, duration, and loading rates at the single-molecule level within living cells. The ForceChrono probe circumvents the limitations of in vitro single-molecule force spectroscopy by enabling direct measurements within the dynamic cellular environment. Our findings reveal integrin force loading rates of 0.5-2 pN/s and durations ranging from tens of seconds in nascent adhesions to approximately 100 s in mature focal adhesions. The probe's robust and reversible design allows for continuous monitoring of these dynamic changes as cells undergo morphological transformations. Additionally, by analyzing how mutations, deletions, or pharmacological interventions affect these parameters, we can deduce the functional roles of specific proteins or domains in cellular mechanotransduction. The ForceChrono probe provides detailed insights into the dynamics of mechanical forces, advancing our understanding of cellular mechanics and the molecular mechanisms of mechanotransduction.


Subject(s)
Mechanotransduction, Cellular , Single Molecule Imaging , Animals , Humans , Mice , Biomechanical Phenomena , Cell Adhesion , DNA/chemistry , DNA/metabolism , Focal Adhesions/metabolism , Integrins/metabolism , Microscopy, Atomic Force/methods , Single Molecule Imaging/methods , Cell Line , Cell Survival , Base Pairing , Calibration
6.
Cell ; 187(2): 312-330.e22, 2024 01 18.
Article in English | MEDLINE | ID: mdl-38157854

ABSTRACT

The FERONIA (FER)-LLG1 co-receptor and its peptide ligand RALF regulate myriad processes for plant growth and survival. Focusing on signal-induced cell surface responses, we discovered that intrinsically disordered RALF triggers clustering and endocytosis of its cognate receptors and FER- and LLG1-dependent endocytosis of non-cognate regulators of diverse processes, thus capable of broadly impacting downstream responses. RALF, however, remains extracellular. We demonstrate that RALF binds the cell wall polysaccharide pectin. They phase separate and recruit FER and LLG1 into pectin-RALF-FER-LLG1 condensates to initiate RALF-triggered cell surface responses. We show further that two frequently encountered environmental challenges, elevated salt and temperature, trigger RALF-pectin phase separation, promiscuous receptor clustering and massive endocytosis, and that this process is crucial for recovery from stress-induced growth attenuation. Our results support that RALF-pectin phase separation mediates an exoskeletal mechanism to broadly activate FER-LLG1-dependent cell surface responses to mediate the global role of FER in plant growth and survival.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Phosphotransferases/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Pectins/metabolism , Phase Separation , GPI-Linked Proteins/metabolism
7.
Annu Rev Immunol ; 34: 243-64, 2016 05 20.
Article in English | MEDLINE | ID: mdl-26907217

ABSTRACT

Galectins are a family of mammalian carbohydrate-binding proteins expressed by many cell types. Galectins can function intracellularly and can also be secreted to bind to cell surface glycoconjugate counterreceptors. Some galectins are made by immune cells, whereas other galectins are secreted by different cell types, such as endothelial or epithelial cells, and bind to immune cells to regulate immune responses. Galectin binding to a single glycan ligand is a low-affinity interaction, but the multivalency of galectins and the glycan ligands presented on cell surface glycoproteins results in high-avidity binding that can reversibly scaffold or cluster these glycoproteins. Galectin binding to a specific glycoprotein counterreceptor is regulated in part by the repertoire of glycosyltransferase enzymes (which make the glycan ligands) expressed by that cell, and the effect of galectin binding results from clustering or retention of specific glycoprotein counterreceptors bearing these specific ligands.


Subject(s)
Galectins/metabolism , Glycosyltransferases/metabolism , Immunity , Animals , Carbohydrates/immunology , Cytoskeleton , Galectins/immunology , Glycoproteins/metabolism , Humans , Protein Binding , Receptor Aggregation
8.
Cell ; 186(19): 4189-4203.e22, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37633268

ABSTRACT

Thrombopoietin (THPO or TPO) is an essential cytokine for hematopoietic stem cell (HSC) maintenance and megakaryocyte differentiation. Here, we report the 3.4 Å resolution cryoelectron microscopy structure of the extracellular TPO-TPO receptor (TpoR or MPL) signaling complex, revealing the basis for homodimeric MPL activation and providing a structural rationalization for genetic loss-of-function thrombocytopenia mutations. The structure guided the engineering of TPO variants (TPOmod) with a spectrum of signaling activities, from neutral antagonists to partial- and super-agonists. Partial agonist TPOmod decoupled JAK/STAT from ERK/AKT/CREB activation, driving a bias for megakaryopoiesis and platelet production without causing significant HSC expansion in mice and showing superior maintenance of human HSCs in vitro. These data demonstrate the functional uncoupling of the two primary roles of TPO, highlighting the potential utility of TPOmod in hematology research and clinical HSC transplantation.


Subject(s)
Receptors, Thrombopoietin , Thrombopoietin , Animals , Humans , Mice , Cell Cycle , Cryoelectron Microscopy , Receptors, Thrombopoietin/genetics , Thrombopoiesis , DNA Methylation
9.
Cell ; 186(2): 413-427.e17, 2023 01 19.
Article in English | MEDLINE | ID: mdl-36638794

ABSTRACT

Opioids are effective analgesics, but their use is beset by serious side effects, including addiction and respiratory depression, which contribute to the ongoing opioid crisis. The human opioid system contains four opioid receptors (µOR, δOR, κOR, and NOPR) and a set of related endogenous opioid peptides (EOPs), which show distinct selectivity toward their respective opioid receptors (ORs). Despite being key to the development of safer analgesics, the mechanisms of molecular recognition and selectivity of EOPs to ORs remain unclear. Here, we systematically characterize the binding of EOPs to ORs and present five structures of EOP-OR-Gi complexes, including ß-endorphin- and endomorphin-bound µOR, deltorphin-bound δOR, dynorphin-bound κOR, and nociceptin-bound NOPR. These structures, supported by biochemical results, uncover the specific recognition and selectivity of opioid peptides and the conserved mechanism of opioid receptor activation. These results provide a structural framework to facilitate rational design of safer opioid drugs for pain relief.


Subject(s)
Receptors, Opioid , Humans , Analgesics, Opioid/pharmacology , Opioid Peptides , Receptors, Opioid, mu/metabolism , Receptors, Opioid/chemistry
10.
Cell ; 186(8): 1652-1669, 2023 04 13.
Article in English | MEDLINE | ID: mdl-37059068

ABSTRACT

Immune checkpoint therapy (ICT) has dramatically altered clinical outcomes for cancer patients and conferred durable clinical benefits, including cure in a subset of patients. Varying response rates across tumor types and the need for predictive biomarkers to optimize patient selection to maximize efficacy and minimize toxicities prompted efforts to unravel immune and non-immune factors regulating the responses to ICT. This review highlights the biology of anti-tumor immunity underlying response and resistance to ICT, discusses efforts to address the current challenges with ICT, and outlines strategies to guide the development of subsequent clinical trials and combinatorial efforts with ICT.


Subject(s)
Immunotherapy , Neoplasms , Humans , B7-H1 Antigen , Neoplasms/drug therapy , Clinical Trials as Topic , Immune Checkpoint Inhibitors/administration & dosage
11.
Annu Rev Immunol ; 33: 139-67, 2015.
Article in English | MEDLINE | ID: mdl-25493332

ABSTRACT

Cytokines exert a vast array of immunoregulatory actions critical to human biology and disease. However, the desired immunotherapeutic effects of native cytokines are often mitigated by toxicity or lack of efficacy, either of which results from cytokine receptor pleiotropy and/or undesired activation of off-target cells. As our understanding of the structural principles of cytokine-receptor interactions has advanced, mechanism-based manipulation of cytokine signaling through protein engineering has become an increasingly feasible and powerful approach. Modified cytokines, both agonists and antagonists, have been engineered with narrowed target cell specificities, and they have also yielded important mechanistic insights into cytokine biology and signaling. Here we review the theory and practice of cytokine engineering and rationalize the mechanisms of several engineered cytokines in the context of structure. We discuss specific examples of how structure-based cytokine engineering has opened new opportunities for cytokines as drugs, with a focus on the immunotherapeutic cytokines interferon, interleukin-2, and interleukin-4.


Subject(s)
Cytokines/genetics , Cytokines/metabolism , Genetic Engineering , Receptors, Cytokine/genetics , Receptors, Cytokine/metabolism , Animals , Cytokines/chemistry , Extracellular Space/metabolism , Humans , Intracellular Space/metabolism , Protein Binding , Protein Transport , Receptors, Cytokine/chemistry , Signal Transduction
12.
Cell ; 185(26): 4904-4920.e22, 2022 12 22.
Article in English | MEDLINE | ID: mdl-36516854

ABSTRACT

Cells communicate with each other via receptor-ligand interactions. Here, we describe lentiviral-mediated cell entry by engineered receptor-ligand interaction (ENTER) to display ligand proteins, deliver payloads, and record receptor specificity. We optimize ENTER to decode interactions between T cell receptor (TCR)-MHC peptides, antibody-antigen, and other receptor-ligand pairs. A viral presentation strategy allows ENTER to capture interactions between B cell receptor and any antigen. We engineer ENTER to deliver genetic payloads to antigen-specific T or B cells to selectively modulate cellular behavior in mixed populations. Single-cell readout of ENTER by RNA sequencing (ENTER-seq) enables multiplexed enumeration of antigen specificities, TCR clonality, cell type, and states of individual T cells. ENTER-seq of CMV-seropositive patient blood samples reveals the viral epitopes that drive effector memory T cell differentiation and inter-clonal vs. intra-clonal phenotypic diversity targeting the same epitope. ENTER technology enables systematic discovery of receptor specificity, linkage to cell fates, and antigen-specific cargo delivery.


Subject(s)
Receptors, Antigen, T-Cell , Virus Internalization , Humans , Biology , Epitopes , Ligands , Peptides , Receptors, Antigen, T-Cell/metabolism , Single-Cell Analysis , Genomics
13.
Cell ; 185(10): 1676-1693.e23, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35489334

ABSTRACT

Epidemiological studies reveal that marijuana increases the risk of cardiovascular disease (CVD); however, little is known about the mechanism. Δ9-tetrahydrocannabinol (Δ9-THC), the psychoactive component of marijuana, binds to cannabinoid receptor 1 (CB1/CNR1) in the vasculature and is implicated in CVD. A UK Biobank analysis found that cannabis was an risk factor for CVD. We found that marijuana smoking activated inflammatory cytokines implicated in CVD. In silico virtual screening identified genistein, a soybean isoflavone, as a putative CB1 antagonist. Human-induced pluripotent stem cell-derived endothelial cells were used to model Δ9-THC-induced inflammation and oxidative stress via NF-κB signaling. Knockdown of the CB1 receptor with siRNA, CRISPR interference, and genistein attenuated the effects of Δ9-THC. In mice, genistein blocked Δ9-THC-induced endothelial dysfunction in wire myograph, reduced atherosclerotic plaque, and had minimal penetration of the central nervous system. Genistein is a CB1 antagonist that attenuates Δ9-THC-induced atherosclerosis.


Subject(s)
Cannabis , Cardiovascular Diseases , Hallucinogens , Analgesics , Animals , Cannabinoid Receptor Agonists/pharmacology , Dronabinol/pharmacology , Endothelial Cells , Genistein/pharmacology , Genistein/therapeutic use , Inflammation/drug therapy , Mice , Receptor, Cannabinoid, CB1 , Receptors, Cannabinoid
14.
Annu Rev Cell Dev Biol ; 39: 391-408, 2023 10 16.
Article in English | MEDLINE | ID: mdl-37339682

ABSTRACT

Cell-cell communication is critical for the development and function of multicellular organisms. A crucial means by which cells communicate with one another is physical interactions between receptors on one cell and their ligands on a neighboring cell. Trans ligand:receptor interactions activate the receptor, ultimately leading to changes in the fate of the receptor-expressing cells. Such trans signaling is known to be critical for the functions of cells in the nervous and immune systems, among others. Historically, trans interactions are the primary conceptual framework for understanding cell-cell communication. However, cells often coexpress many receptors and ligands, and a subset of these has been reported to interact in cis and profoundly impact cell functions. Cis interactions likely constitute a fundamental, understudied regulatory mechanism in cell biology. Here, I discuss how cis interactions between membrane receptors and ligands regulate immune cell functions, and I also highlight outstanding questions in the field.


Subject(s)
Cell Communication , Signal Transduction , Ligands
15.
Cell ; 184(4): 957-968.e21, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33567265

ABSTRACT

Ligand-gated ion channels mediate signal transduction at chemical synapses and transition between resting, open, and desensitized states in response to neurotransmitter binding. Neurotransmitters that produce maximum open channel probabilities (Po) are full agonists, whereas those that yield lower than maximum Po are partial agonists. Cys-loop receptors are an important class of neurotransmitter receptors, yet a structure-based understanding of the mechanism of partial agonist action has proven elusive. Here, we study the glycine receptor with the full agonist glycine and the partial agonists taurine and γ-amino butyric acid (GABA). We use electrophysiology to show how partial agonists populate agonist-bound, closed channel states and cryo-EM reconstructions to illuminate the structures of intermediate, pre-open states, providing insights into previously unseen conformational states along the receptor reaction pathway. We further correlate agonist-induced conformational changes to Po across members of the receptor family, providing a hypothetical mechanism for partial and full agonist action at Cys-loop receptors.


Subject(s)
Ion Channel Gating , Receptors, Glycine/agonists , Receptors, Glycine/metabolism , Animals , Binding Sites , Cell Line , Cryoelectron Microscopy , Glycine , HEK293 Cells , Humans , Imaging, Three-Dimensional , Maleates/chemistry , Models, Molecular , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Mutation/genetics , Neurotransmitter Agents/metabolism , Protein Domains , Receptors, Glycine/genetics , Receptors, Glycine/ultrastructure , Styrene/chemistry , Zebrafish , gamma-Aminobutyric Acid/metabolism
16.
Cell ; 184(8): 2121-2134.e13, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33735609

ABSTRACT

The α7 nicotinic acetylcholine receptor plays critical roles in the central nervous system and in the cholinergic inflammatory pathway. This ligand-gated ion channel assembles as a homopentamer, is exceptionally permeable to Ca2+, and desensitizes faster than any other Cys-loop receptor. The α7 receptor has served as a prototype for the Cys-loop superfamily yet has proven refractory to structural analysis. We present cryo-EM structures of the human α7 nicotinic receptor in a lipidic environment in resting, activated, and desensitized states, illuminating the principal steps in the gating cycle. The structures also reveal elements that contribute to its function, including a C-terminal latch that is permissive for channel opening, and an anionic ring in the extracellular vestibule that contributes to its high conductance and calcium permeability. Comparisons among the α7 structures provide a foundation for mapping the gating cycle and reveal divergence in gating mechanisms in the Cys-loop receptor superfamily.


Subject(s)
alpha7 Nicotinic Acetylcholine Receptor/metabolism , Amino Acid Sequence , Binding Sites , Bungarotoxins/chemistry , Bungarotoxins/metabolism , Calcium/metabolism , Cell Membrane/chemistry , Cryoelectron Microscopy , Extracellular Vesicles/metabolism , HEK293 Cells , Humans , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Patch-Clamp Techniques , Protein Domains , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , alpha7 Nicotinic Acetylcholine Receptor/chemistry , alpha7 Nicotinic Acetylcholine Receptor/genetics
17.
Cell ; 184(4): 931-942.e18, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33571431

ABSTRACT

The D1- and D2-dopamine receptors (D1R and D2R), which signal through Gs and Gi, respectively, represent the principal stimulatory and inhibitory dopamine receptors in the central nervous system. D1R and D2R also represent the main therapeutic targets for Parkinson's disease, schizophrenia, and many other neuropsychiatric disorders, and insight into their signaling is essential for understanding both therapeutic and side effects of dopaminergic drugs. Here, we report four cryoelectron microscopy (cryo-EM) structures of D1R-Gs and D2R-Gi signaling complexes with selective and non-selective dopamine agonists, including two currently used anti-Parkinson's disease drugs, apomorphine and bromocriptine. These structures, together with mutagenesis studies, reveal the conserved binding mode of dopamine agonists, the unique pocket topology underlying ligand selectivity, the conformational changes in receptor activation, and potential structural determinants for G protein-coupling selectivity. These results provide both a molecular understanding of dopamine signaling and multiple structural templates for drug design targeting the dopaminergic system.


Subject(s)
Receptors, Dopamine D1/chemistry , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/chemistry , Receptors, Dopamine D2/metabolism , Signal Transduction , 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/analogs & derivatives , 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology , Amino Acid Sequence , Conserved Sequence , Cryoelectron Microscopy , Cyclic AMP/metabolism , GTP-Binding Proteins/metabolism , HEK293 Cells , Humans , Ligands , Models, Molecular , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Receptors, Adrenergic, beta-2/metabolism , Receptors, Dopamine D1/ultrastructure , Receptors, Dopamine D2/ultrastructure , Structural Homology, Protein
18.
Cell ; 184(7): 1895-1913.e19, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33657410

ABSTRACT

A dysfunctional immune response in coronavirus disease 2019 (COVID-19) patients is a recurrent theme impacting symptoms and mortality, yet a detailed understanding of pertinent immune cells is not complete. We applied single-cell RNA sequencing to 284 samples from 196 COVID-19 patients and controls and created a comprehensive immune landscape with 1.46 million cells. The large dataset enabled us to identify that different peripheral immune subtype changes are associated with distinct clinical features, including age, sex, severity, and disease stages of COVID-19. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA was found in diverse epithelial and immune cell types, accompanied by dramatic transcriptomic changes within virus-positive cells. Systemic upregulation of S100A8/A9, mainly by megakaryocytes and monocytes in the peripheral blood, may contribute to the cytokine storms frequently observed in severe patients. Our data provide a rich resource for understanding the pathogenesis of and developing effective therapeutic strategies for COVID-19.


Subject(s)
COVID-19/immunology , Megakaryocytes/immunology , Monocytes/immunology , RNA, Viral , SARS-CoV-2/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Child , China , Cohort Studies , Cytokines/metabolism , Female , Humans , Male , Middle Aged , RNA, Viral/blood , RNA, Viral/isolation & purification , Single-Cell Analysis , Transcriptome/immunology , Young Adult
19.
Cell ; 182(4): 1027-1043.e17, 2020 08 20.
Article in English | MEDLINE | ID: mdl-32822567

ABSTRACT

Cell-surface protein-protein interactions (PPIs) mediate cell-cell communication, recognition, and responses. We executed an interactome screen of 564 human cell-surface and secreted proteins, most of which are immunoglobulin superfamily (IgSF) proteins, using a high-throughput, automated ELISA-based screening platform employing a pooled-protein strategy to test all 318,096 PPI combinations. Screen results, augmented by phylogenetic homology analysis, revealed ∼380 previously unreported PPIs. We validated a subset using surface plasmon resonance and cell binding assays. Observed PPIs reveal a large and complex network of interactions both within and across biological systems. We identified new PPIs for receptors with well-characterized ligands and binding partners for "orphan" receptors. New PPIs include proteins expressed on multiple cell types and involved in diverse processes including immune and nervous system development and function, differentiation/proliferation, metabolism, vascularization, and reproduction. These PPIs provide a resource for further biological investigation into their functional relevance and may offer new therapeutic drug targets.


Subject(s)
Ligands , Protein Interaction Maps/physiology , Receptors, Cell Surface/metabolism , DCC Receptor/chemistry , DCC Receptor/metabolism , Humans , Phylogeny , Receptor-Like Protein Tyrosine Phosphatases, Class 2/chemistry , Receptor-Like Protein Tyrosine Phosphatases, Class 2/metabolism , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/classification , Receptors, Interleukin-1/chemistry , Receptors, Interleukin-1/metabolism , Signaling Lymphocytic Activation Molecule Family/chemistry , Signaling Lymphocytic Activation Molecule Family/metabolism , Surface Plasmon Resonance
20.
Cell ; 182(2): 329-344.e19, 2020 07 23.
Article in English | MEDLINE | ID: mdl-32589946

ABSTRACT

Cell surface receptors and their interactions play a central role in physiological and pathological signaling. Despite its clinical relevance, the immunoglobulin superfamily (IgSF) remains uncharacterized and underrepresented in databases. Here, we present a systematic extracellular protein map, the IgSF interactome. Using a high-throughput technology to interrogate most single transmembrane receptors for binding to 445 IgSF proteins, we identify over 500 interactions, 82% previously undocumented, and confirm more than 60 receptor-ligand pairs using orthogonal assays. Our study reveals a map of cell-type-specific interactions and the landscape of dysregulated receptor-ligand crosstalk in cancer, including selective loss of function for tumor-associated mutations. Furthermore, investigation of the IgSF interactome in a large cohort of cancer patients identifies interacting protein signatures associated with clinical outcome. The IgSF interactome represents an important resource to fuel biological discoveries and a framework for understanding the functional organization of the surfaceome during homeostasis and disease, ultimately informing therapeutic development.


Subject(s)
Immunoglobulins/metabolism , Neoplasms/pathology , Protein Interaction Maps , B7-H1 Antigen/metabolism , Carcinoembryonic Antigen/metabolism , Cell Communication , Cluster Analysis , Culture Media, Conditioned/chemistry , HEK293 Cells , Humans , Immunoglobulins/chemistry , Immunoglobulins/genetics , Ligands , Mutation , Neoplasms/genetics , Neoplasms/metabolism , Protein Binding , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL