Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 105.854
Filter
Add more filters

Publication year range
1.
Annu Rev Biochem ; 91: 33-59, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35287472

ABSTRACT

Single-molecule magnetic tweezers deliver magnetic force and torque to single target molecules, permitting the study of dynamic changes in biomolecular structures and their interactions. Because the magnetic tweezer setups can generate magnetic fields that vary slowly over tens of millimeters-far larger than the nanometer scale of the single molecule events being observed-this technique can maintain essentially constant force levels during biochemical experiments while generating a biologically meaningful force on the order of 1-100 pN. When using bead-tether constructs to pull on single molecules, smaller magnetic beads and shorter submicrometer tethers improve dynamic response times and measurement precision. In addition, employing high-speed cameras, stronger light sources, and a graphics programming unit permits true high-resolution single-molecule magnetic tweezers that can track nanometer changes in target molecules on a millisecond or even submillisecond time scale. The unique force-clamping capacity of the magnetic tweezer technique provides a way to conduct measurements under near-equilibrium conditions and directly map the energy landscapes underlying various molecular phenomena. High-resolution single-molecule magnetic tweezerscan thus be used to monitor crucial conformational changes in single-protein molecules, including those involved in mechanotransduction and protein folding.


Subject(s)
DNA , Mechanotransduction, Cellular , DNA/chemistry , Magnetic Phenomena
2.
Cell ; 185(15): 2678-2689, 2022 07 21.
Article in English | MEDLINE | ID: mdl-35839759

ABSTRACT

Metabolic anomalies contribute to tissue dysfunction. Current metabolism research spans from organelles to populations, and new technologies can accommodate investigation across these scales. Here, we review recent advancements in metabolic analysis, including small-scale metabolomics techniques amenable to organelles and rare cell types, functional screening to explore how cells respond to metabolic stress, and imaging approaches to non-invasively assess metabolic perturbations in diseases. We discuss how metabolomics provides an informative phenotypic dimension that complements genomic analysis in Mendelian and non-Mendelian disorders. We also outline pressing challenges and how addressing them may further clarify the biochemical basis of human disease.


Subject(s)
Genomics , Metabolomics , Diagnostic Imaging , Humans , Metabolomics/methods
3.
Cell ; 179(3): 619-631.e15, 2019 10 17.
Article in English | MEDLINE | ID: mdl-31626768

ABSTRACT

DNA replication in eukaryotes generates DNA supercoiling, which may intertwine (braid) daughter chromatin fibers to form precatenanes, posing topological challenges during chromosome segregation. The mechanisms that limit precatenane formation remain unclear. By making direct torque measurements, we demonstrate that the intrinsic mechanical properties of chromatin play a fundamental role in dictating precatenane formation and regulating chromatin topology. Whereas a single chromatin fiber is torsionally soft, a braided fiber is torsionally stiff, indicating that supercoiling on chromatin substrates is preferentially directed in front of the fork during replication. We further show that topoisomerase II relaxation displays a strong preference for a single chromatin fiber over a braided fiber. These results suggest a synergistic coordination-the mechanical properties of chromatin inherently suppress precatenane formation during replication elongation by driving DNA supercoiling ahead of the fork, where supercoiling is more efficiently removed by topoisomerase II. VIDEO ABSTRACT.


Subject(s)
Chromatin/chemistry , DNA Topoisomerases, Type II/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Torque , Chromatin/metabolism , DNA Replication , DNA, Superhelical/chemistry , HeLa Cells , Humans , Optical Tweezers , Saccharomyces cerevisiae
4.
Cell ; 174(5): 1188-1199.e14, 2018 08 23.
Article in English | MEDLINE | ID: mdl-30057118

ABSTRACT

In stationary-phase Escherichia coli, Dps (DNA-binding protein from starved cells) is the most abundant protein component of the nucleoid. Dps compacts DNA into a dense complex and protects it from damage. Dps has also been proposed to act as a global regulator of transcription. Here, we directly examine the impact of Dps-induced compaction of DNA on the activity of RNA polymerase (RNAP). Strikingly, deleting the dps gene decompacted the nucleoid but did not significantly alter the transcriptome and only mildly altered the proteome during stationary phase. Complementary in vitro assays demonstrated that Dps blocks restriction endonucleases but not RNAP from binding DNA. Single-molecule assays demonstrated that Dps dynamically condenses DNA around elongating RNAP without impeding its progress. We conclude that Dps forms a dynamic structure that excludes some DNA-binding proteins yet allows RNAP free access to the buried genes, a behavior characteristic of phase-separated organelles.


Subject(s)
DNA, Bacterial , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , Transcription, Genetic , Bacterial Outer Membrane Proteins/metabolism , DNA Restriction Enzymes/metabolism , DNA-Binding Proteins/metabolism , DNA-Directed RNA Polymerases/metabolism , Holoenzymes/metabolism , Microscopy, Fluorescence , Polystyrenes/chemistry , Proteome , Sequence Analysis, RNA , Stress, Mechanical , Transcriptome
5.
Cell ; 172(1-2): 68-80.e12, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29290469

ABSTRACT

Signaling across cellular membranes, the 826 human G protein-coupled receptors (GPCRs) govern a wide range of vital physiological processes, making GPCRs prominent drug targets. X-ray crystallography provided GPCR molecular architectures, which also revealed the need for additional structural dynamics data to support drug development. Here, nuclear magnetic resonance (NMR) spectroscopy with the wild-type-like A2A adenosine receptor (A2AAR) in solution provides a comprehensive characterization of signaling-related structural dynamics. All six tryptophan indole and eight glycine backbone 15N-1H NMR signals in A2AAR were individually assigned. These NMR probes provided insight into the role of Asp522.50 as an allosteric link between the orthosteric drug binding site and the intracellular signaling surface, revealing strong interactions with the toggle switch Trp 2466.48, and delineated the structural response to variable efficacy of bound drugs across A2AAR. The present data support GPCR signaling based on dynamic interactions between two semi-independent subdomains connected by an allosteric switch at Asp522.50.


Subject(s)
Allosteric Regulation , Receptor, Adenosine A2A/chemistry , Signal Transduction , Adenosine A2 Receptor Agonists/chemistry , Adenosine A2 Receptor Agonists/pharmacology , Allosteric Site , Animals , Molecular Docking Simulation , Pichia , Protein Binding , Receptor, Adenosine A2A/metabolism , Sf9 Cells , Spodoptera
6.
Annu Rev Biochem ; 86: 69-95, 2017 06 20.
Article in English | MEDLINE | ID: mdl-28125289

ABSTRACT

Dozens of proteins are known to convert to the aggregated amyloid state. These include fibrils associated with systemic and neurodegenerative diseases and cancer, functional amyloid fibrils in microorganisms and animals, and many denatured proteins. Amyloid fibrils can be much more stable than other protein assemblies. In contrast to globular proteins, a single protein sequence can aggregate into several distinctly different amyloid structures, termed polymorphs, and a given polymorph can reproduce itself by seeding. Amyloid polymorphs may be the molecular basis of prion strains. Whereas the Protein Data Bank contains some 100,000 globular protein and 3,000 membrane protein structures, only a few dozen amyloid protein structures have been determined, and most of these are short segments of full amyloid-forming proteins. Regardless, these amyloid structures illuminate the architecture of the amyloid state, including its stability and its capacity for formation of polymorphs.


Subject(s)
Amyloidogenic Proteins/chemistry , Prion Proteins/chemistry , Protein Aggregation, Pathological/metabolism , Amino Acid Motifs , Amyloidogenic Proteins/genetics , Amyloidogenic Proteins/metabolism , Animals , Cryoelectron Microscopy , Gene Expression , Humans , Nuclear Magnetic Resonance, Biomolecular , Prion Proteins/genetics , Prion Proteins/metabolism , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/pathology , Protein Denaturation , Protein Multimerization , Protein Stability , Protein Structure, Secondary , X-Ray Diffraction
7.
Cell ; 169(6): 1029-1041.e16, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28575667

ABSTRACT

We report a noninvasive strategy for electrically stimulating neurons at depth. By delivering to the brain multiple electric fields at frequencies too high to recruit neural firing, but which differ by a frequency within the dynamic range of neural firing, we can electrically stimulate neurons throughout a region where interference between the multiple fields results in a prominent electric field envelope modulated at the difference frequency. We validated this temporal interference (TI) concept via modeling and physics experiments, and verified that neurons in the living mouse brain could follow the electric field envelope. We demonstrate the utility of TI stimulation by stimulating neurons in the hippocampus of living mice without recruiting neurons of the overlying cortex. Finally, we show that by altering the currents delivered to a set of immobile electrodes, we can steerably evoke different motor patterns in living mice.


Subject(s)
Deep Brain Stimulation/methods , Transcranial Direct Current Stimulation/methods , Animals , Deep Brain Stimulation/adverse effects , Deep Brain Stimulation/instrumentation , Electrodes , Hippocampus/physiology , Male , Mice , Mice, Inbred C57BL , Neurons/physiology , Transcranial Direct Current Stimulation/adverse effects , Transcranial Direct Current Stimulation/instrumentation
8.
Cell ; 171(3): 615-627.e16, 2017 Oct 19.
Article in English | MEDLINE | ID: mdl-28942918

ABSTRACT

Polymerization and phase separation of proteins containing low-complexity (LC) domains are important factors in gene expression, mRNA processing and trafficking, and localization of translation. We have used solid-state nuclear magnetic resonance methods to characterize the molecular structure of self-assembling fibrils formed by the LC domain of the fused in sarcoma (FUS) RNA-binding protein. From the 214-residue LC domain of FUS (FUS-LC), a segment of only 57 residues forms the fibril core, while other segments remain dynamically disordered. Unlike pathogenic amyloid fibrils, FUS-LC fibrils lack hydrophobic interactions within the core and are not polymorphic at the molecular structural level. Phosphorylation of core-forming residues by DNA-dependent protein kinase blocks binding of soluble FUS-LC to FUS-LC hydrogels and dissolves phase-separated, liquid-like FUS-LC droplets. These studies offer a structural basis for understanding LC domain self-assembly, phase separation, and regulation by post-translational modification.


Subject(s)
RNA-Binding Protein FUS/chemistry , Amino Acid Sequence , Humans , Microscopy, Atomic Force , Microscopy, Electron, Transmission , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Phosphorylation , Protein Domains , RNA-Binding Protein FUS/metabolism
9.
Mol Cell ; 84(3): 506-521.e11, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38159565

ABSTRACT

Regulated protein phosphorylation controls most cellular processes. The protein phosphatase PP1 is the catalytic subunit of many holoenzymes that dephosphorylate serine/threonine residues. How these enzymes recruit their substrates is largely unknown. Here, we integrated diverse approaches to elucidate how the PP1 non-catalytic subunit PPP1R15B (R15B) captures its full trimeric eIF2 substrate. We found that the substrate-recruitment module of R15B is largely disordered with three short helical elements, H1, H2, and H3. H1 and H2 form a clamp that grasps the substrate in a region remote from the phosphorylated residue. A homozygous N423D variant, adjacent to H1, reducing substrate binding and dephosphorylation was discovered in a rare syndrome with microcephaly, developmental delay, and intellectual disability. These findings explain how R15B captures its 125 kDa substrate by binding the far end of the complex relative to the phosphosite to present it for dephosphorylation by PP1, a paradigm of broad relevance.


Subject(s)
Catalytic Domain , Eukaryotic Initiation Factor-2 , Protein Phosphatase 1 , Humans , Phosphorylation , Protein Phosphatase 1/genetics , Protein Phosphatase 1/metabolism
10.
CA Cancer J Clin ; 72(4): 333-352, 2022 07.
Article in English | MEDLINE | ID: mdl-34902160

ABSTRACT

The authors define molecular imaging, according to the Society of Nuclear Medicine and Molecular Imaging, as the visualization, characterization, and measurement of biological processes at the molecular and cellular levels in humans and other living systems. Although practiced for many years clinically in nuclear medicine, expansion to other imaging modalities began roughly 25 years ago and has accelerated since. That acceleration derives from the continual appearance of new and highly relevant animal models of human disease, increasingly sensitive imaging devices, high-throughput methods to discover and optimize affinity agents to key cellular targets, new ways to manipulate genetic material, and expanded use of cloud computing. Greater interest by scientists in allied fields, such as chemistry, biomedical engineering, and immunology, as well as increased attention by the pharmaceutical industry, have likewise contributed to the boom in activity in recent years. Whereas researchers and clinicians have applied molecular imaging to a variety of physiologic processes and disease states, here, the authors focus on oncology, arguably where it has made its greatest impact. The main purpose of imaging in oncology is early detection to enable interception if not prevention of full-blown disease, such as the appearance of metastases. Because biochemical changes occur before changes in anatomy, molecular imaging-particularly when combined with liquid biopsy for screening purposes-promises especially early localization of disease for optimum management. Here, the authors introduce the ways and indications in which molecular imaging can be undertaken, the tools used and under development, and near-term challenges and opportunities in oncology.


Subject(s)
Medical Oncology , Molecular Imaging , Animals , Humans , Magnetic Resonance Imaging , Molecular Imaging/methods , Positron-Emission Tomography
11.
CA Cancer J Clin ; 72(1): 34-56, 2022 01.
Article in English | MEDLINE | ID: mdl-34792808

ABSTRACT

Radiation therapy (RT) continues to play an important role in the treatment of cancer. Adaptive RT (ART) is a novel method through which RT treatments are evolving. With the ART approach, computed tomography or magnetic resonance (MR) images are obtained as part of the treatment delivery process. This enables the adaptation of the irradiated volume to account for changes in organ and/or tumor position, movement, size, or shape that may occur over the course of treatment. The advantages and challenges of ART maybe somewhat abstract to oncologists and clinicians outside of the specialty of radiation oncology. ART is positioned to affect many different types of cancer. There is a wide spectrum of hypothesized benefits, from small toxicity improvements to meaningful gains in overall survival. The use and application of this novel technology should be understood by the oncologic community at large, such that it can be appropriately contextualized within the landscape of cancer therapies. Likewise, the need to test these advances is pressing. MR-guided ART (MRgART) is an emerging, extended modality of ART that expands upon and further advances the capabilities of ART. MRgART presents unique opportunities to iteratively improve adaptive image guidance. However, although the MRgART adaptive process advances ART to previously unattained levels, it can be more expensive, time-consuming, and complex. In this review, the authors present an overview for clinicians describing the process of ART and specifically MRgART.


Subject(s)
Magnetic Resonance Imaging, Interventional/methods , Neoplasms/radiotherapy , Particle Accelerators , Radiation Oncology/methods , Radiotherapy Planning, Computer-Assisted/methods , History, 20th Century , History, 21st Century , Humans , Magnetic Resonance Imaging, Interventional/history , Magnetic Resonance Imaging, Interventional/instrumentation , Magnetic Resonance Imaging, Interventional/trends , Neoplasms/diagnostic imaging , Radiation Oncology/history , Radiation Oncology/instrumentation , Radiation Oncology/trends , Radiotherapy Planning, Computer-Assisted/history , Radiotherapy Planning, Computer-Assisted/instrumentation , Radiotherapy Planning, Computer-Assisted/trends
12.
Mol Cell ; 81(7): 1384-1396.e6, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33636126

ABSTRACT

G proteins play a central role in signal transduction and pharmacology. Signaling is initiated by cell-surface receptors, which promote guanosine triphosphate (GTP) binding and dissociation of Gα from the Gßγ subunits. Structural studies have revealed the molecular basis of subunit association with receptors, RGS proteins, and downstream effectors. In contrast, the mechanism of subunit dissociation is poorly understood. We use cell signaling assays, molecular dynamics (MD) simulations, and biochemistry and structural analyses to identify a conserved network of amino acids that dictates subunit release. In the presence of the terminal phosphate of GTP, a glycine forms a polar network with an arginine and glutamate, putting torsional strain on the subunit binding interface. This "G-R-E motif" secures GTP and, through an allosteric link, discharges the Gßγ dimer. Replacement of network residues prevents subunit dissociation regardless of agonist or GTP binding. These findings reveal the molecular basis of the final committed step of G protein activation.


Subject(s)
Guanosine Triphosphate , Heterotrimeric GTP-Binding Proteins , Molecular Dynamics Simulation , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae/enzymology , Allosteric Regulation , Amino Acid Motifs , Guanosine Triphosphate/chemistry , Guanosine Triphosphate/metabolism , HEK293 Cells , Heterotrimeric GTP-Binding Proteins/chemistry , Heterotrimeric GTP-Binding Proteins/metabolism , Humans , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism
13.
Trends Biochem Sci ; 49(1): 38-51, 2024 01.
Article in English | MEDLINE | ID: mdl-37980187

ABSTRACT

Molecular chaperones play central roles in sustaining protein homeostasis and preventing protein aggregation. Most studies of these systems have been performed in bulk, providing averaged measurements, though recent single-molecule approaches have provided an in-depth understanding of the molecular mechanisms of their activities and structural rearrangements during substrate recognition. Chaperone activities have been observed to be substrate specific, with some associated with ATP-dependent structural dynamics and others via interactions with co-chaperones. This Review aims to describe the novel mechanisms of molecular chaperones as revealed by single-molecule approaches, and to provide insights into their functioning and its implications for protein homeostasis and human diseases.


Subject(s)
Molecular Chaperones , Protein Folding , Humans , Molecular Chaperones/metabolism , HSP70 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism
14.
Mol Cell ; 80(6): 1039-1054.e6, 2020 12 17.
Article in English | MEDLINE | ID: mdl-33301732

ABSTRACT

Eukaryotic SMC complexes, cohesin, condensin, and Smc5/6, use ATP hydrolysis to power a plethora of functions requiring organization and restructuring of eukaryotic chromosomes in interphase and during mitosis. The Smc5/6 mechanism of action and its activity on DNA are largely unknown. Here we purified the budding yeast Smc5/6 holocomplex and characterized its core biochemical and biophysical activities. Purified Smc5/6 exhibits DNA-dependent ATP hydrolysis and SUMO E3 ligase activity. We show that Smc5/6 binds DNA topologically with affinity for supercoiled and catenated DNA templates. Employing single-molecule assays to analyze the functional and dynamic characteristics of Smc5/6 bound to DNA, we show that Smc5/6 locks DNA plectonemes and can compact DNA in an ATP-dependent manner. These results demonstrate that the Smc5/6 complex recognizes DNA tertiary structures involving juxtaposed helices and might modulate DNA topology by plectoneme stabilization and local compaction.


Subject(s)
Cell Cycle Proteins/genetics , Multiprotein Complexes/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Adenosine Triphosphatases/genetics , Biophysical Phenomena , Cell Cycle Proteins/ultrastructure , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/ultrastructure , DNA-Binding Proteins/genetics , Humans , Interphase/genetics , Mitosis/genetics , Multiprotein Complexes/ultrastructure , Saccharomyces cerevisiae/ultrastructure , Saccharomyces cerevisiae Proteins/ultrastructure , Sumoylation/genetics , Cohesins
15.
Trends Genet ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38702264

ABSTRACT

Uncovering the genetic architectures of brain morphology offers valuable insights into brain development and disease. Genetic association studies of brain morphological phenotypes have discovered thousands of loci. However, interpretation of these loci presents a significant challenge. One potential solution is exploring the genetic overlap between brain morphology and disorders, which can improve our understanding of their complex relationships, ultimately aiding in clinical applications. In this review, we examine current evidence on the genetic associations between brain morphology and neuropsychiatric traits. We discuss the impact of these associations on the diagnosis, prediction, and treatment of neuropsychiatric diseases, along with suggestions for future research directions.

16.
Annu Rev Neurosci ; 42: 271-293, 2019 07 08.
Article in English | MEDLINE | ID: mdl-30939100

ABSTRACT

Magnetic fields pass through tissue undiminished and without producing harmful effects, motivating their use as a wireless, minimally invasive means to control neural activity. Here, we review mechanisms and techniques coupling magnetic fields to changes in electrochemical potentials across neuronal membranes. Biological magnetoreception, although incompletely understood, is discussed as a potential source of inspiration. The emergence of magnetic properties in materials is reviewed to clarify the distinction between biomolecules containing transition metals and ferrite nanoparticles that exhibit significant net moments. We describe recent developments in the use of magnetic nanomaterials as transducers converting magnetic stimuli to forms readily perceived by neurons and discuss opportunities for multiplexed and bidirectional control as well as the challenges posed by delivery to the brain. The variety of magnetic field conditions and mechanisms by which they can be coupled to neuronal signaling cascades highlights the desirability of continued interchange between magnetism physics and neurobiology.


Subject(s)
Behavior, Animal/physiology , Brain/physiology , Magnetic Fields , Nerve Net/physiology , Animals , Anxiety/physiopathology , Humans , Neurons/physiology
17.
Mol Cell ; 73(3): 490-504.e6, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30581145

ABSTRACT

Fused in sarcoma (FUS) is an RNA binding protein involved in regulating many aspects of RNA processing and linked to several neurodegenerative diseases. Transcriptomics studies indicate that FUS binds a large variety of RNA motifs, suggesting that FUS RNA binding might be quite complex. Here, we present solution structures of FUS zinc finger (ZnF) and RNA recognition motif (RRM) domains bound to RNA. These structures show a bipartite binding mode of FUS comprising of sequence-specific recognition of a NGGU motif via the ZnF and an unusual shape recognition of a stem-loop RNA via the RRM. In addition, sequence-independent interactions via the RGG repeats significantly increase binding affinity and promote destabilization of structured RNA conformation, enabling additional binding. We further show that disruption of the RRM and ZnF domains abolishes FUS function in splicing. Altogether, our results rationalize why deciphering the RNA binding mode of FUS has been so challenging.


Subject(s)
RNA-Binding Protein FUS/chemistry , RNA/chemistry , Binding Sites , HeLa Cells , Humans , Models, Molecular , Nucleotide Motifs , Protein Binding , Protein Interaction Domains and Motifs , RNA/genetics , RNA/metabolism , RNA Recognition Motif , RNA Splicing , RNA Stability , RNA-Binding Protein FUS/genetics , RNA-Binding Protein FUS/metabolism , Structure-Activity Relationship , Zinc Fingers
18.
Proc Natl Acad Sci U S A ; 121(17): e2315696121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38640344

ABSTRACT

Quantum amplification enables the enhancement of weak signals and is of great importance for precision measurements, such as biomedical science and tests of fundamental symmetries. Here, we observe a previously unexplored magnetic amplification using dark noble-gas nuclear spins in the absence of pump light. Such dark spins exhibit remarkable coherence lasting up to 6 min and the resilience against the perturbations caused by overlapping alkali-metal gas. We demonstrate that the observed phenomenon, referred to as "dark spin amplification," significantly magnifies magnetic field signals by at least three orders of magnitude. As an immediate application, we showcase an ultrasensitive magnetometer capable of measuring subfemtotesla fields in a single 500-s measurement. Our approach is generic and can be applied to a wide range of noble-gas isotopes, and we discuss promising optimizations that could further improve the current signal amplification up to [Formula: see text] with [Formula: see text]Ne, [Formula: see text] with [Formula: see text]Xe, and [Formula: see text] with [Formula: see text]He. This work unlocks opportunities in precision measurements, including searches for ultralight dark matter with sensitivity well beyond the supernova-observation constraints.

19.
Proc Natl Acad Sci U S A ; 121(14): e2400066121, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38536754

ABSTRACT

The inherently low signal-to-noise ratio of NMR and MRI is now being addressed by hyperpolarization methods. For example, iridium-based catalysts that reversibly bind both parahydrogen and ligands in solution can hyperpolarize protons (SABRE) or heteronuclei (X-SABRE) on a wide variety of ligands, using a complex interplay of spin dynamics and chemical exchange processes, with common signal enhancements between 103 and 104. This does not approach obvious theoretical limits, and further enhancement would be valuable in many applications (such as imaging mM concentration species in vivo). Most SABRE/X-SABRE implementations require far lower fields (µT-mT) than standard magnetic resonance (>1T), and this gives an additional degree of freedom: the ability to fully modulate fields in three dimensions. However, this has been underexplored because the standard simplifying theoretical assumptions in magnetic resonance need to be revisited. Here, we take a different approach, an evolutionary strategy algorithm for numerical optimization, multi-axis computer-aided heteronuclear transfer enhancement for SABRE (MACHETE-SABRE). We find nonintuitive but highly efficient multiaxial pulse sequences which experimentally can produce a sevenfold improvement in polarization over continuous excitation. This approach optimizes polarization differently than traditional methods, thus gaining extra efficiency.

20.
Proc Natl Acad Sci U S A ; 121(13): e2315598121, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38502694

ABSTRACT

Most macroscopic magnetic phenomena (including magnetic hysteresis) are typically understood classically. Here, we examine the dynamics of a uniaxial rare-earth ferromagnet deep within the quantum regime, so that domain wall motion, and the associated hysteresis, is initiated by quantum nucleation, which then grows into large-scale domain wall motion, which is observable as an unusual form of Barkhausen noise. We observe noncritical behavior in the resulting avalanche dynamics that only can be explained by going beyond traditional renormalization group methods or classical domain wall models. We find that this "quantum Barkhausen noise" exhibits two distinct mechanisms for domain wall movement, each of which is quantum-mechanical, but with very different dependences on an external magnetic field applied transverse to the spin (Ising) axis. These observations can be understood in terms of the correlated motion of pairs of domain walls, nucleated by cotunneling of plaquettes (sections of domain wall), with plaquette pairs correlated by dipolar interactions; this correlation is suppressed by the transverse field. Similar macroscopic correlations may be expected to appear in the hysteresis of other systems with long-range interactions.

SELECTION OF CITATIONS
SEARCH DETAIL