Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Proteins ; 90(7): 1493-1505, 2022 07.
Article in English | MEDLINE | ID: mdl-35246997

ABSTRACT

Scoring docking solutions is a difficult task, and many methods have been developed for this purpose. In docking, only a handful of the hundreds of thousands of models generated by docking algorithms are acceptable, causing difficulties when developing scoring functions. Today's best scoring functions can significantly increase the number of top-ranked models but still fail for most targets. Here, we examine the possibility of utilizing predicted interface residues to score docking models generated during the scan stage of a docking algorithm. Many methods have been developed to infer the regions of a protein surface that interact with another protein, but most have not been benchmarked using docking algorithms. This study systematically tests different interface prediction methods for scoring >300.000 low-resolution rigid-body template free docking decoys. Overall we find that contact-based interface prediction by BIPSPI is the best method to score docking solutions, with >12% of first ranked docking models being acceptable. Additional experiments indicated precision as a high-importance metric when estimating interface prediction quality, focusing on docking constraints production. Finally, we discussed several limitations for adopting interface predictions as constraints in a docking protocol.


Subject(s)
Proteins , Software , Algorithms , Benchmarking , Molecular Docking Simulation , Protein Binding , Protein Conformation , Protein Interaction Mapping/methods , Proteins/chemistry
2.
J Comput Chem ; 43(17): 1140-1150, 2022 06 30.
Article in English | MEDLINE | ID: mdl-35475517

ABSTRACT

The native structures of proteins, except for notable exceptions of intrinsically disordered proteins, in general take their most stable conformation in the physiological condition to maintain their structural framework so that their biological function can be properly carried out. Experimentally, the stability of a protein can be measured by several means, among which the pulling experiment using the atomic force microscope (AFM) stands as a unique method. AFM directly measures the resistance from unfolding, which can be quantified from the observed force-extension profile. It has been shown that key features observed in an AFM pulling experiment can be well reproduced by computational molecular dynamics simulations. Here, we applied computational pulling for estimating the accuracy of computational protein structure models under the hypothesis that the structural stability would positively correlated with the accuracy, i.e. the closeness to the native, of a model. We used in total 4929 structure models for 24 target proteins from the Critical Assessment of Techniques of Structure Prediction (CASP) and investigated if the magnitude of the break force, that is, the force required to rearrange the model's structure, from the force profile was sufficient information for selecting near-native models. We found that near-native models can be successfully selected by examining their break forces suggesting that high break force indeed indicates high stability of models. On the other hand, there were also near-native models that had relatively low peak forces. The mechanisms of the stability exhibited by the break forces were explored and discussed.


Subject(s)
Molecular Dynamics Simulation , Proteins , Protein Conformation , Proteins/chemistry , Software
3.
Int J Mol Sci ; 22(5)2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33808029

ABSTRACT

Members of the human Zyxin family are LIM domain-containing proteins that perform critical cellular functions and are indispensable for cellular integrity. Despite their importance, not much is known about their structure, functions, interactions and dynamics. To provide insights into these, we used a set of in-silico tools and databases and analyzed their amino acid sequence, phylogeny, post-translational modifications, structure-dynamics, molecular interactions, and functions. Our analysis revealed that zyxin members are ohnologs. Presence of a conserved nuclear export signal composed of LxxLxL/LxxxLxL consensus sequence, as well as a possible nuclear localization signal, suggesting that Zyxin family members may have nuclear and cytoplasmic roles. The molecular modeling and structural analysis indicated that Zyxin family LIM domains share similarities with transcriptional regulators and have positively charged electrostatic patches, which may indicate that they have previously unanticipated nucleic acid binding properties. Intrinsic dynamics analysis of Lim domains suggest that only Lim1 has similar internal dynamics properties, unlike Lim2/3. Furthermore, we analyzed protein expression and mutational frequency in various malignancies, as well as mapped protein-protein interaction networks they are involved in. Overall, our comprehensive bioinformatic analysis suggests that these proteins may play important roles in mediating protein-protein and protein-nucleic acid interactions.


Subject(s)
Computational Biology , Nuclear Export Signals , Zyxin , Humans , Protein Domains , Protein Transport , Structure-Activity Relationship , Zyxin/chemistry , Zyxin/genetics , Zyxin/metabolism
4.
Proc Natl Acad Sci U S A ; 113(7): 1808-10, 2016 Feb 16.
Article in English | MEDLINE | ID: mdl-26831093

ABSTRACT

The degree of informatic independence between the physical properties of amino acids as encoded in actual protein sequences is calculated. It is shown that no physical property can be identified that carries significantly less information than others and that the information overlap between different properties and different length scales along the sequence is essentially zero. These observations suggest that bioinformatic models based on arbitrarily selected sets of physical properties are inherently deficient.


Subject(s)
Computational Biology , Proteins/chemistry , Amino Acid Sequence , Fourier Analysis
5.
Methods Mol Biol ; 2780: 129-138, 2024.
Article in English | MEDLINE | ID: mdl-38987467

ABSTRACT

Protein-protein interactions (PPIs) provide valuable insights for understanding the principles of biological systems and for elucidating causes of incurable diseases. One of the techniques used for computational prediction of PPIs is protein-protein docking calculations, and a variety of software has been developed. This chapter is a summary of software and databases used for protein-protein docking.


Subject(s)
Databases, Protein , Molecular Docking Simulation , Protein Interaction Mapping , Proteins , Software , Protein Interaction Mapping/methods , Proteins/chemistry , Proteins/metabolism , Computational Biology/methods , Protein Binding , Humans
6.
J Biomol Struct Dyn ; : 1-17, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37349943

ABSTRACT

The ACE2 receptor plays a vital role not only in the SARS-CoV-induced epidemic but also in various other diseases, including cardiovascular diseases and ARDS. While studies have explored the interactions between ACE2 and SARS-CoV proteins, comprehensive research utilizing bioinformatic tools on the ACE2 protein has been lacking. The one aim of present study was to extensively analyze the regions of the ACE2 protein. After utilizing all bioinformatics tools especially G104 and L108 regions on ACE2 were come forward. The results of our analysis revealed that possible mutations or deletions in the G104 and L108 regions play a critical role in both the biological functioning and the determination of the chemical-physical properties of ACE2. Additionally, these regions were found to be more susceptible to mutations or deletions compared to other regions of the ACE2 protein. Notably, the randomly selected peptide, LQQNGSSVLS (100-109), which includes G104 and L108, exhibited a crucial role in binding the RBD of the spike protein, as supported by docking scores. Furthermore, both MDs and iMODs results provided evidence that G104 and L108 influence the dynamics of ACE2-spike complexes. This study is expected to offer a new perspective on the ACE2-SARS-CoV interaction and other research areas where ACE2 plays a significant role, such as biotechnology (protein engineering, enzyme optimization), medicine (RAS, pulmonary and cardiac diseases), and basic research (structural motifs, stabilizing protein folds, or facilitating important inter molecular contacts, protein's proper structure and function).Communicated by Ramaswamy H. Sarma.

7.
Methods Mol Biol ; 2690: 355-373, 2023.
Article in English | MEDLINE | ID: mdl-37450159

ABSTRACT

Interactions of proteins with other macromolecules have important structural and functional roles in the basic processes of living cells. To understand and elucidate the mechanisms of interactions, it is important to know the 3D structures of the complexes. Proteomes contain numerous protein-protein complexes, for which experimentally determined structures often do not exist. Computational techniques can be a practical alternative to obtain useful complex structure models. Here, we present a web server that provides access to the LZerD and Multi-LZerD protein docking tools, which can perform both pairwise and multi-chain docking. The web server is user-friendly, with options to visualize the distribution and structures of binding poses of top-scoring models. The LZerD web server is available at https://lzerd.kiharalab.org . This chapter dictates the algorithm and step-by-step procedure to model the monomeric structures with AttentiveDist, and also provides the detail of pairwise LZerD docking, and multi-LZerD. This also provided case studies for each of the three modules.


Subject(s)
Computational Biology , Software , Molecular Docking Simulation , Computational Biology/methods , Algorithms , Proteome , Internet , Protein Binding
8.
Front Mol Biosci ; 9: 969394, 2022.
Article in English | MEDLINE | ID: mdl-36090027

ABSTRACT

Numerous biological processes in a cell are carried out by protein complexes. To understand the molecular mechanisms of such processes, it is crucial to know the quaternary structures of the complexes. Although the structures of protein complexes have been determined by biophysical experiments at a rapid pace, there are still many important complex structures that are yet to be determined. To supplement experimental structure determination of complexes, many computational protein docking methods have been developed; however, most of these docking methods are designed only for docking with two chains. Here, we introduce a novel method, RL-MLZerD, which builds multiple protein complexes using reinforcement learning (RL). In RL-MLZerD a multi-chain assembly process is considered as a series of episodes of selecting and integrating pre-computed pairwise docking models in a RL framework. RL is effective in correctly selecting plausible pairwise models that fit well with other subunits in a complex. When tested on a benchmark dataset of protein complexes with three to five chains, RL-MLZerD showed better modeling performance than other existing multiple docking methods under different evaluation criteria, except against AlphaFold-Multimer in unbound docking. Also, it emerged that the docking order of multi-chain complexes can be naturally predicted by examining preferred paths of episodes in the RL computation.

9.
Front Bioinform ; 1: 685844, 2021.
Article in English | MEDLINE | ID: mdl-36303757

ABSTRACT

Short tandem repeats (STRs) are abundant in genomic sequences and are known for comparatively high mutation rates; STRs therefore are thought to be a potent source of genetic diversity. In protein-coding sequences STRs primarily encode disorder-promoting amino acids and are often located in intrinsically disordered regions (IDRs). STRs are frequently studied in the scope of microsatellite instability (MSI) in cancer, with little focus on the connection between protein STRs and IDRs. We believe, however, that this relationship should be explicitly included when ascertaining STR functionality in cancer. Here we explore this notion using all canonical human proteins from SwissProt, wherein we detected 3,699 STRs. Over 80% of these consisted completely of disorder promoting amino acids. 62.1% of amino acids in STR sequences were predicted to also be in an IDR, compared to 14.2% for non-repeat sequences. Over-representation analysis showed STR-containing proteins to be primarily located in the nucleus where they perform protein- and nucleotide-binding functions and regulate gene expression. They were also enriched in cancer-related signaling pathways. Furthermore, we found enrichments of STR-containing proteins among those correlated with patient survival for cancers derived from eight different anatomical sites. Intriguingly, several of these cancer types are not known to have a MSI-high (MSI-H) phenotype, suggesting that protein STRs play a role in cancer pathology in non MSI-H settings. Their intrinsic link with IDRs could therefore be an attractive topic of future research to further explore the role of STRs and IDRs in cancer. We speculate that our observations may be linked to the known dosage-sensitivity of disordered proteins, which could hint at a concentration-dependent gain-of-function mechanism in cancer for proteins containing STRs and IDRs.

10.
Front Mol Biosci ; 8: 724947, 2021.
Article in English | MEDLINE | ID: mdl-34466411

ABSTRACT

Protein-protein docking is a useful tool for modeling the structures of protein complexes that have yet to be experimentally determined. Understanding the structures of protein complexes is a key component for formulating hypotheses in biophysics regarding the functional mechanisms of complexes. Protein-protein docking is an established technique for cases where the structures of the subunits have been determined. While the number of known structures deposited in the Protein Data Bank is increasing, there are still many cases where the structures of individual proteins that users want to dock are not determined yet. Here, we have integrated the AttentiveDist method for protein structure prediction into our LZerD webserver for protein-protein docking, which enables users to simply submit protein sequences and obtain full-complex atomic models, without having to supply any structure themselves. We have further extended the LZerD docking interface with a symmetrical homodimer mode. The LZerD server is available at https://lzerd.kiharalab.org/.

11.
Enzyme Microb Technol ; 141: 109632, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33051007

ABSTRACT

Pepsin, the archetypal pepsin-like aspartic protease, is irreversibly denatured when exposed to neutral pH conditions whereas renin, a structural homologue of pepsin, is fully stable and optimally active in the same conditions despite sharing highly similar enzyme architecture. To gain insight into the structural determinants of differential aspartic protease pH stability, the present study used comparative bioinformatic and structural analyses. In pepsin, an abundance of polar and aspartic acid residues were identified, a common trait with other acid-stable enzymes. Conversely, renin was shown to have increased levels of basic amino acids. In both pepsin and renin, the solvent exposure of these charged groups was high. Having similar overall acidic residue content, the solvent-exposed basic residues may allow for extensive salt bridge formation in renin, whereas in pepsin, these residues are protonated and serve to form stabilizing hydrogen bonds at low pH. Relative differences in structure and sequence in the turn and joint regions of the ß-barrel and ψ-loop in both the N- and C-terminal lobes were identified as regions of interest in defining divergent pH stability. Compared to the structural rigidity of renin, pepsin has more instability associated with the N-terminus, specifically the B/C connector. By contrast, renin exhibits greater C-terminal instability in turn and connector regions. Overall, flexibility differences in connector regions, and amino acid composition, particularly in turn and joint regions of the ß-barrel and ψ-loops, likely play defining roles in determining pH stability for renin and pepsin.


Subject(s)
Pepsin A/chemistry , Renin/chemistry , Amino Acid Sequence , Amino Acids , Animals , Computational Biology , Enzyme Stability , Humans , Hydrogen Bonding , Hydrogen-Ion Concentration , Protein Structure, Tertiary , Protein Unfolding , Sequence Alignment , Solvents/chemistry
12.
Math Biosci ; 309: 143-162, 2019 03.
Article in English | MEDLINE | ID: mdl-30118719

ABSTRACT

Understanding proteins, their structures, functions, mutual interactions, activity in cellular reactions, interactions with drugs, and expression in body cells is a key to efficient medical diagnosis, drug production, and treatment of patients. Machine learning and data exploration methods supported by many-valued logics allow to grasp the imprecision and uncertainties that naturally occur in proteins and other biomolecules. Many-valued logics, like Lukasiewicz logic or fuzzy logic, are non-classical logics that do not restrict the number of truth values to only two values of true or false, but they allow for a larger set of truth degrees. In this paper, we briefly review the use of many-valued logics, especially the fuzzy logic, in bioinformatics. Then, we focus on protein bioinformatics, and present selected applications of many-valued logics in the analysis of complex protein structures, including; (1) potential-based protein similarity searching, (2) matching proteins on the basis of secondary structures, (3) 3D protein structure alignment, (4) prediction of intrinsically disordered proteins, and (5) fuzzy querying in large collections of Big macromolecular Data. Results of presented studies show that the utilization of many-valued logics can enrich the investigations of protein molecules, in which uncertainty and imprecision are prevalent problems. The paper discusses all observed benefits brought by the application of many-valued logics in investigations related to selected protein analyzes carried out by the author.


Subject(s)
Computational Biology , Fuzzy Logic , Proteins , Uncertainty , Big Data
13.
Front Bioinform ; 3: 1338560, 2023.
Article in English | MEDLINE | ID: mdl-38250435
14.
Front Bioinform ; 1: 598878, 2021.
Article in English | MEDLINE | ID: mdl-36353353
15.
Ann Appl Stat ; 7(2): 989-1009, 2013.
Article in English | MEDLINE | ID: mdl-24052809

ABSTRACT

We develop a Bayesian model for the alignment of two point configurations under the full similarity transformations of rotation, translation and scaling. Other work in this area has concentrated on rigid body transformations, where scale information is preserved, motivated by problems involving molecular data; this is known as form analysis. We concentrate on a Bayesian formulation for statistical shape analysis. We generalize the model introduced by Green and Mardia for the pairwise alignment of two unlabeled configurations to full similarity transformations by introducing a scaling factor to the model. The generalization is not straight-forward, since the model needs to be reformulated to give good performance when scaling is included. We illustrate our method on the alignment of rat growth profiles and a novel application to the alignment of protein domains. Here, scaling is applied to secondary structure elements when comparing protein folds; additionally, we find that one global scaling factor is not in general sufficient to model these data and, hence, we develop a model in which multiple scale factors can be included to handle different scalings of shape components.

SELECTION OF CITATIONS
SEARCH DETAIL