Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 283
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(45): e2305959120, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37903280

ABSTRACT

TRAAK channels are mechano-gated two-pore-domain K+ channels. Up to now, activity of these channels has been reported in neurons but not in skeletal muscle, yet an archetype of tissue challenged by mechanical stress. Using patch clamp methods on isolated skeletal muscle fibers from adult zebrafish, we show here that single channels sharing properties of TRAAK channels, i.e., selective to K+ ions, of 56 pS unitary conductance in the presence of 5 mM external K+, activated by membrane stretch, heat, arachidonic acid, and internal alkaline pH, are present in enzymatically isolated fast skeletal muscle fibers from adult zebrafish. The kcnk4b transcript encoding for TRAAK channels was cloned and found, concomitantly with activity of mechano-gated K+ channels, to be absent in zebrafish fast skeletal muscles at the larval stage but arising around 1 mo of age. The transfer of the kcnk4b gene in HEK cells and in the adult mouse muscle, that do not express functional TRAAK channels, led to expression and activity of mechano-gated K+ channels displaying properties comparable to native zebrafish TRAAK channels. In whole-cell voltage-clamp and current-clamp conditions, membrane stretch and heat led to activation of macroscopic K+ currents and to acceleration of the repolarization phase of action potentials respectively, suggesting that heat production and membrane deformation associated with skeletal muscle activity can control muscle excitability through TRAAK channel activation. TRAAK channels may represent a teleost-specific evolutionary product contributing to improve swimming performance for escaping predators and capturing prey at a critical stage of development.


Subject(s)
Hot Temperature , Zebrafish , Animals , Mice , Chlorocebus aethiops , Zebrafish/genetics , Muscle Fibers, Skeletal/physiology , Muscle, Skeletal , COS Cells
2.
Proc Natl Acad Sci U S A ; 120(49): e2305135120, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38032931

ABSTRACT

In a family with inappropriate sinus tachycardia (IST), we identified a mutation (p.V240M) of the hyperpolarization-activated cyclic nucleotide-gated type 4 (HCN4) channel, which contributes to the pacemaker current (If) in human sinoatrial node cells. Here, we clinically study fifteen family members and functionally analyze the p.V240M variant. Macroscopic (IHCN4) and single-channel currents were recorded using patch-clamp in cells expressing human native (WT) and/or p.V240M HCN4 channels. All p.V240M mutation carriers exhibited IST that was accompanied by cardiomyopathy in adults. IHCN4 generated by p.V240M channels either alone or in combination with WT was significantly greater than that generated by WT channels alone. The variant, which lies in the N-terminal HCN domain, increased the single-channel conductance and opening frequency and probability of HCN4 channels. Conversely, it did not modify the channel sensitivity for cAMP and ivabradine or the level of expression at the membrane. Treatment with ivabradine based on functional data reversed the IST and the cardiomyopathy of the carriers. In computer simulations, the p.V240M gain-of-function variant increases If and beating rate and thus explains the IST of the carriers. The results demonstrate the importance of the unique HCN domain in HCN4, which stabilizes the channels in the closed state.


Subject(s)
Cardiomyopathies , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Adult , Humans , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , Tachycardia, Sinus , Potassium Channels/genetics , Ivabradine/pharmacology , Cyclic Nucleotide-Gated Cation Channels/genetics , Cyclic Nucleotide-Gated Cation Channels/metabolism , Gain of Function Mutation , Muscle Proteins/genetics , Muscle Proteins/metabolism , Sinoatrial Node , Cardiomyopathies/genetics
3.
J Biol Chem ; 300(5): 107266, 2024 May.
Article in English | MEDLINE | ID: mdl-38583864

ABSTRACT

We describe molecular-level functional changes in the α4ß2 nicotinic acetylcholine receptor by a leucine residue insertion in the M2 transmembrane domain of the α4 subunit associated with sleep-related hyperkinetic epilepsy. Measurements of agonist-elicited single-channel currents reveal the primary effect is to stabilize the open channel state, while the secondary effect is to promote reopening of the channel. These dual effects prolong the durations of bursts of channel openings equally for the two major stoichiometric forms of the receptor, (α4)2(ß2)3 and (α4)3(ß2)2, indicating the functional impact is independent of mutant copy number per receptor. Altering the location of the residue insertion within M2 shows that functionally pivotal structures are confined to a half turn of the M2 α-helix. Residue substitutions within M2 and surrounding α-helices reveal that both intrasubunit and intersubunit interactions mediate the increase in burst duration. These interactions impacting burst duration depend linearly on the size and hydrophobicity of the substituting residue. Together, the results reveal a novel structural region of the α4ß2 nicotinic acetylcholine receptor in which interhelical interactions tune the stability of the open channel state.


Subject(s)
Ion Channel Gating , Receptors, Nicotinic , Animals , Humans , HEK293 Cells , Ion Channel Gating/genetics , Mutagenesis, Insertional , Protein Domains , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/genetics , Receptors, Nicotinic/chemistry , Xenopus laevis
4.
J Biol Chem ; 300(4): 107156, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38479601

ABSTRACT

Mechanically activated Piezo1 channels undergo transitions from closed to open-state in response to pressure and other mechanical stimuli. However, the molecular details of these mechanosensitive gating transitions are unknown. Here, we used cell-attached pressure-clamp recordings to acquire single channel data at steady-state conditions (where inactivation has settled down), at various pressures and voltages. Importantly, we identify and analyze subconductance states of the channel which were not reported before. Pressure-dependent activation of Piezo1 increases the occupancy of open and subconductance state at the expense of decreased occupancy of shut-states. No significant change in the mean open time of subconductance states was observed with increasing negative pipette pressure or with varying voltages (ranging from -40 to -100 mV). Using Markov-chain modeling, we identified a minimal four-states kinetic scheme, which recapitulates essential characteristics of the single channel data, including that of the subconductance level. This study advances our understanding of Piezo1-gating mechanism in response to discrete stimuli (such as pressure and voltage) and paves the path to develop cellular and tissue level models to predict Piezo1 function in various cell types.


Subject(s)
Ion Channel Gating , Ion Channels , Mechanotransduction, Cellular , Pressure , Humans , HEK293 Cells , Ion Channel Gating/physiology , Ion Channels/metabolism , Kinetics , Markov Chains
5.
Biochem J ; 481(12): 741-758, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38752978

ABSTRACT

Mutations in more than half of human connexin genes encoding gap junction (GJ) subunits have been linked to inherited human diseases. Functional studies of human GJ channels are essential for revealing mechanistic insights into the etiology of disease-linked connexin mutants. However, the commonly used Xenopus oocytes, N2A, HeLa, and other model cells for recombinant expression of human connexins have different and significant limitations. Here we developed a human cell line (HEK293) with each of the endogenous connexins (Cx43 and Cx45) knocked out using the CRISPR-Cas9 system. Double knockout HEK293 cells showed no background GJ coupling, were easily transfected with several human connexin genes (such as those encoding Cx46, Cx50, Cx37, Cx45, Cx26, and Cx36) which successfully formed functional GJs and were readily accessible for dual patch clamp analysis. Single knockout Cx43 or Cx45 HEK cell lines could also be used to characterize human GJ channels formed by Cx45 or Cx43, respectively, with an expression level suitable for studying macroscopic and single channel GJ channel properties. A cardiac arrhythmia linked Cx45 mutant R184G failed to form functional GJs in DKO HEK293 cells with impaired localizations. These genetically engineered HEK293 cells are well suited for patch clamp study of human GJ channels.


Subject(s)
Connexins , Gap Junctions , Patch-Clamp Techniques , Humans , HEK293 Cells , Connexins/genetics , Connexins/metabolism , Gap Junctions/metabolism , Gap Junctions/genetics , Connexin 43/genetics , Connexin 43/metabolism , CRISPR-Cas Systems , Genetic Engineering/methods , Gene Knockout Techniques/methods
6.
Proc Natl Acad Sci U S A ; 119(12): e2114046119, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35286194

ABSTRACT

SignificancePhosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) levels regulate cell membrane voltage by gluing two halves of a K+ channel together and opening the pore. PI(4)P competes with this process. Because both of these lipids are relatively abundant in the plasma membrane and are directly interconvertible through the action of specific enzymes, they may function together to regulate channel activity.


Subject(s)
Phosphatidylinositol 4,5-Diphosphate , Phosphatidylinositols , Potassium Channels, Inwardly Rectifying , Cell Membrane/metabolism , Phosphatidylinositol 4,5-Diphosphate/metabolism , Phosphatidylinositols/metabolism , Potassium Channels, Inwardly Rectifying/metabolism
7.
Nano Lett ; 24(12): 3566-3574, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38316144

ABSTRACT

Membrane pores are exploited for the stochastic sensing of various analytes, and here, we use electrical recordings to explore the interaction of PEGylated peptides of different sizes with a protein pore, CymA. This wide-diameter natural pore comprises densely filled charged residues, facilitating electrophoretic binding of polyethylene glycol (PEG) tagged with a nonaarginine peptide. The small PEG 200 peptide conjugates produced monodisperse blockages and exhibited voltage-dependent translocation across the pores. Notably, the larger PEG 1000 and 2000 peptide conjugates yielded heterogeneous blockages, indicating a multitude of PEG conformations hindering their translocation through the pore. Furthermore, a much larger PEG 5000 peptide occludes the pore entrance, resulting in complete closure. The competitive binding of different PEGylated peptides with the same pore produced specific blockage signals reflecting their identity, size, and conformation. Our proposed model of sensing distinct polypeptide conformations corresponds to disordered protein unfolding, suggesting that this pore can find applications in proteomics.


Subject(s)
Nanopores , Peptides/chemistry , Molecular Conformation , Polyethylene Glycols/chemistry
8.
J Cell Physiol ; : e31371, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38988073

ABSTRACT

Piezo1 is a Ca2+-permeable mechanically activated ion channel that is involved in various physiological processes and cellular responses to mechanical stimuli. The study of biophysical characteristics of Piezo1 is important for understanding the mechanisms of its function and regulation. Stretch activation, a routine approach that is applied to stimulate Piezo1 activity in the plasma membrane, has a number of significant limitations that complicate precise single-channel analysis. Here, we aimed to determine pore properties of native Piezo1, specifically to examine permeation for physiologically relevant signaling divalent ions (calcium and magnesium) in human myeloid leukemia K562 cells using Piezo1-specific chemical agonist, Yoda1. Using a combination of low-noise single-current patch-clamp recordings of Piezo1 activity in response to Yoda1, we have determined single-channel characteristics of native Piezo1 under various ionic conditions. Whole-cell assay allowed us to directly measure Piezo1 single currents carried by Ca2+ or Mg2+ ions in the absence of other permeable cations in the extracellular solutions; unitary conductance values estimated at various concentrations of Mg2+ revealed strong saturation effect. Patch clamp data complemented with fluorescent imaging clearly evidenced Ca2+ and Mg2+ entry via native Piezo1 channel in human leukemia K562 cells. Mg2+ influx via Piezo1 was detected under quasi-physiological conditions, thus showing that Piezo1 channels could potentially provide the physiological relevant pathway for Mg2+ ion transport and contribute to the regulation of Mg2+-dependent intracellular signaling.

9.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Article in English | MEDLINE | ID: mdl-33741736

ABSTRACT

Ion selectivity of the potassium channel is crucial for regulating electrical activity in living cells; however, the mechanism underlying the potassium channel selectivity that favors large K+ over small Na+ remains unclear. Generally, Na+ is not completely excluded from permeation through potassium channels. Herein, the distinct nature of Na+ conduction through the prototypical KcsA potassium channel was examined. Single-channel current recordings revealed that, at a high Na+ concentration (200 mM), the channel was blocked by Na+, and this blocking was relieved at high membrane potentials, suggesting the passage of Na+ across the channel. At a 2,000 mM Na+ concentration, single-channel Na+ conductance was measured as one-eightieth of the K+ conductance, indicating that the selectivity filter allows substantial conduit of Na+ Molecular dynamics simulations revealed unprecedented atomic trajectories of Na+ permeation. In the selectivity filter having a series of carbonyl oxygen rings, a smaller Na+ was distributed off-center in eight carbonyl oxygen-coordinated sites as well as on-center in four carbonyl oxygen-coordinated sites. This amphipathic nature of Na+ coordination yielded a continuous but tortuous path along the filter. Trapping of Na+ in many deep free energy wells in the filter caused slow elution. Conversely, K+ is conducted via a straight path, and as the number of occupied K+ ions increased to three, the concerted conduction was accelerated dramatically, generating the conductance selectivity ratio of up to 80. The selectivity filter allows accommodation of different ion species, but the ion coordination and interactions between ions render contrast conduction rates, constituting the potassium channel conductance selectivity.


Subject(s)
Ion Channel Gating , Potassium Channels/metabolism , Potassium/metabolism , Sodium/metabolism , Carbon Dioxide/chemistry , Carbon Dioxide/metabolism , Cell Membrane Permeability , Molecular Conformation , Molecular Dynamics Simulation , Potassium/chemistry , Potassium Channels/chemistry , Sodium/chemistry , Structure-Activity Relationship
10.
Sensors (Basel) ; 24(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38544157

ABSTRACT

Flow experience, characterized by deep immersion and complete engagement in a task, is highly recognized for its positive psychological impacts. However, previous studies have been restricted to using a single type of task, and the exploration of its neural correlates has been limited. This study aimed to explore the neural correlates of flow experience with the employment of multifaceted flow-induction tasks. Six tasks spanning mindfulness, artistic tasks, free recall, and varying levels of Tetris complexity (easy, flow, and hard conditions) were employed to have relatively complete coverage of the known flow-induction tasks for a better induction of individualized flow experience. Twenty-eight participants were recruited to perform these six tasks with a single-channel prefrontal EEG recording. Significant positive correlations were observed between the subjective flow scores of the individual's best-flow-experience task and the EEG activities at the delta, gamma, and theta bands, peaking at latencies around 2 min after task onset. The outcomes of regression analysis yield a maximum R2 of 0.163. Our findings report the EEG correlates of flow experience in naturalistic settings and highlight the potential of portable and unobtrusive EEG technology for an objective measurement of flow experience.


Subject(s)
Brain , Mindfulness , Humans , Electroencephalography
11.
Sensors (Basel) ; 24(4)2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38400354

ABSTRACT

Autonomous sleep tracking at home has become inevitable in today's fast-paced world. A crucial aspect of addressing sleep-related issues involves accurately classifying sleep stages. This paper introduces a novel approach PSO-XGBoost, combining particle swarm optimisation (PSO) with extreme gradient boosting (XGBoost) to enhance the XGBoost model's performance. Our model achieves improved overall accuracy and faster convergence by leveraging PSO to fine-tune hyperparameters. Our proposed model utilises features extracted from EEG signals, spanning time, frequency, and time-frequency domains. We employed the Pz-oz signal dataset from the sleep-EDF expanded repository for experimentation. Our model achieves impressive metrics through stratified-K-fold validation on ten selected subjects: 95.4% accuracy, 95.4% F1-score, 95.4% precision, and 94.3% recall. The experiment results demonstrate the effectiveness of our technique, showcasing an average accuracy of 95%, outperforming traditional machine learning classifications. The findings revealed that the feature-shifting approach supplements the classification outcome by 3 to 4 per cent. Moreover, our findings suggest that prefrontal EEG derivations are ideal options and could open up exciting possibilities for using wearable EEG devices in sleep monitoring. The ease of obtaining EEG signals with dry electrodes on the forehead enhances the feasibility of this application. Furthermore, the proposed method demonstrates computational efficiency and holds significant value for real-time sleep classification applications.


Subject(s)
Disruptive Technology , Humans , Electroencephalography/methods , Sleep Stages , Sleep , Machine Learning
12.
J Neurosci ; 42(47): 8758-8766, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36216503

ABSTRACT

GABAA receptors (GABAARs) mediate the majority of fast inhibitory transmission throughout the brain. Although it is widely known that pore-forming subunits critically determine receptor function, it is unclear whether their single-channel properties are modulated by GABAAR-associated transmembrane proteins. We previously identified Shisa7 as a GABAAR auxiliary subunit that modulates the trafficking, pharmacology, and deactivation properties of these receptors. However, whether Shisa7 also regulates GABAAR single-channel properties has yet to be determined. Here, we performed single-channel recordings of α2ß3γ2L GABAARs cotransfected with Shisa7 in HEK293T cells and found that while Shisa7 does not change channel slope conductance, it reduced the frequency of receptor openings. Importantly, Shisa7 modulates GABAAR gating by decreasing the duration and open probability within bursts. Through kinetic analysis of individual dwell time components, activation modeling, and macroscopic simulations, we demonstrate that Shisa7 accelerates GABAAR deactivation by governing the time spent between close and open states during gating. Together, our data provide a mechanistic basis for how Shisa7 controls GABAAR gating and reveal for the first time that GABAAR single-channel properties can be modulated by an auxiliary subunit. These findings shed light on processes that shape the temporal dynamics of GABAergic transmission.SIGNIFICANCE STATEMENT Although GABAA receptor (GABAAR) single-channel properties are largely determined by pore-forming subunits, it remains unknown whether they are also controlled by GABAAR-associated transmembrane proteins. Here, we show that Shisa7, a recently identified GABAAR auxiliary subunit, modulates GABAAR activation by altering single-channel burst kinetics. These results reveal that Shisa7 primarily decreases the duration and open probability of receptor burst activity during gating, leading to accelerated GABAAR deactivation. These experiments are the first to assess the gating properties of GABAARs in the presence of an auxiliary subunit and provides a kinetic basis for how Shisa7 modifies temporal attributes of GABAergic transmission at the single-channel level.


Subject(s)
Membrane Proteins , Receptors, GABA-A , Humans , Receptors, GABA-A/metabolism , Kinetics , HEK293 Cells , Membrane Proteins/metabolism , Carrier Proteins/metabolism , gamma-Aminobutyric Acid/metabolism
13.
J Physiol ; 601(17): 3847-3868, 2023 09.
Article in English | MEDLINE | ID: mdl-37470338

ABSTRACT

Cardiac voltage-gated sodium (Na+ ) channels (Nav 1.5) are crucial for myocardial electrical excitation. Recent studies based on single-channel recordings have suggested that Na+ channels interact functionally and exhibit coupled gating. However, the analysis of such recordings frequently relies on manual interventions, which can lead to bias. Here, we developed an automated pipeline to de-trend and idealize single-channel currents, and assessed possible functional interactions in cell-attached patch clamp experiments in HEK293 cells expressing human Nav 1.5 channels as well as in adult mouse and rabbit ventricular cardiomyocytes. Our pipeline involved de-trending individual sweeps by linear optimization using a library of predefined functions, followed by digital filtering and baseline offset. Subsequently, the processed sweeps were idealized based on the idea that the ensemble average of the idealized current identified by thresholds between current levels reconstructs at best the ensemble average current from the de-trended sweeps. This reconstruction was achieved by non-linear optimization. To ascertain functional interactions, we examined the distribution of the numbers of open channels at every time point during the activation protocol and compared it to the distribution expected for independent channels. We also examined whether the channels tended to synchronize their openings and closings. However, we did not uncover any solid evidence of such interactions in our recordings. Rather, our results indicate that wild-type Nav 1.5 channels are independent entities or exhibit only very weak functional interactions that are probably irrelevant under physiological conditions. Nevertheless, our unbiased analysis will be important for further studies examining whether auxiliary proteins potentiate functional Na+ channel interactions. KEY POINTS: Nav 1.5 channels are critical for cardiac excitation. They are part of macromolecular interacting complexes, and it was previously suggested that two neighbouring channels may functionally interact and exhibit coupled gating. Manual interventions when processing single-channel recordings can lead to bias and inaccurate data interpretation. We developed an automated pipeline to de-trend and idealize single-channel currents and assessed possible functional interactions between Nav 1.5 channels in HEK293 cells and cardiomyocytes during activation protocols using the cell-attached patch clamp technique. In recordings consisting of up to 1000 sweeps from the same patch, our analysis did not reveal any evidence of functional interactions or coupled gating between wild-type Nav 1.5 channels. Our unbiased analysis may be useful in further studies examining how Na+ channel interactions are affected by mutations and auxiliary proteins.


Subject(s)
Myocardium , Myocytes, Cardiac , Mice , Humans , Animals , Rabbits , HEK293 Cells , Myocytes, Cardiac/physiology
14.
J Biol Chem ; 298(10): 102487, 2022 10.
Article in English | MEDLINE | ID: mdl-36113582

ABSTRACT

Serratia marcescens is an opportunistic pathogen that can utilize chitin as a carbon source, through its ability to produce chitin-degrading enzymes to digest chitin and membrane transporters to transport the degradation products (chitooligosaccharides) into the cells. Further characterization of these proteins is important to understand details of chitin metabolism. Here, we investigate the properties and function of the S. marcescens chitoporin, namely SmChiP, a chitooligosaccharide transporter. We show that SmChiP is a monomeric porin that forms a stable channel in artificial phospholipid membranes, with an average single-channel conductance of 0.5 ± 0.02 nS in 1 M KCl electrolyte. Additionally, we demonstrated that SmChiP allowed the passage of small molecules with a size exclusion limit of <300 Da and exhibited substrate specificity toward chitooligosaccharides, both in membrane and detergent-solubilized forms. We found that SmChiP interacted strongly with chitopentaose (Kd = 23 ± 2.0 µM) and chitohexaose (Kd = 17 ± 0.6 µM) but did not recognize nonchitose oligosaccharides (maltohexaose and cellohexaose). Given that S. marcescens can use chitin as a primary energy source, SmChiP may serve as a target for further development of nutrient-based antimicrobial therapies directed against multidrug antibiotic-resistant S. marcescens infections.


Subject(s)
Chitin , Porins , Serratia marcescens , Chitin/metabolism , Chitosan/metabolism , Porins/metabolism , Particle Size , Membranes, Artificial
15.
J Biol Chem ; 298(12): 102701, 2022 12.
Article in English | MEDLINE | ID: mdl-36395884

ABSTRACT

The L-type Ca2+ channel CaV1.2 controls gene expression, cardiac contraction, and neuronal activity. Calmodulin (CaM) governs CaV1.2 open probability (Po) and Ca2+-dependent inactivation (CDI) but the mechanisms remain unclear. Here, we present electrophysiological data that identify a half Ca2+-saturated CaM species (Ca2/CaM) with Ca2+ bound solely at the third and fourth EF-hands (EF3 and EF4) under resting Ca2+ concentrations (50-100 nM) that constitutively preassociates with CaV1.2 to promote Po and CDI. We also present an NMR structure of a complex between the CaV1.2 IQ motif (residues 1644-1665) and Ca2/CaM12', a calmodulin mutant in which Ca2+ binding to EF1 and EF2 is completely disabled. We found that the CaM12' N-lobe does not interact with the IQ motif. The CaM12' C-lobe bound two Ca2+ ions and formed close contacts with IQ residues I1654 and Y1657. I1654A and Y1657D mutations impaired CaM binding, CDI, and Po, as did disabling Ca2+ binding to EF3 and EF4 in the CaM34 mutant when compared to WT CaM. Accordingly, a previously unappreciated Ca2/CaM species promotes CaV1.2 Po and CDI, identifying Ca2/CaM as an important mediator of Ca signaling.


Subject(s)
Calcium Channels, L-Type , Calmodulin , Calmodulin/metabolism , Calcium Channels, L-Type/metabolism , Calcium Signaling , Protein Binding , Mutation , Calcium/metabolism
16.
J Biol Chem ; 298(9): 102326, 2022 09.
Article in English | MEDLINE | ID: mdl-35933015

ABSTRACT

Atrial fibrillation is the most common sustained cardiac arrhythmia in humans. Current atrial fibrillation antiarrhythmic drugs have limited efficacy and carry the risk of ventricular proarrhythmia. GsMTx4, a mechanosensitive channel-selective inhibitor, has been shown to suppress arrhythmias through the inhibition of stretch-activated channels (SACs) in the heart. The cost of synthesizing this peptide is a major obstacle to clinical use. Here, we studied two types of short peptides derived from GsMTx4 for their effects on a stretch-activated big potassium channel (SAKcaC) from the heart. Type I, a 17-residue peptide (referred to as Pept 01), showed comparable efficacy, whereas type II (i.e., Pept 02), a 10-residue peptide, exerted even more potent inhibitory efficacy on SAKcaC compared with GsMTx4. We identified through mutagenesis important sequences required for peptide functions. In addition, molecular dynamics simulations revealed common structural features with a hydrophobic head followed by a positively charged protrusion that may be involved in peptide channel-lipid interactions. Furthermore, we suggest that these short peptides may inhibit SAKcaC through a specific modification to the mechanogate, as the inhibitory effects for both types of peptides were mostly abolished when tested with a mechano-insensitive channel variant (STREX-del) and a nonmechanosensitive big potassium (mouse Slo1) channel. These findings may offer an opportunity for the development of a new class of drugs in the treatment of cardiac arrhythmia generated by excitatory SACs in the heart.


Subject(s)
Anti-Arrhythmia Agents , Intercellular Signaling Peptides and Proteins , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits , Neurotoxins , Peptides , Spider Venoms , Animals , Anti-Arrhythmia Agents/chemistry , Anti-Arrhythmia Agents/pharmacology , Anti-Arrhythmia Agents/therapeutic use , Atrial Fibrillation/drug therapy , Humans , Intercellular Signaling Peptides and Proteins/chemistry , Intercellular Signaling Peptides and Proteins/pharmacology , Intercellular Signaling Peptides and Proteins/therapeutic use , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/antagonists & inhibitors , Lipids , Mice , Neurotoxins/chemistry , Neurotoxins/pharmacology , Peptides/chemistry , Peptides/pharmacology , Spider Venoms/chemistry , Spider Venoms/pharmacology , Spider Venoms/therapeutic use
17.
Eur Biophys J ; 52(3): 131-143, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37052656

ABSTRACT

Nowadays, reports of antimicrobial resistance (AMR) against many antibiotics are increasing because of their misapplication. With this rise, there is a serious decrease in the discovery and development of new types of antibiotics amid an increase in multi-drug resistance. Unfermented Acinetobacter baumannii from gram-negative bacteria, which is one of the main causes of nosocomial infections and multi-drug resistance, has 4 main kinds of antibiotic resistance mechanism: inactivating antibiotics by enzymes, reduced numbers of porins and changing of their target or cellular functions due to mutations, and efflux pumps. In this study, characterization of the possible mutations in OprD (OccAB1) porins from hospital strains of A. baumannii were investigated using single channel electrophysiology and compared with the standard OprD isolated from wild type ATCC 19,606. For this aim, 5 A. baumannii bacteria samples were obtained from patients infected with A. baumannii, after which OprD porins were isolated from these A. baumannii strains. OprD porins were then inserted in an artificial lipid bilayer and the current-voltage curves were obtained using electrical recordings through a pair of Ag/AgCl electrodes. We observed that each porin has a characteristic conductance and single channel recording, which then leads to differences in channel diameter. Finally, the single channel data have been compared with the gene sequences of each porin. It was interesting to find out that each porin isolated has a unique porin diameter and decreased anion selectivity compared to the wild type.


Subject(s)
Acinetobacter baumannii , Humans , Acinetobacter baumannii/genetics , Porins/genetics , Anti-Bacterial Agents , Hospitals
18.
EMBO Rep ; 22(11): e53233, 2021 11 04.
Article in English | MEDLINE | ID: mdl-34472684

ABSTRACT

TRPV3, a representative of the vanilloid subfamily of TRP channels, is predominantly expressed in skin keratinocytes and has been implicated in cutaneous sensation and associated with numerous skin pathologies and cancers. TRPV3 is inhibited by the natural coumarin derivative osthole, an active ingredient of Cnidium monnieri, which has been used in traditional Chinese medicine for the treatment of a variety of human diseases. However, the structural basis of channel inhibition by osthole has remained elusive. Here we present cryo-EM structures of TRPV3 in complex with osthole, revealing two types of osthole binding sites in the transmembrane region of TRPV3 that coincide with the binding sites of agonist 2-APB. Osthole binding converts the channel pore into a previously unidentified conformation with a widely open selectivity filter and closed intracellular gate. Our structures provide insight into competitive inhibition of TRPV3 by osthole and can serve as a template for the design of osthole chemistry-inspired drugs targeting TRPV3-associated diseases.


Subject(s)
Coumarins , TRPV Cation Channels , Coumarins/metabolism , Coumarins/pharmacology , Humans , Keratinocytes/metabolism , Skin/metabolism , TRPV Cation Channels/metabolism
19.
Methods ; 202: 173-184, 2022 06.
Article in English | MEDLINE | ID: mdl-33901644

ABSTRACT

Driver drowsiness is one of the main factors leading to road fatalities and hazards in the transportation industry. Electroencephalography (EEG) has been considered as one of the best physiological signals to detect drivers' drowsy states, since it directly measures neurophysiological activities in the brain. However, designing a calibration-free system for driver drowsiness detection with EEG is still a challenging task, as EEG suffers from serious mental and physical drifts across different subjects. In this paper, we propose a compact and interpretable Convolutional Neural Network (CNN) to discover shared EEG features across different subjects for driver drowsiness detection. We incorporate the Global Average Pooling (GAP) layer in the model structure, allowing the Class Activation Map (CAM) method to be used for localizing regions of the input signal that contribute most for classification. Results show that the proposed model can achieve an average accuracy of 73.22% on 11 subjects for 2-class cross-subject EEG signal classification, which is higher than conventional machine learning methods and other state-of-art deep learning methods. It is revealed by the visualization technique that the model has learned biologically explainable features, e.g., Alpha spindles and Theta burst, as evidence for the drowsy state. It is also interesting to see that the model uses artifacts that usually dominate the wakeful EEG, e.g., muscle artifacts and sensor drifts, to recognize the alert state. The proposed model illustrates a potential direction to use CNN models as a powerful tool to discover shared features related to different mental states across different subjects from EEG signals.


Subject(s)
Electroencephalography , Wakefulness , Artifacts , Humans , Machine Learning , Neural Networks, Computer
20.
Cell Mol Life Sci ; 79(11): 564, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36282426

ABSTRACT

Cannabidiol (CBD), an important terpenoid compound from marijuana with no psychoactive effects, has become of great pharmaceutical interest for several health conditions. As CBD is a multitarget drug, there is a need to establish the molecular mechanisms by which CBD may exert therapeutic as well as adverse effects. The α7 nicotinic acetylcholine receptor (α7 nAChR) is a cation-permeable ACh-gated channel present in the nervous system and in non-neuronal cells. It is involved in different pathological conditions, including neurological and neurodegenerative disorders, inflammation, and cancer. By high-resolution single-channel recordings and confocal microscopy, we here reveal how CBD modulates α7 nAChR ionotropic and metabotropic functions. CBD leads to a profound concentration-dependent decrease of α7 nAChR single-channel activity with an IC50 in the sub-micromolar range. The inhibition of α7 nAChR activity, which takes place through a membrane pathway, is neither mediated by receptor phosphorylation nor overcome by positive allosteric modulators and is compatible with CBD stabilization of resting or desensitized α7 nAChR conformational states. CBD modulation is complex as it also leads to the later appearance of atypical, low-frequency α7 nAChR channel openings. At the cellular level, CBD inhibits the increase in intracellular calcium triggered by α7 nAChR activation, thus decreasing cell calcium responses. The modulation of α7 nAChR is of pharmacological relevance and should be considered in the evaluation of CBD potential therapeutic uses. Thus, our study provides novel molecular information of CBD multiple actions and targets, which is required to set the basis for prospective applications in human health.


Subject(s)
Cannabidiol , Receptors, Nicotinic , Humans , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Calcium/metabolism , Cannabidiol/pharmacology , Receptors, Nicotinic/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL