Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 816
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 184(19): 4904-4918.e11, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34433012

ABSTRACT

Selfish centromere DNA sequences bias their transmission to the egg in female meiosis. Evolutionary theory suggests that centromere proteins evolve to suppress costs of this "centromere drive." In hybrid mouse models with genetically different maternal and paternal centromeres, selfish centromere DNA exploits a kinetochore pathway to recruit microtubule-destabilizing proteins that act as drive effectors. We show that such functional differences are suppressed by a parallel pathway for effector recruitment by heterochromatin, which is similar between centromeres in this system. Disrupting the kinetochore pathway with a divergent allele of CENP-C reduces functional differences between centromeres, whereas disrupting heterochromatin by CENP-B deletion amplifies the differences. Molecular evolution analyses using Murinae genomes identify adaptive evolution in proteins in both pathways. We propose that centromere proteins have recurrently evolved to minimize the kinetochore pathway, which is exploited by selfish DNA, relative to the heterochromatin pathway that equalizes centromeres, while maintaining essential functions.


Subject(s)
Centromere Protein B/metabolism , Centromere/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Alleles , Amino Acid Sequence , Animals , Biological Evolution , CRISPR-Cas Systems/genetics , Centromere Protein A/metabolism , Chromosomal Proteins, Non-Histone/chemistry , Chromosomes, Mammalian/metabolism , Female , Heterochromatin/metabolism , Kinetochores/metabolism , Male , Mice, Inbred C57BL , Models, Biological , Oocytes/metabolism , Protein Domains
2.
Cell ; 178(3): 624-639.e19, 2019 07 25.
Article in English | MEDLINE | ID: mdl-31348889

ABSTRACT

Recent breakthroughs with synthetic budding yeast chromosomes expedite the creation of synthetic mammalian chromosomes and genomes. Mammals, unlike budding yeast, depend on the histone H3 variant, CENP-A, to epigenetically specify the location of the centromere-the locus essential for chromosome segregation. Prior human artificial chromosomes (HACs) required large arrays of centromeric α-satellite repeats harboring binding sites for the DNA sequence-specific binding protein, CENP-B. We report the development of a type of HAC that functions independently of these constraints. Formed by an initial CENP-A nucleosome seeding strategy, a construct lacking repetitive centromeric DNA formed several self-sufficient HACs that showed no uptake of genomic DNA. In contrast to traditional α-satellite HAC formation, the non-repetitive construct can form functional HACs without CENP-B or initial CENP-A nucleosome seeding, revealing distinct paths to centromere formation for different DNA sequence types. Our developments streamline the construction and characterization of HACs to facilitate mammalian synthetic genome efforts.


Subject(s)
Centromere/metabolism , Chromosomes, Artificial, Human/metabolism , DNA, Satellite/metabolism , Binding Sites , Cell Line, Tumor , Centromere/genetics , Centromere Protein A/genetics , Centromere Protein A/metabolism , Centromere Protein B/deficiency , Centromere Protein B/genetics , Centromere Protein B/metabolism , Epigenesis, Genetic , Humans , Nucleosomes/chemistry , Nucleosomes/metabolism , Plasmids/genetics , Plasmids/metabolism
3.
Mol Cell ; 83(13): 2188-2205.e13, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37295434

ABSTRACT

Kinetochore is an essential protein complex required for accurate chromosome segregation. The constitutive centromere-associated network (CCAN), a subcomplex of the kinetochore, associates with centromeric chromatin and provides a platform for the kinetochore assembly. The CCAN protein CENP-C is thought to be a central hub for the centromere/kinetochore organization. However, the role of CENP-C in CCAN assembly needs to be elucidated. Here, we demonstrate that both the CCAN-binding domain and the C-terminal region that includes the Cupin domain of CENP-C are necessary and sufficient for chicken CENP-C function. Structural and biochemical analyses reveal self-oligomerization of the Cupin domains of chicken and human CENP-C. We find that the CENP-C Cupin domain oligomerization is vital for CENP-C function, centromeric localization of CCAN, and centromeric chromatin organization. These results suggest that CENP-C facilitates the centromere/kinetochore assembly through its oligomerization.


Subject(s)
Centromere , Kinetochores , Humans , Kinetochores/metabolism , Centromere/genetics , Centromere/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Chromatin , Centromere Protein A/genetics , Centromere Protein A/metabolism
4.
Mol Cell ; 83(4): 523-538.e7, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36702125

ABSTRACT

Centromeres are essential for chromosome segregation in most animals and plants yet are among the most rapidly evolving genome elements. The mechanisms underlying this paradoxical phenomenon remain enigmatic. Here, we report that human centromeres innately harbor a striking enrichment of DNA breaks within functionally active centromere regions. Establishing a single-cell imaging strategy that enables comparative assessment of DNA breaks at repetitive regions, we show that centromeric DNA breaks are induced not only during active cellular proliferation but also de novo during quiescence. Markedly, centromere DNA breaks in quiescent cells are resolved enzymatically by the evolutionarily conserved RAD51 recombinase, which in turn safeguards the specification of functional centromeres. This study highlights the innate fragility of centromeres, which may have been co-opted over time to reinforce centromere specification while driving rapid evolution. The findings also provide insights into how fragile centromeres are likely to contribute to human disease.


Subject(s)
Centromere , DNA , Animals , Humans , Centromere/genetics , Centromere/metabolism , Centromere Protein A , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism , Recombination, Genetic
5.
Nature ; 629(8010): 136-145, 2024 May.
Article in English | MEDLINE | ID: mdl-38570684

ABSTRACT

Human centromeres have been traditionally very difficult to sequence and assemble owing to their repetitive nature and large size1. As a result, patterns of human centromeric variation and models for their evolution and function remain incomplete, despite centromeres being among the most rapidly mutating regions2,3. Here, using long-read sequencing, we completely sequenced and assembled all centromeres from a second human genome and compared it to the finished reference genome4,5. We find that the two sets of centromeres show at least a 4.1-fold increase in single-nucleotide variation when compared with their unique flanks and vary up to 3-fold in size. Moreover, we find that 45.8% of centromeric sequence cannot be reliably aligned using standard methods owing to the emergence of new α-satellite higher-order repeats (HORs). DNA methylation and CENP-A chromatin immunoprecipitation experiments show that 26% of the centromeres differ in their kinetochore position by >500 kb. To understand evolutionary change, we selected six chromosomes and sequenced and assembled 31 orthologous centromeres from the common chimpanzee, orangutan and macaque genomes. Comparative analyses reveal a nearly complete turnover of α-satellite HORs, with characteristic idiosyncratic changes in α-satellite HORs for each species. Phylogenetic reconstruction of human haplotypes supports limited to no recombination between the short (p) and long (q) arms across centromeres and reveals that novel α-satellite HORs share a monophyletic origin, providing a strategy to estimate the rate of saltatory amplification and mutation of human centromeric DNA.


Subject(s)
Centromere , Evolution, Molecular , Genetic Variation , Animals , Humans , Centromere/genetics , Centromere/metabolism , Centromere Protein A/metabolism , DNA Methylation/genetics , DNA, Satellite/genetics , Kinetochores/metabolism , Macaca/genetics , Pan troglodytes/genetics , Polymorphism, Single Nucleotide/genetics , Pongo/genetics , Male , Female , Reference Standards , Chromatin Immunoprecipitation , Haplotypes , Mutation , Gene Amplification , Sequence Alignment , Chromatin/genetics , Chromatin/metabolism , Species Specificity
6.
Mol Cell ; 82(11): 1976-1978, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35659323

ABSTRACT

Structures of the reconstituted human inner kinetochore complex by Pesenti et al. (2022) and Yatskevich et al. (2022) raise the question of whether it is the CENP-A nucleosome or the CCAN complex itself that provides the foundation for kinetochore assembly.


Subject(s)
Chromatin , Kinetochores , Centromere/genetics , Centromere Protein A/genetics , Chromatin/genetics , Humans , Nucleosomes/genetics
7.
Mol Cell ; 82(9): 1751-1767.e8, 2022 05 05.
Article in English | MEDLINE | ID: mdl-35320753

ABSTRACT

Chromosome inheritance depends on centromeres, epigenetically specified regions of chromosomes. While conventional human centromeres are known to be built of long tandem DNA repeats, much of their architecture remains unknown. Using single-molecule techniques such as AFM, nanopores, and optical tweezers, we find that human centromeric DNA exhibits complex DNA folds such as local hairpins. Upon binding to a specific sequence within centromeric regions, the DNA-binding protein CENP-B compacts centromeres by forming pronounced DNA loops between the repeats, which favor inter-chromosomal centromere compaction and clustering. This DNA-loop-mediated organization of centromeric chromatin participates in maintaining centromere position and integrity upon microtubule pulling during mitosis. Our findings emphasize the importance of DNA topology in centromeric regulation and stability.


Subject(s)
Centromere , Chromosomal Proteins, Non-Histone , Autoantigens/genetics , Autoantigens/metabolism , Centromere/genetics , Centromere/metabolism , Centromere Protein A/genetics , Centromere Protein A/metabolism , Chromatin , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , DNA/genetics , Humans
8.
Mol Cell ; 82(21): 4018-4032.e9, 2022 11 03.
Article in English | MEDLINE | ID: mdl-36332605

ABSTRACT

Kinetochore assembly on centromeres is central for chromosome segregation, and defects in this process cause mitotic errors and aneuploidy. Besides the well-established protein network, emerging evidence suggests the involvement of regulatory RNA in kinetochore assembly; however, it has remained elusive about the identity of such RNA, let alone its mechanism of action in this critical process. Here, we report CCTT, a previously uncharacterized long non-coding RNA (lncRNA) transcribed from the arm of human chromosome 17, which plays a vital role in kinetochore assembly. We show that CCTT highly localizes to all centromeres via the formation of RNA-DNA triplex and specifically interacts with CENP-C to help engage this blueprint protein in centromeres, and consequently, CCTT loss triggers extensive mitotic errors and aneuploidy. These findings uncover a non-centromere-derived lncRNA that recruits CENP-C to centromeres and shed critical lights on the function of centromeric DNA sequences as anchor points for kinetochore assembly.


Subject(s)
RNA, Long Noncoding , Humans , Aneuploidy , Centromere Protein A/metabolism , DNA , Kinetochores/metabolism , RNA, Long Noncoding/genetics , Centromere
9.
Mol Cell ; 82(11): 2113-2131.e8, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35525244

ABSTRACT

Centromeres are specialized chromosome loci that seed the kinetochore, a large protein complex that effects chromosome segregation. A 16-subunit complex, the constitutive centromere associated network (CCAN), connects between the specialized centromeric chromatin, marked by the histone H3 variant CENP-A, and the spindle-binding moiety of the kinetochore. Here, we report a cryo-electron microscopy structure of human CCAN. We highlight unique features such as the pseudo GTPase CENP-M and report how a crucial CENP-C motif binds the CENP-LN complex. The CCAN structure has implications for the mechanism of specific recognition of the CENP-A nucleosome. A model consistent with our structure depicts the CENP-C-bound nucleosome as connected to the CCAN through extended, flexible regions of CENP-C. An alternative model identifies both CENP-C and CENP-N as specificity determinants but requires CENP-N to bind CENP-A in a mode distinct from the classical nucleosome octamer.


Subject(s)
Kinetochores , Nucleosomes , Centromere/metabolism , Centromere Protein A/metabolism , Cryoelectron Microscopy , Humans , Kinetochores/metabolism , Nucleosomes/genetics
10.
Annu Rev Genet ; 55: 331-348, 2021 11 23.
Article in English | MEDLINE | ID: mdl-34496611

ABSTRACT

Centromeres are essential to genome inheritance, serving as the site of kinetochore assembly and coordinating chromosome segregation during cell division. Abnormal centromere function is associated with birth defects, infertility, and cancer. Normally, centromeres are assembled and maintained at the same chromosomal location. However, ectopic centromeres form spontaneously at new genomic locations and contribute to genome instability and developmental defects as well as to acquired and congenital human disease. Studies in model organisms have suggested that certain regions of the genome, including pericentromeres, heterochromatin, and regions of open chromatin or active transcription, support neocentromere activation. However, there is no universal mechanism that explains neocentromere formation. This review focuses on recent technological and intellectual advances in neocentromere research and proposes future areas of study. Understanding neocentromere biology will provide a better perspective on chromosome and genome organization and functional context for information generated from the Human Genome Project, ENCODE, and other large genomics consortia.


Subject(s)
Centromere , Chromatin , Centromere/genetics , Centromere/metabolism , Centromere Protein A/genetics , Centromere Protein A/metabolism , Chromatin/genetics , Epigenesis, Genetic , Epigenomics , Humans
11.
Cell ; 158(2): 397-411, 2014 Jul 17.
Article in English | MEDLINE | ID: mdl-25036634

ABSTRACT

To ensure the stable transmission of the genome during vertebrate cell division, the mitotic spindle must attach to a single locus on each chromosome, termed the centromere. The fundamental requirement for faithful centromere inheritance is the controlled deposition of the centromere-specifying histone, CENP-A. However, the regulatory mechanisms that ensure the precise control of CENP-A deposition have proven elusive. Here, we identify polo-like kinase 1 (Plk1) as a centromere-localized regulator required to initiate CENP-A deposition in human cells. We demonstrate that faithful CENP-A deposition requires integrated signals from Plk1 and cyclin-dependent kinase (CDK), with Plk1 promoting the localization of the key CENP-A deposition factor, the Mis18 complex, and CDK inhibiting Mis18 complex assembly. By bypassing these regulated steps, we uncoupled CENP-A deposition from cell-cycle progression, resulting in mitotic defects. Thus, CENP-A deposition is controlled by a two-step regulatory paradigm comprised of Plk1 and CDK that is crucial for genomic integrity.


Subject(s)
Autoantigens/metabolism , Cell Cycle Proteins/metabolism , Centromere/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Cell Cycle , Cell Line , Centromere Protein A , Cyclin-Dependent Kinases/metabolism , Genomic Instability , HeLa Cells , Humans , Polo-Like Kinase 1
12.
EMBO J ; 43(11): 2166-2197, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38600242

ABSTRACT

The centromeric histone H3 variant CENP-A is overexpressed in many cancers. The mislocalization of CENP-A to noncentromeric regions contributes to chromosomal instability (CIN), a hallmark of cancer. However, pathways that promote or prevent CENP-A mislocalization remain poorly defined. Here, we performed a genome-wide RNAi screen for regulators of CENP-A localization which identified DNAJC9, a J-domain protein implicated in histone H3-H4 protein folding, as a factor restricting CENP-A mislocalization. Cells lacking DNAJC9 exhibit mislocalization of CENP-A throughout the genome, and CIN phenotypes. Global interactome analysis showed that DNAJC9 depletion promotes the interaction of CENP-A with the DNA-replication-associated histone chaperone MCM2. CENP-A mislocalization upon DNAJC9 depletion was dependent on MCM2, defining MCM2 as a driver of CENP-A deposition at ectopic sites when H3-H4 supply chains are disrupted. Cells depleted for histone H3.3, also exhibit CENP-A mislocalization. In summary, we have defined novel factors that prevent mislocalization of CENP-A, and demonstrated that the integrity of H3-H4 supply chains regulated by histone chaperones such as DNAJC9 restrict CENP-A mislocalization and CIN.


Subject(s)
Centromere Protein A , Chromosomal Instability , Histones , Humans , Centromere Protein A/metabolism , Centromere Protein A/genetics , Histones/metabolism , Histones/genetics , Minichromosome Maintenance Complex Component 2/metabolism , Minichromosome Maintenance Complex Component 2/genetics , HeLa Cells , HSP40 Heat-Shock Proteins/metabolism , HSP40 Heat-Shock Proteins/genetics , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Centromere/metabolism
13.
Trends Biochem Sci ; 48(10): 849-859, 2023 10.
Article in English | MEDLINE | ID: mdl-37596196

ABSTRACT

CENP-A is an essential histone variant that replaces the canonical H3 at the centromeres and marks these regions epigenetically. The CENP-A nucleosome is the specific building block of centromeric chromatin, and it is recognized by CENP-C and CENP-N, two components of the constitutive centromere-associated network (CCAN), the first protein layer of the kinetochore. Recent proposals of the yeast and human (h)CCAN structures position the assembly on exposed DNA, suggesting an elusive spatiotemporal recognition. We summarize the data on the structural organization of the CENP-A nucleosome and the binding of CENP-C and CENP-N. The latter posits an apparent contradiction in engaging the CENP-A nucleosome versus the CCAN. We propose a reconciliatory model for the assembly of CCAN on centromeric chromatin.


Subject(s)
Kinetochores , Nucleosomes , Humans , Centromere Protein A , Chromatin , Saccharomyces cerevisiae
14.
EMBO J ; 42(10): e111587, 2023 05 15.
Article in English | MEDLINE | ID: mdl-37063065

ABSTRACT

Cancer cells display persistent underlying chromosomal instability, with individual tumour types intriguingly exhibiting characteristic subsets of whole, and subchromosomal aneuploidies. Few methods to induce specific aneuploidies will exist, hampering investigation of functional consequences of recurrent aneuploidies, as well as the acute consequences of specific chromosome mis-segregation. We therefore investigated the possibility of sabotaging the mitotic segregation of specific chromosomes using nuclease-dead CRISPR-Cas9 (dCas9) as a cargo carrier to specific genomic loci. We recruited the kinetochore-nucleating domain of centromere protein CENP-T to assemble ectopic kinetochores either near the centromere of chromosome 9, or the telomere of chromosome 1. Ectopic kinetochore assembly led to increased chromosome instability and partial aneuploidy of the target chromosomes, providing the potential to induce specific chromosome mis-segregation events in a range of cell types. We also provide an analysis of putative endogenous repeats that could support ectopic kinetochore formation. Overall, our findings provide new insights into ectopic kinetochore biology and represent an important step towards investigating the role of specific aneuploidy and chromosome mis-segregation events in diseases associated with aneuploidy.


Subject(s)
Chromosomal Proteins, Non-Histone , Kinetochores , Humans , Kinetochores/metabolism , Centromere Protein A/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Mitosis , Centromere/genetics , Centromere/metabolism , Aneuploidy , Chromosome Segregation
15.
EMBO J ; 42(17): e114534, 2023 09 04.
Article in English | MEDLINE | ID: mdl-37469281

ABSTRACT

Eukaryotic chromosome segregation requires the kinetochore, a megadalton-sized machine that forms on specialized centromeric chromatin containing CENP-A, a histone H3 variant. CENP-A deposition requires a chaperone protein HJURP that targets it to the centromere, but it has remained unclear whether HJURP has additional functions beyond CENP-A targeting and why high AT DNA content, which disfavors nucleosome assembly, is widely conserved at centromeres. To overcome the difficulties of studying nucleosome formation in vivo, we developed a microscopy assay that enables direct observation of de novo centromeric nucleosome recruitment and maintenance with single molecule resolution. Using this assay, we discover that CENP-A can arrive at centromeres without its dedicated centromere-specific chaperone HJURP, but stable incorporation depends on HJURP and additional DNA-binding proteins of the inner kinetochore. We also show that homopolymer AT runs in the yeast centromeres are essential for efficient CENP-A deposition. Together, our findings reveal requirements for stable nucleosome formation and provide a foundation for further studies of the assembly and dynamics of native kinetochore complexes.


Subject(s)
Chromosomal Proteins, Non-Histone , Nucleosomes , Centromere Protein A/genetics , Centromere Protein A/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Autoantigens/genetics , Autoantigens/metabolism , Centromere/genetics , Centromere/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
16.
EMBO J ; 42(6): e111965, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36744604

ABSTRACT

Centromere protein A (CENP-A) nucleosomes containing the centromere-specific histone H3 variant CENP-A represent an epigenetic mark that specifies centromere position. The Mis18 complex is a licensing factor for new CENP-A deposition via the CENP-A chaperone, Holliday junction recognition protein (HJURP), on the centromere chromatin. Chicken KINETOCHORE NULL2 (KNL2) (ggKNL2), a Mis18 complex component, has a CENP-C-like motif, and our previous study suggested that ggKNL2 directly binds to the CENP-A nucleosome to recruit HJURP/CENP-A to the centromere. However, the molecular basis for CENP-A nucleosome recognition by ggKNL2 has remained unclear. Here, we present the cryo-EM structure of the chicken CENP-A nucleosome in complex with a ggKNL2 fragment containing the CENP-C-like motif. Chicken KNL2 distinguishes between CENP-A and histone H3 in the nucleosome using the CENP-C-like motif and its downstream region. Both the C-terminal tail and the RG-loop of CENP-A are simultaneously recognized as CENP-A characteristics. The CENP-A nucleosome-ggKNL2 interaction is thus essential for KNL2 functions. Furthermore, our structural, biochemical, and cell biology data indicate that ggKNL2 changes its binding partner at the centromere during chicken cell cycle progression.


Subject(s)
Histones , Nucleosomes , Autoantigens/genetics , Autoantigens/metabolism , Cell Cycle Proteins/metabolism , Centromere/metabolism , Centromere Protein A/metabolism , Cryoelectron Microscopy , Histones/metabolism , DNA-Binding Proteins/chemistry , Animals , Chickens
17.
Nat Rev Mol Cell Biol ; 16(7): 443-9, 2015 07.
Article in English | MEDLINE | ID: mdl-25991376

ABSTRACT

The kinetochore is a complex molecular machine that directs chromosome segregation during mitosis. It is one of the most elaborate subcellular protein structures in eukaryotes, comprising more than 100 different proteins. Inner kinetochore proteins associate with specialized centromeric chromatin containing the histone H3 variant centromere protein A (CENP-A) in place of H3. Outer kinetochore proteins bind to microtubules and signal to delay anaphase onset when microtubules are absent. Since the first kinetochore proteins were discovered and cloned 30 years ago using autoimmune sera from patients with scleroderma-spectrum disease, much has been learnt about the composition, functions and regulation of this remarkable structure.


Subject(s)
Autoantigens/isolation & purification , Centromere Protein B/isolation & purification , Centromere/metabolism , Chromosomal Proteins, Non-Histone/isolation & purification , Animals , Autoantigens/metabolism , Centromere Protein A , Centromere Protein B/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Humans , Kinetochores/metabolism
18.
Cell ; 150(2): 317-26, 2012 Jul 20.
Article in English | MEDLINE | ID: mdl-22817894

ABSTRACT

In eukaryotes, DNA is packaged into chromatin by canonical histone proteins. The specialized histone H3 variant CENP-A provides an epigenetic and structural basis for chromosome segregation by replacing H3 at centromeres. Unlike exclusively octameric canonical H3 nucleosomes, CENP-A nucleosomes have been shown to exist as octamers, hexamers, and tetramers. An intriguing possibility reconciling these observations is that CENP-A nucleosomes cycle between octamers and tetramers in vivo. We tested this hypothesis by tracking CENP-A nucleosomal components, structure, chromatin folding, and covalent modifications across the human cell cycle. We report that CENP-A nucleosomes alter from tetramers to octamers before replication and revert to tetramers after replication. These structural transitions are accompanied by reversible chaperone binding, chromatin fiber folding changes, and previously undescribed modifications within the histone fold domains of CENP-A and H4. Our results reveal a cyclical nature to CENP-A nucleosome structure and have implications for the maintenance of epigenetic memory after centromere replication.


Subject(s)
Autoantigens/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Nucleosomes/metabolism , Autoantigens/chemistry , Cell Cycle , Centromere/metabolism , Centromere Protein A , Chromosomal Proteins, Non-Histone/chemistry , DNA Replication , DNA-Binding Proteins/metabolism , HEK293 Cells , HeLa Cells , Histones/chemistry , Histones/metabolism , Humans , Models, Molecular , Protein Structure, Tertiary
19.
Nature ; 600(7890): 748-753, 2021 12.
Article in English | MEDLINE | ID: mdl-34853474

ABSTRACT

Centromeric integrity is key for proper chromosome segregation during cell division1. Centromeres have unique chromatin features that are essential for centromere maintenance2. Although they are intrinsically fragile and represent hotspots for chromosomal rearrangements3, little is known about how centromere integrity in response to DNA damage is preserved. DNA repair by homologous recombination requires the presence of the sister chromatid and is suppressed in the G1 phase of the cell cycle4. Here we demonstrate that DNA breaks that occur at centromeres in G1 recruit the homologous recombination machinery, despite the absence of a sister chromatid. Mechanistically, we show that the centromere-specific histone H3 variant CENP-A and its chaperone HJURP, together with dimethylation of lysine 4 in histone 3 (H3K4me2), enable a succession of events leading to the licensing of homologous recombination in G1. H3K4me2 promotes DNA-end resection by allowing DNA damage-induced centromeric transcription and increased formation of DNA-RNA hybrids. CENP-A and HJURP interact with the deubiquitinase USP11, enabling formation of the RAD51-BRCA1-BRCA2 complex5 and rendering the centromeres accessible to RAD51 recruitment and homologous recombination in G1. Finally, we show that inhibition of homologous recombination in G1 leads to centromeric instability and chromosomal translocations. Our results support a model in which licensing of homologous recombination at centromeric breaks occurs throughout the cell cycle to prevent the activation of mutagenic DNA repair pathways and preserve centromeric integrity.


Subject(s)
Chromosomal Proteins, Non-Histone , DNA Repair , DNA-Binding Proteins , Centromere/genetics , Centromere/metabolism , Centromere Protein A , Chromosomal Proteins, Non-Histone/metabolism , Chromosome Segregation , DNA , DNA-Binding Proteins/metabolism , Histones/metabolism , Homologous Recombination
20.
J Cell Sci ; 137(3)2024 02 01.
Article in English | MEDLINE | ID: mdl-38319136

ABSTRACT

The kinetochore is an essential structure for chromosome segregation. Although the kinetochore is usually formed on a centromere locus, it can be artificially formed at a non-centromere locus by protein tethering. An artificial kinetochore can be formed by tethering of CENP-C or CENP-I, members of the constitutive centromere-associated network (CCAN). However, how CENP-C or CENP-I recruit the centromere-specific histone CENP-A to form an artificial kinetochore remains unclear. In this study, we analyzed this issue using the tethering assay combined with an auxin-inducible degron (AID)-based knockout method in chicken DT40 cells. We found that tethering of CENP-C or CENP-I induced CENP-A incorporation at the non-centromeric locus in the absence of Knl2 (or MIS18BP1), a component of the Mis18 complex, and that Knl2 tethering recruited CENP-A in the absence of CENP-C. We also showed that CENP-C coimmunoprecipitated with HJURP, independently of Knl2. Considering these results, we propose that CENP-C recruits CENP-A by HJURP binding to form an artificial kinetochore. Our results suggest that CENP-C or CENP-I exert CENP-A recruitment activity, independently of Knl2, for artificial kinetochore formation in chicken DT40 cells. This gives us a new insight into mechanisms for CENP-A incorporation.


Subject(s)
Centromere Protein A , Centromere , Kinetochores , Centromere Protein A/metabolism , Chromosome Segregation , Animals , Chickens
SELECTION OF CITATIONS
SEARCH DETAIL